跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 21:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李惇榮
論文名稱:三相三階層雙向功率轉換器之研製
論文名稱(外文):Development of Three-Phase Three-Level Dual Bi-directional Power Converters
指導教授:黃仲欽
學位類別:碩士
校院名稱:國立臺灣科技大學
系所名稱:電機工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:三階層中性點箝位式數位信號處理器
外文關鍵詞:three-levelneutral-point-clampedDSP
相關次數:
  • 被引用被引用:16
  • 點閱點閱:1017
  • 評分評分:
  • 下載下載:194
  • 收藏至我的研究室書目清單書目收藏:0
本文旨在研製高功因三相三階層雙向功率轉換器,以用於感應伺服驅動系統。系統採用中性點箝位型功率轉器以降低諧波含量。本文之交流-直流功率轉換器與直流-交流功率轉換器分別作為電源輸入功率之控制及感應伺服電動機之驅動。在同步旋轉座標系統下,將系統電源之輸入功率因數改善至接近單位功因,且降低電流諧波含量;感應伺服電動機則採用間接式轉子磁場導向控制以提昇電動機之驅動性能。本文也提出以上、下臂電容電壓誤差量調整三相命令電壓,使電動機在變速過程中,降低上、下臂電容電壓誤差量。文中亦利用瞬間功率平衡法,減少直流鏈電壓之漣波。
本文之系統以數位信號處理器(DSP TMS320LF2707A)為控制核心,完成實體製作,其控制策略皆用軟體程式完成,以減少硬體電路。本文以1.5 kW三相感應伺服電動機為負載進行測試,開關切換頻率為2.5 kHz時、電動機負載在2000 rpm,7.1 N-m的條件下,由實測結果顯示系統電源輸入側接近單位功因,電流總諧波失真率約為3.6 %,電動機側之電流總諧波失真率約為6.6 %,輸入與輸出功率之效率為86 %,且上、下臂電容電壓之誤差量接近於零;另在電動機剎車時,其能量亦可回收市電側。本文含數學模式之建立、模擬及實作,證明三相三階層功率轉換器對於降低電流諧波含量有顯著的效果。
This paper presents the analysis and implementation of a unity power factor, three-phase, three-level, dual bi-directional power converter for induction motor drives. In order to reduce current harmonic, the neutral-point-clamped power converter and power inverter are adopted to convert three-phase electrical power and to drive induction servo motor, respectively. Based on synchronous rotating-frame on the ac input side, the proposed ac-to-dc power converter is employed to improve power factor to unity and to reduce current harmonic as well. The dc-to-ac power inverter controlled by indirect rotor flux oriented algorithm is used to yield the rotor speed stably. In addition, the three-phase voltage command of power inverter is adjusted by voltage error between upper and lower capacitors at dc-link in order to decrease voltage imbalance between capacitors when rotor speeds up or down. With the instantaneous power balance control, the proposed system can not only convert three-phase electrical power from ac input, but also yield dc-link voltage stably.
In order to reduce circuitry complexity, a low-cost, 16-bit digital signal processor (DSP TMS320LF2407A) is used to serve as the core control device to implement a 1.5kW drive system under 2.5kHz switching frequency. Experimental data show that power factor is improved to unity and total current harmonic distortion is around 3.6%, 6.6% at ac input side and induction motor, respectively. The efficiency of whole system reaches 86% and voltage error between upper and lower capacitors is approximate to zero under 2000rpm, 7.1N-m output. Besides, the regenerative power is sent back to the input side of power converter when motor is braking. Finally, simulation and experiment results are given to justify the proposed system performance.
中文摘要 Ⅰ
英文摘要 Ⅱ
誌 謝 Ⅲ
目 錄 Ⅳ
圖表索引 Ⅶ
符號索引 XI
第一章 緒論 1
1.1 前言 1
1.2 系統架構 2
1.3 本文大綱 2
第二章 三相三階功率轉換器的分析及控制 4
2.1 前言 4
2.2 三相三階層功率轉換器之分析 4
2.3 三相三階層功率轉換器之控制 9
2.4 中性點電壓對稱之控制 11
2.5 結語 15
第三章 交流-直流功率轉換器之控制 16
3.1 前言 16
3.2 三相三階層功率轉換器之數學式 16
3.3 電源側同步旋轉座標系統之功率轉換器數學模式 18
3.4 電源側之功率因數控制 20
3.5 三相三階層交流-直流功率轉換器之控制設計 21
3.5.1 直流電壓控制 22
3.5.2 交直軸電流控制 24
3.6 模擬結果 28
3.7 結語 29
第四章 三相感應電動機之轉速控制 33
4.1 前言 33
4.2 感應電動機之數學模式 33
4.3 感應電動機之控制及模擬 38
4.3.1 轉速控制 38
4.3.2 電流控制 39
4.4 雙向功率轉換之感應電動機驅動系統 41
4.4.1 模擬結果 41
4.5 結語 42
第五章 實體製作 49
5.1 前言 49
5.2 硬體實作 49
5.2.1 數位信號處理器之介面電路 49
5.2.2 分相電路 50
5.2.3 功率電晶體及其閘級驅動電路 51
5.2.4 電流回授電路 51
5.2.5 過電流保護電路 52
5.2.6 直流鏈電壓偵測電路 52
5.2.7 市電側電壓同步角位置偵測電路 53
5.3 軟體規劃 54
5.3.1 三相三階層交流-直流功率轉換器控制之軟體規劃 54
5.3.2 感應電動機間接式轉子磁場導向控制之軟體規劃 56
5.3.4 整體系統之軟體規劃 58
5.4 結語 58
第六章 實測結果 60
6.1 前言 60
6.2 三相三階交流-直流功率轉換器測試 60
6.3 整體系統測試 60
6.4 結語 62
第七章 結論與建議 71
參考文獻 73
附錄A 系統參數 77
作者簡介 78
[1] S. Ogasawara and K. Akagi, “A vector control system using a eutral-point-clamped voltage source PWM inverter”, Conference Record of the Industry Applications Society Annual Meeting, vol. 1, pp. 422 -427, 1991.
