跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 11:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳銘鴻
研究生(外文):Ming-Hong Chen
論文名稱:利用改良式粒子群最佳化演算法於機構系統之鑑別
論文名稱(外文):Using the modified particle swarm optimization to identify the mechanical systems
指導教授:陳晧隆
指導教授(外文):Hao-long Chen
口試委員:莊景文陳晧隆高志成
口試委員(外文):Chin-Wen ChuangHao-long ChenChih-ching Kao
口試日期:2012-06-29
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:100
語文別:英文
論文頁數:80
中文關鍵詞:改良式粒子群演算法永磁式同步馬達傳統式粒子群演算法局部的理想化機械系統
外文關鍵詞:modified particle swarm optimization (MPSO)PM synchronous motortraditional PSOlocal optimummechanism system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
人工智慧是一種最普遍也是最受歡迎的理論之一。本論文基於最佳化以及最佳控制理論為基礎進而發展一套最佳化控制方法,給設計者,針對不同型態的最佳化問題提供一種既快速又有效能的方法來改善其問題,而且能夠證明有能力在所有解答中找出最佳的解,並且將此種方法應用於機電系統上。
最佳化粒子群演算法 (PSO),是一種具有高性能、強靭性,以及運算簡易的最佳化演算法。大部分對於 PSO 之研究,主要是以經驗為依據來加以設計,只有少部分是以粒子群的軌跡為主軸,作理論上的分析。並且利用改良式最佳化粒子群演算法(MPSO) 來鑑別系統上不易量出的參數,此 MPSO 新的方法是在傳統的 PSO 中加入「距離」之觀念以避免我們所找出的解不是系統的最佳解。藉由 MPSO 與 PSO 兩方法針對此系統之收斂特性分析,我們可以很清楚的發現,此 MPSO 的方法所找出來的解具有高效率、高品質的最佳解,而且又能夠改善系統響應的準確性。
本論文主要是探討過去有關最佳化粒子群演算法的文獻,並且將這些探討所得的結果應用在機構的系統鑑別,應用的系統有曲柄滑塊機構、LCD單軸機器手臂及Scott-Russell 機構等等。實驗結果的證明,我們可以發現這個理論是可以滿足我們機構設計上的需求。

Artificial intelligence is once of the most popular optimization algorithms. This dissertation focuses on developing a optimization and optimal control theory. Several solution searching strategies and mechanisms are proposed to improve solution searching capability and efficiency of population-based optimizers for dealing with different types of optimization problems. To verify the solution searching ability in the solution space, the proposed algorithm will be applied to mechanism systems.
This study mainly proposes an efficient modified particle swarm optimization (MPSO) method, to identify mechanism system with driven by a field-oriented PM synchronous motor. The parameters of many industrial machines are difficult to obtain if these machines cannot be taken apart. In system identification, we adopt the MPSO method to find parameters of the mechanism systems. This new algorithm is added with “distance” term in the traditional PSO’s fitness function to avoid converging to a local optimum. It is found that the MPSO method can obtain optimal high-quality solution, high calculation efficiency, and its feasibility and effectiveness.
All the proposed control schemes are applied to Slider-Crank mechanism system, LCD glass-handling robot system and Scott-Russell (SR) magnification mechanism system by simulation and experiment to demonstrate the effectiveness and advantages.

Abstract in English...... 1
Abstract in Chinese...... 2
Acknowledgements in Chinese...... 4
Contents .........................5
List of Figures...................7

Chapter 1 Introduction
1.1 Motivation and literature survey....9
1.2 Organization of thesis..............11

Chapter 2 Artificial Intelligence Algorithm
2.1 The particle swarm optimization theorem.........................12
2.1.1 The characteristic of the particle swarm optimization.......15
2.2 The modified particle swarm optimization theorem................16
2.3 The characteristic of the modified particle swarm optimization theorem....18

Chapter 3 The mechanism systems
3.1 The LCD Glass-handing Robot...........20
3.2 The Scott-Russell mechanism systems...23
3.3 The Slider-crank mechanism systems....26
3.3.1 Dynamic Modeling..................26
3.3.2 Governing equations...............29
3.3.3 Decouple the differential equations...30
3.3.4 Alternative dynamic modeling......33

Chapter 4 Application in the mechanism systems
4.1 The identify of an LCD Glass-handing Robot...........34
4.2 The identify of a Scott-Russell mechanism system.....35
4.3 The identify of a Slider-crank mechanism system......37

