跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 08:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂曉沛
研究生(外文):Hsiao-Pei Lu
論文名稱:以多源基因體與多源轉錄體方法研究食葉性白面鼯鼠 (Petaurista alborufus lena)的消化道微生物菌群結構與功能
論文名稱(外文):Using metagenomic and metatranscriptomic approaches to study the composition and function of the gut microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena)
指導教授:于宏燦于宏燦引用關係
口試委員:湯森林黃曉薇郭志鴻謝志豪
口試日期:2013-01-22
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:動物學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:216
中文關鍵詞:多源基因體多源轉錄體白面鼯鼠消化道微生物共演化
外文關鍵詞:metagenomicsmetatranscriptomicsflying squirrelgut microbiotacoevolution
相關次數:
  • 被引用被引用:1
  • 點閱點閱:658
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
白面鼯鼠分布於台灣中高海拔森林中,主要以各種闊葉樹木的嫩葉為食。膨大的盲腸為其消化道的明顯特徵,內含有大量的共生微生物,可協助宿主進行食物的分解代謝,使得飛鼠能從營養貧乏的葉片中獲取生存所需的能量。儘管消化道微生物對於人體與實驗鼠的重要性已被廣泛驗證,然而對於微生物在野生動物體內的組成結構與其所扮演的功能角色仍然所知有限。因此,本研究採用非傳統培養之分子遺傳工具與新一代的定序技術,針對野生飛鼠的消化道微生物進行詳盡的探索分析。依據實驗方法與討論內容可分為三個研究主軸:一、使用16S rRNA基因序列,研究來自12個消化道樣本(分別為兩隻飛鼠的小腸/盲腸/大腸之腸壁和內容物)的細菌組成結構〈詳見第二章〉。二、使用fosmid 端點定序序列,研究飛鼠盲腸內容物的微生物菌種組成和功能特性〈詳見第三章〉。三、使用多源基因體(metagenome)和多源轉錄體(metatranscriptome)序列,研究飛鼠盲腸微生物之代謝表現特徵〈詳見第四章〉。菌群分析結果顯示:無論採取哪種研究方式,Firmicutes均為飛鼠消化道微生物中主要的優勢菌群。功能比對結果顯示:微生物的代謝功能對於消化道環境內各項營養循環具有重要貢獻,例如:碳水化合物的降解、蛋白質的循環利用、及維生素的生合成。基因表現結果顯示:各項有關醣類代謝利用的基因(包含分解/偵測/運輸醣類之基因)均被大量的表現於飛鼠的盲腸環境中,表示這些居住在小型食葉性哺乳動物體內的微生物菌群,已經適應出能夠有效地從植物葉片中獲取能量之功能特化,與宿主形成共演化關係。

White-faced flying squirrels (Petaurista alborufus lena) inhabiting in subtropical forests of Taiwan, feed on leaves of diverse tree species. The predominant feature of their gastrointestinal tracts is an enlarged cecum that serves as an anaerobic container for microbial fermentation. Symbiotic gut microorganisms providing metabolic activities lacking in the host, are essential for energy extraction from the nutritionally poor diet. Although the importance of gut microbiota has been well demonstrated in humans and lab mice, there is a paucity of knowledge regarding gut microbial constituents and their functional capabilities in wild animals. Therefore, in this research, we applied culture-independent molecular tools and high-throughput sequencing techniques to provide the comprehensive understanding of the gut microbial communities in the wild-caught flying squirrels. Chapter 2 described the bacterial communities of various gut compartments based on 16S rRNA gene sequences. Chapter 3 provided the phylogenetic and functional profiles of the cecal microbiota based on fosmid end-sequences. Chapter 4 revealed the metabolic characteristics of the cecal microbiota based on the comparison of metagenomic and metatranscriptomic sequences. No matter using which approaches, Firmicutes was the predominant group of the gut microbiota. All results indicated that the microbial functions greatly contributed to nutrient cycling (including degradation of carbohydrates, metabolism of proteins, and synthesis of vitamins) in the gut environments. High gene expression for sugar degradation, detection and uptake revealed microbial adaptations for plant biomass usage in small folivorous mammals.