[2] M. Koyama, T. Fujii, R. Uchida, and T. Kawabata, “Space voltage vector-based new PWM method for large capacity three-level GTO inverter”, Conference Record of the Industry Applications Society Annual Meeting, vol. 1, pp. 271-276, 1992.
[3] S. Tamai, M. Koyama, T. Fujii, S. Mizoguchi, and T. Kawabata , “3 Level GTO Converter-Inverter Pair system For Large Capacity Induction Motor Drive”, Conference Record of the Industry Applications Society Annual Meeting, vol. 5, pp. 45-50, 1993.
[4] H.L. Liu and G.H. Cho, “Three level space vector PWM in low index modulation region avoiding narrow pulse problem”, IEEE Transactions on Power Electronics, vol. 9, pp. 481-486, 1994.
[5] M.C. Klabunde, Y. Zhao, and T.A. Lipo, “Current control of a 3-level rectifier/inverter drive system”, Conference Record of the Industry Applications Society Annual Meeting, vol. 2, pp. 859-866, 1994.
[6] Y.H. Lee, B.S. Suh, and D.S. Hyun, “A novel PWM scheme for a three-level voltage source inverter with GTO thyistors”, IEEE Transactions on Industry Applications, vol. 32, pp. 260-268, 1996.
[7] B. Kaku, I. Miyashita, and S. Sone, “Switching loss minimized space vector PWM method for IGBT three-level inverter”, IEE Proc. Electric Power Applications, vol. 144, pp. 182-190, 1997.
[8] R. Sommer, A. Mertens, M. Griggs, H.J. Conraths, M. Bruckmann, and T. Greif, “New medium voltage drive systems using three-level neutral point clamped inverter with high voltage IGBT”, Conference Record of Industry Applications Society Annual Meeting, vol. 3, pp. 1513-1519, 1999.
[9] Y. Shrivastava and S.Y. Hui, “Analysis of random PWM switching methods for three-level power inverters”, IEEE Transactions on Power Electronics, vol. 14, pp. 1156-1153, 1999.
[10] N. Celanovic and D. Boroyevich, “A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters”, IEEE Transactions on Power Electronics, vol. 15, pp. 242-249, 2000.
[11] G. Sinha and T.A. Lipo, “A four-level inverter based drive with a passive front end”, IEEE Transactions on Power Electronics, vol. 15, pp. 285-294, 2000.
[12] D. Zhou and D.G. Rouaud, “Experimental comparisons of space vector neutral point balancing strategies for three-level topology”, IEEE Transactions on Power Electronics, vol. 16, pp. 872-879, 2001.
[13] J.H. Seo, C.H. Choi, and D.S. Hyun, “A new simplified space-vector PWM method for three-level inverters”, IEEE Transactions on Power Electronics, vol. 16, pp. 545-550, 2001.
[14] C.K. Lee, S.Y.R. Hui, H.S. Chung, and Y. Shrivastava, “A randomized voltage vector switching scheme for three-level power inverters”, IEEE Transactions on Power Electronics, vol. 17, pp. 94-100, 2002.
[15] K. Yamanaka, A.M. Hava, H. Kirino, Y. Tanaka, N. Koga, and T. Kume, “A novel neutral point potential stabilization technique using the information of output current polarities and voltage vector”, IEEE Transactions on Industry Applications, vol. 38, pp. 1572-1580, 2002.
[16] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point- Clamped PWM Inverter”, IEEE Transactions on Industry Applications, vol. 17, pp. 518-523, 1981.
[17] B. Velaerts, P. Mathys, E. Tatakis, and G. Bingen, “A Novel Approach To The Generation And Optimization Of Three-Level PWM Waveforms”, IEEE PESC’88, vol. 2, pp. 1255-1262, 1988.
[18] J.K. Steinke, “Switching frequency optimal PWM control of a three-level inverter”, IEEE Transactions on Power Electronics, vol. 7, pp. 487-496, 1992.