Chapter 5 Experimental Setup & Experimental Results
5.1 The LCD Glass-handing Robot...............38
5.1.1 Experimental setup....................38
5.1.2 Experimental results..................41
5.2 The identify of a Scott-Russell mechanism system.....46
5.2.1 Experimental setup....................46
5.2.2 Experimental results..................47
5.3 The identify of a Slider-crank mechanism system......50
5.3.1 Experimental setup....................50
5.3.2 Experimental results..................52

Chapter 6 Conclusions and Future work.........54
6.1 Conclusions...............................54
6.2 Future work...............................56

Appendix A: Dynamic formulation................57
Appendix B: Alternative dynamic modeling of a slider-crank mechanism.............60

References....................................62

[1]Zhu, J. and Chow, M.Y., “A review of emerging techniques on generation expansion planning,” IEEE Transaction on Power Systems, 1997, 12(4), 1722-1728.
[2]Wong K.P. and Wong, Y.W., “Combined genetic algorithm/simulated annealing/fuzzy set approach to short-term generation schedule with take-or-pay fuel contract,” IEEE Transaction on Power Systems, 1996, 11(1), 128-136.
[3]Park, Y.M., Park, J.B., and Won, J.R., “A hybrid genetic algorithm/dynamic programming approach to optimal long-term generation expansion planning,” The Journal of Electrical Power & Energy Systems, 1998, 20(4), 295-303.
[4]Fukuyama, Y. and Chiang, H.D., “A parallel genetic algorithm for generation expansion planning,” IEEE Transaction on Power Systems, 1996, 11(2), 955-961.
[5]Nguyen, D.H.M. and Wong, K.P., “Power markets analysis using genetic algorithm with popultion concentration,” IEEE Powercon 2000 conference, 4-7 December, Perth, Australia, 37-42.
[6]Jang-Sung Chun, Hyun-Kyo Jung and Song-Yop Hahn, “A Study on Comparison of Optimization Performances between Immune Algorithm and other Heuristic Algorithms,” IEEE Transactions on Magnetics, Vol. 34, No. 5, September 1998.
[7]Shyh-Jier Huang, “An immune-based optimization method to capacitor placement in a radial distribution system,” IEEE Transactions on Power Delivery, Vol. 15, No. 2, April 2000.
[8]Toma, N.; Endo, S.; Yamanda, K., “Immune algorithm with immune network and MHC for adaptive problem solving,” Systems, Man, and Cybernetics, 1999 IEEE International Conference on , Vol. 4 , pp. 271 –276, 1999.
[9]Endoh, S.; Toma, N.; Yamada, K ,”Immune algorithm for n-TSP,” Systems, Man, and Cybernetics, 1998 IEEE International Conference on , Vol. 4 , pp. 3844 –3849, 1998.
[10]J. Kennedy and R. Eberhart, "Particle Swarm Optimization", Proceedings of IEEE International Conference on Neural Networks (ICNN'95), Vol. IV, pp.1942-1948, Perth, Australia, 1995.
[11]E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence : From Natural to Artificial Systems, Oxford Press, 1999.
[12]J. Kennedy and R. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers, 2001.
[13]M. Clerc, "The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization", Proc. of IEEE International Conference on Evolutionary Computation (ICEC'99), 1999.
[14]R. Eberhart and Y. Shi, "Comparing Inertia Weights and Constriction Factors in Particle Swarm Optimization", Proc. of the Congress on Evolutionary Computation (CEC2000), pp.84-88, 2000.
[15]M. A. Abido, "Particle Swarm Optimization for Multi-machine Power System Stabilizer Design", Proc. of IEEE Power Engineering Society Summer Meeting, July 2001.
[16]P. Angeline, "Evolutionary Optimization versus Particle Swarm Optimization: Philosophy and Performance Differences", Proceeding of The Seventh Annual Conf. on Evolutionary Programming, March 1998.
[17]Kennedy, J. and Eberhart, R., 1995, “Particle swarm optimization”, in Proceedings of the IEEE International Conference Neural Networks, vol. IV, Perth, Australia, pp.1942-1948.
[18]Eberhart, R. C. and Shi, Y., 1998, “Comparison between genetic algorithms and particle swarm optimization”, in Proceedings of the IEEE International Conference Evolutionary Computation, Anchorage, AK, pp. 611–616.
[19]Angeline, P. J., 1998, “Using selection to improve particle swarm optimization”, In Proceedings IEEE International Conference Evolutionary Computation, Anchorage, AK, pp. 84–89.
[20]Yoshida, H., Kawata, K. and Fukuyama, Y., 2000. “A particle swarm optimization for reactive power and voltage control considering voltage security assessment”, IEEE Transactions Power System, vol. 15, pp. 1232–1239.