口試委員審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
Chapter 1 General Introduction 1
1.1 Digestive systems of mammalian herbivores 1
1.2 Gut microbiota of mammalian herbivores 4
1.3 Plant biomass degradation by microbial enzymes 6
1.4 Molecular approaches for microbial studies 12
1.5 Significance of studies on gut microbiota of flying squirrels 22
1.6 Prokaryotic genome research 27
1.7 Reference 29
Chapter 2 Complexity of intestinal bacterial communities in the leaf-eating flying squirrel implies differentiation in functional properties of the gut microbiota 39
2.1 Abstract 39
2.2 Introduction 40
2.3 Methods 43
2.4 Results 47
2.5 Discussion 52
2.6 References 57
Chapter 3 Metagenomic analysis reveals a functional signature for biomass degradation by cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena) 72
3.1 Abstract 72
3.2 Introduction 73
3.3 Methods 75
3.4 Results 80
3.5 Discussion 92
3.6 Conclusions 98
3.7 References 98
Chapter 4 Integrated metagenome and metatranscriptome reveal adaptive ability for sugar degradation, detection and uptake by the cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena) 117
4.1 Abstract 117
4.2 Introduction 118
4.3 Methods 121
4.4 Results 125
4.5 Discussion 141
4.6 References 150
Chapter 5 Correlation of phylogeny with functional traits reveals the roles of gene evolutionary mechanisms in prokaryotes 178
5.1 Abstract 178
5.2 Introduction 179
5.3 Methods 182
5.4 Results / Discussion 188
5.5 References 200
Chapter 6 Conclusions and perspectives 211
6.1 Conclusions 211
6.2 Perspectives 212
6.3 References 215

Chapter 1 Reference
1. Hume ID (2002) Digestive strategies of mammals. Acta Zoologica Sinica 48: 1-19.
2. Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews 78: 393-427.
3. Hume ID (1989) Invited Perspectives in Physiological Zoology - Optimal Digestive Strategies in Mammalian Herbivores. Physiological Zoology 62: 1145-1163.
4. Dehority BA (2002) Gastrointestinal tracts of herbivores, particularly the ruminant: Anatomy, physiology and microbial digestion of plants. Journal of Applied Animal Research 21: 145-160.
5. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology 24: 4-10.
6. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, et al. (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299: 2074-2076.
7. Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Molecular Microbiology 59: 1639-1650.
8. Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Current Opinion in Biotechnology 20: 358-363.
9. Warnecke F, Hess M (2009) A perspective: Metatranscriptomics as a tool for the discovery of novel biocatalysts. Journal of Biotechnology 142: 91-95.
10. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647-1651.
11. Osawa R, Blanshard WH, Ocallaghan PG (1993) Microbiological Studies of the Intestinal Microflora of the Koala, Phascolarctos-Cinereus .2. Pap, a Special Maternal Feces Consumed by Juvenile Koalas. Australian Journal of Zoology 41: 611-620.
12. Resta SC (2009) Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. Journal of Physiology-London 587: 4169-4174.
13. de Fombelle A, Varloud M, Goachet AG, Jacotot E, Philippeau C, et al. (2003) Characterization of the microbial and biochemical profile of the different segments of the digestive tract in horses given two distinct diets. Animal Science 77: 293-304.
14. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124: 837-848.
15. Medina B, Girard ID, Jacotot E, Julliand V (2002) Effect of a preparation of Saccharomyces cerevisiae on microbial profiles and fermentation patterns in the large intestine of horses fed a high fiber or a high starch diet. Journal of Animal Science 80: 2600-2609.
16. Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, et al. (2002) Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Applied and Environmental Microbiology 68: 673-690.
17. Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, et al. (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America 106: 1948-1953.
18. Whitford MF, Forster RJ, Beard CE, Gong JH, Teather RM (1998) Phylogenetic analysis of rumen bacteria by comparative sequence analysis of cloned 16S rRNA genes. Anaerobe 4: 153-163.
19. Lin CZ, Raskin L, Stahl DA (1997) Microbial community structure in gastrointestinal tracts of domestic animals: Comparative analyses using rRNA-targeted oligonucleotide probes. Fems Microbiology Ecology 22: 281-294.
20. Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America 95: 6578-6583.
21. Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshwater Biology 54: 649-677.
22. Dinsdale EA, Edwards RA, Hall D, Angly F, Breitbart M, et al. (2008) Functional metagenomic profiling of nine biomes. Nature 452: 629-U628.
23. Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnology for Biofuels 2: 10.
24. Singh B, Bhat TK, Kurade NP, Sharma OP (2008) Metagenomics in animal gastrointestinal ecosystem: a microbiological and biotechnological perspective. Indian Journal of Microbiology 48: 216-227.
25. Flint HJ, Bayer EA (2008) Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Incredible Anaerobes: From Physiology to Genomics to Fuels 1125: 280-288.
26. Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454: 841-845.
27. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27: 305-335.
28. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8: 548-557.
29. Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, et al. (2008) Lignin degradation in wood-feeding insects. Proceedings of the National Academy of Sciences of the United States of America 105: 12932-12937.
30. Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annual Review of Plant Biology 54: 519-546.
31. Bayer EA, Lamed R, White BA, Flint HJ (2008) From Cellulosomes to Cellulosomics. Chemical Record 8: 364-377.
32. Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85: 471-480.
33. Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angewandte Chemie-International Edition 44: 3358-3393.
34. Shallom D, Shoham Y (2003) Microbial hemicellulases. Current Opinion in Microbiology 6: 219-228.
35. Liljebjelke K, Adolphson R, Baker K, Doong RL, Mohnen D (1995) Enzymatic-Synthesis and Purification of Uridine-Diphosphate [C-14] Galacturonic Acid - a Substrate for Pectin Biosynthesis. Analytical Biochemistry 225: 296-304.
36. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 37: D233-D238.
37. Schwarz WH (2001) The cellulosome and cellulose degradation by anaerobic bacteria. Applied Microbiology and Biotechnology 56: 634-649.
38. Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. Fems Microbiology Reviews 29: 3-23.
39. Krause DO, Denman SE, Mackie RI, Morrison M, Rae AL, et al. (2003) Opportunities to improve fiber degradation in the rumen: microbiology, ecology, and genomics. Fems Microbiology Reviews 27: 663-693.
40. Sirotek K, Slovakova L, Kopecny J, Marounek M (2004) Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bacteroides caccae. Letters in Applied Microbiology 38: 327-332.
41. Yu H, Zeng GM, Huang HL, Xi XM, Wang RY, et al. (2007) Microbial community succession and lignocellulose degradation during agricultural waste composting. Biodegradation 18: 793-802.
42. Vares T, Lundell TK, Hatakka AI (1992) Novel Heme-Containing Enzyme Possibly Involved in Lignin Degradation by the White-Rot Fungus Junghuhnia-Separabilima. Fems Microbiology Letters 99: 53-58.
43. Shah V, Nerud F (2002) Lignin degrading system of white-rot fungi and its exploitation for dye decolorization. Canadian Journal of Microbiology 48: 857-870.
44. Olsen GJ, Lane DJ, Giovannoni SJ, Pace NR, Stahl DA (1986) Microbial Ecology and Evolution - a Ribosomal-Rna Approach. Annual Review of Microbiology 40: 337-365.
45. Savage DC (1986) Gastrointestinal Microflora in Mammalian Nutrition. Annual Review of Nutrition 6: 155-178.
46. Amann RI (1995) Fluorescently Labeled, Ribosomal-Rna-Targeted Oligonucleotide Probes in the Study of Microbial Ecology. Molecular Ecology 4: 543-553.
47. Miyamoto Y, Itoh K (1999) Design of cluster-specific 16S rDNA oligonucleotide probes to identify bacteria of the Bacteroides subgroup harbored in human feces. Fems Microbiology Letters 177: 143-149.
48. Suau A, Bonnet R, Sutren M, Godon JJ, Gibson GR, et al. (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environmental Microbiology 65: 4799-4807.
49. Haack SK, Fogarty LR, West TG, Alm EW, McGuire JT, et al. (2004) Spatial and temporal changes in microbial community structure associated with recharge-influenced chemical gradients in a contaminated aquifer. Environmental Microbiology 6: 438-448.
50. Park NY, Chung CY, Mclaren AJ, Atyeo RF, Hampson DJ (1995) Polymerase Chain-Reaction for Identification of Human and Porcine Spirochetes Recovered from Cases of Intestinal Spirochetosis. Fems Microbiology Letters 125: 225-229.
51. Wang RF, Cao WW, Cerniglia CE (1996) PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Applied and Environmental Microbiology 62: 1242-1247.
52. Welling GW, Elfferich P, Raangs GC, WildeboerVeloo ACM, Jansen GJ, et al. (1997) 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scandinavian Journal of Gastroenterology 32: 17-19.
53. Zoetendal EG, Akkermans ADL, De Vos WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Applied and Environmental Microbiology 64: 3854-3859.
54. Woese CR, Kandler O, Wheelis ML (1990) Towards a Natural System of Organisms - Proposal for the Domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences of the United States of America 87: 4576-4579.
55. Xu MX, Wang FP, Meng J, Xiao X (2007) Construction and preliminary analysis of a metagenomic library from a deep-sea sediment of east Pacific Nodule Province. Fems Microbiology Ecology 62: 233-241.
56. Pace NR, Stahl DA, Lane DJ, Olsen GJ (1986) The Analysis of Natural Microbial-Populations by Ribosomal-Rna Sequences. Advances in Microbial Ecology 9: 1-55.
57. Brauman A, Dore J, Eggleton P, Bignell D, Breznak JA, et al. (2001) Molecular phylogenetic profiling of prokaryotic communities in guts of termites with different feeding habits. Fems Microbiology Ecology 35: 27-36.
58. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 37: D141-D145.
59. Rowan AK, Davenport RJ, Snape JR, Fearnside D, Barer MR, et al. (2005) Development of a rapid assay for determining the relative abundance of bacteria. Applied and Environmental Microbiology 71: 8481-8490.
60. Wertz JE, Goldstone C, Gordon DM, Riley MA (2003) A molecular phylogeny of enteric bacteria and implications for a bacterial species concept. Journal of Evolutionary Biology 16: 1236-1248.
61. Bent SJ, Forney LJ (2008) The tragedy of the uncommon: understanding limitations in the analysis of microbial diversity. Isme Journal 2: 689-695.
62. Acinas SG, Marcelino LA, Klepac-Ceraj V, Polz MF (2004) Divergence and redundancy of 16S rRNA sequences in genomes with multiple rrn operons. Journal of Bacteriology 186: 2629-2635.
63. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, et al. (2000) 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. Journal of Clinical Microbiology 38: 3623-3630.
64. Hayashi H, Sakamoto M, Kitahara M, Benno Y (2006) Diversity of the Clostridium coccoides group in human fecal microbiota as determined by 16S rRNA gene library. Fems Microbiology Letters 257: 202-207.
65. Curtis TP, Head IM, Lunn M, Woodcock S, Schloss PD, et al. (2006) What is the extent of prokaryotic diversity? Philosophical Transactions of the Royal Society B-Biological Sciences 361: 2023-2037.
66. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72: 5069-5072.
67. Rappe MS, Giovannoni SJ (2003) The uncultured microbial majority. Annual Review of Microbiology 57: 369-394.
68. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, et al. (2007) Essay - The role of ecological theory in microbial ecology. Nature Reviews Microbiology 5: 384-392.
69. McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, et al. (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10: 995-1015.
70. Sugihara G, Bersier LF, Southwood TRE, Pimm SL, May RM (2003) Predicted correspondence between species abundances and dendrograms of niche similarities. Proceedings of the National Academy of Sciences of the United States of America 100: 5246-5251.
71. Riesenfeld CS, Schloss PD, Handelsman J (2004) Metagenomics: Genomic analysis of microbial communities. Annual Review of Genetics 38: 525-552.
72. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nature Reviews Genetics 6: 805-814.
73. Gabor EM, de Vries EJ, Janssen DB (2004) Construction, characterization, and use of small-insert gene banks of DNA isolated from soil and enrichment cultures for the recovery of novel amidases. Environmental Microbiology 6: 948-958.
74. Nesbo CL, Boucher Y, Dlutek M, Doolittle WF (2005) Lateral gene transfer and phylogenetic assignment of environmental fosmid clones. Environmental Microbiology 7: 2011-2026.
75. Babcock DA, Wawrik B, Paul JH, McGuinness L, Kerkhof LJ (2007) Rapid screening of a large insert BAC library for specific 16S rRNA genes using TRFLP. Journal of Microbiological Methods 71: 156-161.
76. Angelov A, Mientus M, Liebl S, Liebl W (2009) A two-host fosmid system for functional screening of (meta)genomic libraries from extreme thermophiles. Systematic and Applied Microbiology 32: 177-185.
77. Sharma R, Ranjan R, Kapardar RK, Grover A (2005) ''Unculturable'' bacterial diversity: An untapped resource. Current Science 89: 72-77.
78. Wommack KE, Bhavsar J, Ravel J (2008) Metagenomics: Read length matters. Applied and Environmental Microbiology 74: 1453-1463.
79. Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao YL, et al. (2006) Sequencing Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. Bmc Genomics 7: -.
80. Marguerat S, Wilhelm BT, Bahler J (2008) Next-generation sequencing: applications beyond genomes. Biochemical Society Transactions 36: 1091-1096.
81. Heng NC, Stanton JA (2010) Oral bacterial genome sequencing using the high-throughput Roche Genome Sequencer FLX System. Methods Mol Biol 666: 197-218.
82. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031.
83. Vieites JM, Guazzaroni ME, Beloqui A, Golyshin PN, Ferrer M (2009) Metagenomics approaches in systems microbiology. Fems Microbiology Reviews 33: 236-255.
84. Chan CKK, Hsu AL, Halgamuge SK, Tang SL (2008) Binning sequences using very sparse labels within a metagenome. Bmc Bioinformatics 9: -.
85. Kunin V, Copeland A, Lapidus A, Mavromatis K, Hugenholtz P (2008) A Bioinformatician''s Guide to Metagenomics. Microbiology and Molecular Biology Reviews 72: 557-578.
86. Meyer F, Paarmann D, D''Souza M, Olson R, Glass EM, et al. (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. Bmc Bioinformatics 9: 386.
87. Gerlach W, Junemann S, Tille F, Goesmann A, Stoye J (2009) WebCARMA: a web application for the functional and taxonomic classification of unassembled metagenomic reads. Bmc Bioinformatics 10: -.
88. Waschkowitz T, Rockstroh S, Daniel R (2009) Isolation and Characterization of Metalloproteases with a Novel Domain Structure by Construction and Screening of Metagenomic Libraries. Applied and Environmental Microbiology 75: 2506-2516.
89. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-U517.
90. Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411: 786-789.
91. Allen EE, Banfield JF (2005) Community genomics in microbial ecology and evolution. Nature Reviews Microbiology 3: 489-498.
92. Huson DH, Richter DC, Mitra S, Auch AF, Schuster SC (2009) Methods for comparative metagenomics. Bmc Bioinformatics 10: -.
93. Schloss PD, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biology 6: -.
94. Daniel R (2005) The metagenomics of soil. Nature Reviews Microbiology 3: 470-478.
95. Gilbert JA, Hughes M (2011) Gene expression profiling: metatranscriptomics. Methods Mol Biol 733: 195-205.
96. Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, et al. (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. Isme Journal 6: 1715-1727.
97. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, et al. (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 11: 1358-1375.
98. Stewart FJ, Ottesen EA, DeLong EF (2010) Development and quantitative analyses of a universal rRNA-subtraction protocol for microbial metatranscriptomics. Isme Journal 4: 896-907.
99. Qi M, Wang P, O''Toole N, Barboza PS, Ungerfeld E, et al. (2011) Snapshot of the eukaryotic gene expression in muskoxen rumen--a metatranscriptomic approach. PLoS One 6: e20521.
100. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, et al. (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nature Methods 7: 807-812.
101. Leininger S, Urich T, Schloter M, Schwark L, Qi J, et al. (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442: 806-809.
102. Urich T, Lanzen A, Qi J, Huson DH, Schleper C, et al. (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3: e2527.
103. Shi YM, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. Isme Journal 5: 999-1013.
104. Gilbert JA, Field D, Huang Y, Edwards R, Li WZ, et al. (2008) Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities. PLoS One 3.
105. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, et al. (2008) Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences of the United States of America 105: 3805-3810.
106. Shi Y, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5: 999-1013.
107. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7: e38183.
108. Montgomery GG (1978) The Ecology of arboreal folivores : a symposium held at the Conservation and Research Center, National Zoological Park, Smithsonian Institution, May 29-31, 1975. Washington: Smithsonian Institution Press. 574 p. p.
109. Anderson KL (2003) The complex world of gastrointestinal bacteria. Canadian Journal of Animal Science 83: 409-427.
110. Wallace RJ (2008) Gut microbiology - broad genetic diversity, yet specific metabolic niches. Animal 2: 661-668.
111. Cork SJ (1996) Optimal digestive strategies for arboreal herbivorous mammals in contrasting forest types. Why Koalas and Colobines are different. Australian Journal of Ecology 21: 10-20.
112. Kuo CC, Lee LL (2003) Food availability and food habits of Indian giant flying squirrels (Petaurista philippensis) in Taiwan. Journal of Mammalogy 84: 1330-1340.
113. Lee PF, Progulske DR, Lin YS (1986) Ecological studies on two sympatric Petaurista species in Taiwan. Bulletin of the Institute of Zoology, Academia Sinica 25: 113-124.
114. Mackie RI (2002) Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integrative and Comparative Biology 42: 319-326.
115. Foley WJ, Bouskila A, Shkolnik A, Choshniak I (1992) Microbial Digestion in the Herbivorous Lizard Uromastyx-Aegyptius (Agamidae). Journal of Zoology 226: 387-398.
116. Suen G, Scott JJ, Aylward FO, Adams SM, Tringe SG, et al. (2010) An Insect Herbivore Microbiome with High Plant Biomass-Degrading Capacity. Plos Genetics 6: -.
117. Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, et al. (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Research 20: 1605-1612.
118. Mitra S, Rupek P, Richter DC, Urich T, Gilbert JA, et al. (2011) Functional analysis of metagenomes and metatranscriptomes using SEED and KEGG. Bmc Bioinformatics 12.
119. Krause L, Diaz NN, Goesmann A, Kelley S, Nattkemper TW, et al. (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Research 36: 2230-2239.
120. Morales SE, Holben WE (2011) Linking bacterial identities and ecosystem processes: can ''omic'' analyses be more than the sum of their parts? FEMS Microbiol Ecol 75: 2-16.
121. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research 36: 6688-6719.
122. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003) The COG database: an updated version includes eukaryotes. Bmc Bioinformatics 4: 41.
123. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, et al. (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241-250.
124. Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP, et al. (2010) The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol 8: 523-529.
125. Zaneveld JR, Parfrey LW, Van Treuren W, Lozupone C, Clemente JC, et al. (2011) Combined phylogenetic and genomic approaches for the high-throughput study of microbial habitat adaptation. Trends in Microbiology 19: 472-482.
126. Kunin V, Ouzounis CA (2003) The balance of driving forces during genome evolution in prokaryotes. Genome Research 13: 1589-1594.

Chapter 2 References
1. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology 24: 4-10.
2. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647-1651.
3. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, et al. (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299: 2074-2076.
4. Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Molecular Microbiology 59: 1639-1650.
5. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031.
6. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, et al. (2005) Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America 102: 11070-11075.
7. Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229-241.
8. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107-118.
9. Vacharaksa A, Finlay BB (2010) Gut Microbiota: Metagenomics to Study Complex Ecology. Current Biology 20: R569-R571.
10. Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annual Review of Nutrition 22: 283-307.
11. Flint HJ, Duncan SH, Scott KP, Louis P (2007) Interactions and competition within the microbial community of the human colon: links between diet and health. Environmental Microbiology 9: 1101-1111.
12. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915-1920.
13. Bjorksten B (2006) The gut microbiota: a complex ecosystem. Clinical and Experimental Allergy 36: 1215-1217.
14. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, et al. (2005) Diversity of the human intestinal microbial flora. Science 308: 1635-1638.