[19] G. Carrara, S. Gardella, M. Marchesoni, R. Salutari, and G. Sciutto, “A new multilevel PWM method: a theoretical analysis”, IEEE Transactions on Power Electronics, vol. 7, pp. 497-505, 1992.
[20] S. Ogasawara and H. Akagi, “Analysis of variation of neutral point potential in neutral-point-clamped voltage source PWM inverters”, Conference Record of the Industry Applications Society Annual Meeting, vol. 2, pp. 965-970, 1993.
[21] R.W. Menzies, P. Steimer, and J.K. Steinke, “Five-Level GTO Inverters For Large Induction Motor Drives”, IEEE Transactions on Industry Applications, vol. 30, pp. 938-944, 1994.
[22] C. Newton and M. Sumner, “Neutral point control for multi-level inverters: theory, design and operational limitations”, Conference Record of the Industry Applications Society Annual Meeting, vol. 2, pp. 1336-1343, 1997.
[23] F. Wang, “Sine-triangle versus space-vector modulation for three-level PWM voltage-source inverters”, IEEE Transactions on Industry Applications, vol. 38, pp. 500-506, 2002.
[24] J.F.A. Martins, A.J. Pires, and J.F. Silva, “A novel and simple current controller for three-phase PWM power inverters”, IEEE Transactions on Industrial Electronics, vol. 45, pp. 802-804, 1998.
[25] T. Ishida, K. Matsuse, K. Sugita, L. Huang, and K. Sasagawa, “DC voltage control strategy for a five-level converter”, IEEE Transactions on Power Electronics, vol. 15, pp. 508-515, 2000.
[26] C. Osawa, Y. Matsumoto, T. Mizukami, and S. Ozaki, “A state-space modeling and a neutral point voltage control for an NPC power converter”, Conference Record of Industry Applications Society Annual Meeting, vol. 1, pp. 225-230, 1997.
[27] Chee-Mun Ong, “Dynamic Simulation of Electric Machinery : Using Matlab/Simulink,” Prentice Hall PTR, 1998.
[28] J.W. Choi and S.K. Sul, “Fast current controller in three-phase ac/dc boost converter using d-q axis crosscoupling,” IEEE Transactions on Power Electronics, vol. 13, no. 1, pp. 562-570, 1985.
[29] 姜文泰,多階變頻器感應驅動系統之研製,國立台灣科技大學電機研究所碩士論文,民國八十九年。
[30] 廖峻慶,高功因三相感應伺服驅動系統之瞬間功率平衡控制,國立台灣科技大學電機研究所博士論文,民國八十九年。
[31] 許溢适譯,AC伺服系統的理論與設計實務,文笙書局,民國八十一年。
[32] 劉昌煥,交流電機控制,東華書局,民國九十年。
[33] TMS320LF/LC240x DSP Controllers System and Peripherals, Reference Guide, 2001.
[34] 李隆財,吳金勇,TMS230C240原理與實習,長高企業有限公司,民國八十九年。
[35] 唐佩忠,VHDL與數位邏輯設計,高立圖書有限公司,民國八十八年。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 謝佑珊、林春梅、裘苕莙(2003)‧重大傷害事件後的省思-醫院重大災害應變能力的檢討與準備‧榮總護理,24(4),347-356。
2. 蔣欣欣、陳美碧、蔡欣玲(2003)‧建構照顧情境中的專業自我-自身與他者之間‧本土心理學研究,19,201-226。
3. 劉永健(2001)‧從渾沌理論談班級內學習低成就學生的輔導‧學生輔導,77,96-101。
4. 蕭雅竹(2002)‧靈性概念之認識與應用‧長庚護理,13(4),345-351。
5. 穆佩芬(1996)‧現象學研究法‧護理研究,4(2),195-202。
6. 蔡麗芬、郭美玲、陳淑卿、張碧容(2002)‧癌症病患住院期間之需求及其相關因素探討‧長庚護理,13(2),116-125。
7. 趙可式(1998)‧精神衛生護理與靈性照護‧護理雜誌,45(1),16-20。
8. 趙可式(1994)‧從人性化護理理論看當代臨床護理‧護理雜誌,41(1),21-23。
9. 楊麗齡(1993)‧靈性護理之簡介‧長庚護理,4(1),9-16。
10. 楊美賞、鍾信心(1993)‧精神科住院病人與護理人員對約束及隔離之態度與感受之比較‧護理研究,1(3),193-204。
11. 楊克平(1998)‧護理實務中之靈性照護‧護理雜誌,45(3),77-83。
12. 楊士毅(1997)‧身體、感性與理性-懷德海身體感受理論之分析、延伸與應用‧世界新聞傳播學院人文學報,6,1-44。
13. 彭明輝(2003) ‧口罩使用在SARS的防護原理‧臨床醫學,51(6),407-410。
14. 陽光耀、彭瑞鵬(2003)‧SARS的胸部影像‧臨床醫學,51(6),393-398。
15. 莊苹、劉仲冬(1997)‧愛滋風暴─愛滋之烙印對感染者及一般民眾之意義‧護理研究,5(1),52-64。