[21]Gaing, Z. L., 2004, “A Particle Swarm Optimization Approach for Optimum Design of PID Controller in AVR System”, IEEE Transactions on Energy Conversion, vol. 19, No. 2, pp. 384–391.
[22]Kao, C. C., Chuang ,C. W., and Fung, R. F., 2006, ”The self-tuning PID control in a slider–crank mechanism system by applying particle swarm optimization approach”, Mechatronics, vol. 16, Issue 8 , pp. 513-522.
[23]Bergh, F., and Engelbrecht, A. P., 2004, “A cooperative approach to particle swarm optimization”, IEEE Transactions on Evolutionary Computation, vol. 8, pp.868-873.
[24]Baskar, S. and Suganthan, P. N., 2004, “A novel concurrent particle swarm optimization”, In Proceedings of IEEE Congress on Evolutionary Computation, vol. 1, pp. 792-796.
[25]Liang, J. J., Qin, A. K., Suganthan, P. N., and Basker, S., 2006, “Comprehensive learning particle swarm optimizer for global optimization of multimodal functions”, IEEE Transactions on Evolutionary Computation, vol. 10, pp.281-296.
[26]Castro , J. L. and Delgado, M., 1996, “Fuzzy systems with defuzzification are universal approximators”, IEEE Transactions System, Man, Cybern., vol. 26, no. 1, pp. 149–152.
[27]Deng, J. L., 1982, “Control problems of grey systems”, System & Control Letters, Vol. 1, No. 5, pp. 288-294.
[28]Deng, J. L., 1989, “Introduction to grey system theory”, Journal of Grey System, Vol. 1, No. 1, pp.1-24.
[29]Li, C. Y. and Huang, T. L., 2004, “Optimal design of the grey prediction PID controller for power system stabilizers by evolutionary programming”, in Proceedings of the IEEE International Conference on Networking, Sensing & Control, pp. 1370-1375.
[30]Chiang, H. K. and Tseng, C. H., 2004, “Integral variable structure controller with grey prediction for synchronous reluctance motor drive”, IEE Proceedings Electronic Power Application, Vol. 151, No. 3, pp. 349-358.
[31]Wang, D. F., Han, P., Han, W. and Liu, H. J., 2003, “Typical grey prediction control methods and simulation studies”, Proceedings IEEE International Conference on Machine Learning and Cybernetics, pp. 513-518.
[32]Kung, C. C. and Chen, C. C., 1997, “Grey fuzzy sliding mode controller design with genetic algorithm”, IEEE Conference Decision Control, pp. 2748-2753.
[33]Wai, R. J., Duan, R. Y. and Chang, L. J., 2001, “Grey feedback linearization speed control for induction servo motor drive”, IEEE Conference Ind. Electronic, pp. 580-585.
[34]Lin, K. H., 2004, “The Study on the Optimization of Grey Model and the Implementation of Grey Prediction Fuzzy Controller”, Department of Electrical Engineering, National Cheng Kung University, Thesis for the Degree of Doctoral.
[35]Hwang, T. S. and Liao, M. Y., 2004, “Optimal mechanism design and dynamic analysis of a 3-Leg 6-DOF linear motor based parallel manipulator”, Asian Journal of Control, Vol. 6, No. 1, pp.136-144.
[36]Liu, C. H. and Cheng, S., 2004, “Direct singular positions of 3RPS parallel manipulators”, Journal of Mechanical Design, Vol. 126, pp. 1006-1016.
[37]Joshi, S. A. and Tsai, L. W., 2002, “Jacobian analysis of limited-DOF parallel manipulators”, Journal of Mechanical Design, Vol. 124, pp. 254-258.
[38]Kao, C. C., Wu, S. L., and Fung, R. F., 2007, ”The 3RPS parallel manipulator motion control in the neighborhood of singularities”, in Proceedings of the International Symposium on Industrial Electronics, Mechatronics and Applications, Vol. 1, pp. 165-179.
[39]Maciejewski, A. A. and Klein, C. A., 1989, “The singular value decomposition: computation and applications to robotics”, International Journal Robotics Research, Vol. 8, No. 6, pp. 63-79.
[40]Wen, J. T. and O’Brien, J. F., 2003, “Singularities in tree-legged platform-type parallel mechanisms”, IEEE Transactions on Robotics and Automation, Vol. 19, No. 4, pp. 720-726.
[41]Hong, S. J., 2005, “The design of Neuro-Fuzzy networks using particle swarm optimization and recursive singular value decomposition”, Department and Graduate Institute of Computer Science and Information Engineering, Chaoyang University of Technology, Thesis for the Degree of Master.
[42]Jau, Y. S., 2007, “Swarm-intelligence-based optimization algorithms and their applications”, Department of Computer Science and Information Engineering, National Central University, Thesis for the Degree of Doctoral.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top