15. Hayashi H, Sakamoto M, Benno Y (2002) Phylogenetic analysis of the human gut microbiota using 16S rDNA clone libraries and strictly anaerobic culture-based methods. Microbiology and Immunology 46: 535-548.
16. Park NY, Chung CY, Mclaren AJ, Atyeo RF, Hampson DJ (1995) Polymerase Chain-Reaction for Identification of Human and Porcine Spirochetes Recovered from Cases of Intestinal Spirochetosis. Fems Microbiology Letters 125: 225-229.
17. Wang RF, Cao WW, Cerniglia CE (1996) PCR detection and quantitation of predominant anaerobic bacteria in human and animal fecal samples. Applied and Environmental Microbiology 62: 1242-1247.
18. Vaahtovuo J, Korkeamaki M, Munukka E, Viljanen MK, Toivanen P (2005) Quantification of bacteria in human feces using 16S rRNA-hybridization, DNA-staining and flow cytometry. Journal of Microbiological Methods 63: 276-286.
19. Welling GW, Elfferich P, Raangs GC, WildeboerVeloo ACM, Jansen GJ, et al. (1997) 16S ribosomal RNA-targeted oligonucleotide probes for monitoring of intestinal tract bacteria. Scandinavian Journal of Gastroenterology 32: 17-19.
20. Salzman NH, de Jong H, Paterson Y, Harmsen HJM, Welling GW, et al. (2002) Analysis of 16S libraries of mouse gastrointestinal microflora reveals a large new group of mouse intestinal bacteria. Microbiology-Sgm 148: 3651-3660.
21. Tringe SG, Hugenholtz P (2008) A renaissance for the pioneering 16S rRNA gene. Current Opinion in Microbiology 11: 442-446.
22. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, et al. (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359.
23. Hattori M, Taylor TD (2009) The Human Intestinal Microbiome: A New Frontier of Human Biology. DNA Research 16: 1-12.
24. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480-U487.
25. Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, et al. (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America 106: 1948-1953.
26. Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ''metagenomes'' for novel catalysts. Current Opinion in Biotechnology 16: 588-593.
27. Gong JH, Si WD, Forster RJ, Huang RL, Yu H, et al. (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. Fems Microbiology Ecology 59: 147-157.
28. Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, et al. (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3: e2945.
29. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences of the United States of America 101: 4596-4601.
30. Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127: 423-433.
31. Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, et al. (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol 5: 1212-1220.
32. Sahu NP, Kamra DN (2002) Microbial eco-system of the gastro-intestinal tract of wild herbivorous animals. Journal of Applied Animal Research 21: 207-230.
33. Glad T, Bernhardsen P, Nielsen KM, Brusetti L, Andersen M, et al. (2010) Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiology 10: 10.
34. McFall-Ngai M (2006) Love the one you''re with: Vertebrate guts shape their microbiota. Cell 127: 247-249.
35. Kuo CC, Lee LL (2003) Food availability and food habits of Indian giant flying squirrels (Petaurista philippensis) in Taiwan. Journal of Mammalogy 84: 1330-1340.
36. Lee PF, Progulske DR, Lin YS (1986) Ecological studies on two sympatric Petaurista species in Taiwan. Bulletin of the Institute of Zoology, Academia Sinica 25: 113-124.
37. Lu HP, Wang YB, Huang SW, Lin CY, Wu M, et al. (2012) Metagenomic analysis reveals a functional signature for biomass degradation by cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena). BMC Genomics 13: 466.
38. Sugihara G, Bersier LF, Southwood TRE, Pimm SL, May RM (2003) Predicted correspondence between species abundances and dendrograms of niche similarities. Proceedings of the National Academy of Sciences of the United States of America 100: 5246-5251.
39. Act WC Wildlife Conservation Act.
40. Nagashima K, Hisada T, Sato M, Mochizuki J (2003) Application of new primer-enzyme combinations to terminal restriction fragment length polymorphism profiling of bacterial Populations in human Feces. Applied and Environmental Microbiology 69: 1251-1262.
41. Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20: 2317-2319.
42. Gontcharova V, Youn E, Wolcott RD, Hollister EB, Gentry TJ, et al. (2010) Black Box Chimera Check (B2C2): a Windows-Based Software for Batch Depletion of Chimeras from Bacterial 16S rRNA Gene Datasets. Open Microbiol J 4: 47-52.
43. Jeanmougin F, Thompson JD, Gouy M, Higgins DG, Gibson TJ (1998) Multiple sequence alignment with Clustal x. Trends in Biochemical Sciences 23: 403-405.
44. Lim A, Zhang LX (1999) WebPHYLIP: a web interface to PHYLIP. Bioinformatics 15: 1068-1069.
45. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71: 1501-1506.
46. Hughes JB, Hellmann JJ, Ricketts TH, Bohannan BJM (2001) Counting the uncountable: Statistical approaches to estimating microbial diversity. Applied and Environmental Microbiology 67: 4399-4406.
47. Price MN, Dehal PS, Arkin AP (2009) FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Molecular Biology and Evolution 26: 1641-1650.
48. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129: 271-280.
49. Lozupone C, Hamady M, Knight R (2006) UniFrac - An online tool for comparing microbial community diversity in a phylogenetic context. Bmc Bioinformatics 7.
50. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228-8235.
51. Frontier S (1985) Diversity and Structure in Aquatic Ecosystems. Oceanography and Marine Biology 23: 253-312.
52. Horner-Devine MC, Lage M, Hughes JB, Bohannan BJM (2004) A taxa-area relationship for bacteria. Nature 432: 750-753.
53. Prosser JI, Bohannan BJM, Curtis TP, Ellis RJ, Firestone MK, et al. (2007) Essay - The role of ecological theory in microbial ecology. Nature Reviews Microbiology 5: 384-392.
54. McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, et al. (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10: 995-1015.
55. McGill BJ, Etienne RS, Gray JS, Alonso D, Anderson MJ, et al. (2007) Species abundance distributions: moving beyond single prediction theories to integration within an ecological framework. Ecology Letters 10: 995-1015.
56. Nee S, Harvey PH, May RM (1991) Lifting the Veil on Abundance Patterns. Proceedings of the Royal Society of London Series B-Biological Sciences 243: 161-163.
57. Kovatcheva-Datchary P, Egert M, Maathuis A, Rajilic-Stojanovic M, de Graaf AA, et al. (2009) Linking phylogenetic identities of bacteria to starch fermentation in an in vitro model of the large intestine by RNA-based stable isotope probing. Environmental Microbiology 11: 914-926.
58. Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, et al. (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proceedings of the National Academy of Sciences of the United States of America 106: 5859-5864.

Chapter 3 References
1. Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews 78: 393-427.
2. Mackie RI (2002) Mutualistic fermentative digestion in the gastrointestinal tract: Diversity and evolution. Integrative and Comparative Biology 42: 319-326.
3. Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Current Opinion in Biotechnology 20: 358-363.
4. Yang X, Xie L, Li YX, Wei CC (2009) More than 9,000,000 Unique Genes in Human Gut Bacterial Community: Estimating Gene Numbers Inside a Human Body. PLoS One 4.
5. Kuo CC, Lee LL (2003) Food availability and food habits of Indian giant flying squirrels (Petaurista philippensis) in Taiwan. Journal of Mammalogy 84: 1330-1340.
6. Lee PF, Progulske DR, Lin YS (1986) Ecological studies on two sympatric Petaurista species in Taiwan. Bulletin of the Institute of Zoology, Academia Sinica 25: 113-124.
7. Hume ID (1989) Invited Perspectives in Physiological Zoology - Optimal Digestive Strategies in Mammalian Herbivores. Physiological Zoology 62: 1145-1163.
8. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27: 305-335.
9. Hume ID (2002) Digestive strategies of mammals. Acta Zoologica Sinica 48: 1-19.
10. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Bioscience Biotechnology and Biochemistry 71: 906-915.
11. Tuohy KM, Gougoulias C, Shen Q, Walton G, Fava F, et al. (2009) Studying the Human Gut Microbiota in the Trans-Omics Era - Focus on Metagenomics and Metabonomics. Current Pharmaceutical Design 15: 1415-1427.
12. Act WC Wildlife Conservation Act.
13. Wilson K (2001) Preparation of Genomic DNA from Bacteria.
14. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335-336.
15. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647-1651.
16. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, et al. (2005) Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America 102: 11070-11075.
17. Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, et al. (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America 106: 1948-1953.
18. Lim A, Zhang LX (1999) WebPHYLIP: a web interface to PHYLIP. Bioinformatics 15: 1068-1069.
19. Price MN, Dehal PS, Arkin AP (2009) FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Molecular Biology and Evolution 26: 1641-1650.
20. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Applied and Environmental Microbiology 71: 8228-8235.
21. Falgueras J, Lara AJ, Fernandez-Pozo N, Canton FR, Perez-Trabado G, et al. (2010) SeqTrim: a high-throughput pipeline for pre-processing any type of sequence read. Bmc Bioinformatics 11: 38.
22. Zhu W, Lomsadze A, Borodovsky M (2010) Ab initio gene identification in metagenomic sequences. Nucleic Acids Res 38: e132.
23. Meyer F, Paarmann D, D''Souza M, Olson R, Glass EM, et al. (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. Bmc Bioinformatics 9: 386.
24. Overbeek R, Begley T, Butler RM, Choudhuri JV, Chuang HY, et al. (2005) The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res 33: 5691-5702.
25. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. (2010) Database resources of the National Center for Biotechnology Information. Nucleic Acids Research 38: D5-D16.
26. Muller J, Szklarczyk D, Julien P, Letunic I, Roth A, et al. (2010) eggNOG v2.0: extending the evolutionary genealogy of genes with enhanced non-supervised orthologous groups, species and functional annotations. Nucleic Acids Research 38: D190-D195.
27. Kanehisa M, Goto S (2000) KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research 28: 27-30.
28. Finn RD, Mistry J, Tate J, Coggill P, Heger A, et al. (2010) The Pfam protein families database. Nucleic Acids Research 38: D211-D222.
29. Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010) CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database. Glycobiology 20: 1574-1584.
30. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Research 37: D233-D238.
31. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research 35: 7188-7196.
32. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, et al. (2009) The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Research 37: D141-D145.
33. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, et al. (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72: 5069-5072.
34. Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, et al. (2009) Rfam: updates to the RNA families database. Nucleic Acids Res 37: D136-140.
35. Schattner P, Brooks AN, Lowe TM (2005) The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 33: W686-689.
36. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739.
37. Campbell JL, Eisemann JH, Williams CV, Glenn KM (2000) Description of the gastrointestinal tract of five lemur species: Propithecus tattersalli, Propithecus verreauxi coquereli, Varecia variegata, Hapalemur griseus, and Lemur catta. American Journal of Primatology 52: 133-142.
38. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031.
39. Egert M, de Graaf AA, Smidt H, de Vos WM, Venema K (2006) Beyond diversity: functional microbiomics of the human colon. Trends in Microbiology 14: 86-91.
40. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology 24: 4-10.
41. Cummings JH, Macfarlane GT (1997) Role of intestinal bacteria in nutrient metabolism. JPEN J Parenter Enteral Nutr 21: 357-365.
42. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, et al. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332: 970-974.
43. Resta SC (2009) Effects of probiotics and commensals on intestinal epithelial physiology: implications for nutrient handling. Journal of Physiology-London 587: 4169-4174.
44. Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology 6: 121-131.
45. Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ''metagenomes'' for novel catalysts. Current Opinion in Biotechnology 16: 588-593.
46. Gong JH, Si WD, Forster RJ, Huang RL, Yu H, et al. (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. Fems Microbiology Ecology 59: 147-157.
47. Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, et al. (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3: e2945.
48. Flint HJ, Bayer EA (2008) Plant cell wall breakdown by anaerobic microorganisms from the mammalian digestive tract. Incredible Anaerobes: From Physiology to Genomics to Fuels 1125: 280-288.
49. Wallace RJ (2008) Gut microbiology - broad genetic diversity, yet specific metabolic niches. Animal 2: 661-668.
50. Li LL, McCorkle SR, Monchy S, Taghavi S, van der Lelie D (2009) Bioprospecting metagenomes: glycosyl hydrolases for converting biomass. Biotechnology for Biofuels 2: 10.
51. Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-U517.
52. Zhao SG, Wang JQ, Bu DP, Liu KL, Zhu YX, et al. (2010) Novel Glycoside Hydrolases Identified by Screening a Chinese Holstein Dairy Cow Rumen-Derived Metagenome Library. Applied and Environmental Microbiology 76: 6701-6705.
53. Singh B, Gautam SK, Verma V, Kumar M, Singh B (2008) Metagenomics in animal gastrointestinal ecosystem: Potential biotechnological prospects. Anaerobe 14: 138-144.
54. Hess M, Sczyrba A, Egan R, Kim TW, Chokhawala H, et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463-467.
55. Galperin MY, Koonin EV (2000) Who''s your neighbor? New computational approaches for functional genomics. Nat Biotechnol 18: 609-613.
56. Gabaldon T, Huynen MA (2004) Prediction of protein function and pathways in the genome era. Cell Mol Life Sci 61: 930-944.

Chapter 4 References
1. Frank DN, Pace NR (2008) Gastrointestinal microbiology enters the metagenomics era. Current Opinion in Gastroenterology 24: 4-10.
2. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647-1651.
3. Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, et al. (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299: 2074-2076.
4. Zoetendal EG, Vaughan EE, de Vos WM (2006) A microbial world within us. Molecular Microbiology 59: 1639-1650.
5. Morrison M, Pope PB, Denman SE, McSweeney CS (2009) Plant biomass degradation by gut microbiomes: more of the same or something new? Current Opinion in Biotechnology 20: 358-363.
6. Warnecke F, Hess M (2009) A perspective: Metatranscriptomics as a tool for the discovery of novel biocatalysts. Journal of Biotechnology 142: 91-95.
7. Brulc JM, Antonopoulos DA, Miller MEB, Wilson MK, Yannarell AC, et al. (2009) Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences of the United States of America 106: 1948-1953.
8. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307: 1915-1920.
9. Gill SR, Pop M, DeBoy RT, Eckburg PB, Turnbaugh PJ, et al. (2006) Metagenomic analysis of the human distal gut microbiome. Science 312: 1355-1359.
10. Hattori M, Taylor TD (2009) The Human Intestinal Microbiome: A New Frontier of Human Biology. DNA Research 16: 1-12.
11. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457: 480-U487.
12. Ferrer M, Martinez-Abarca F, Golyshin PN (2005) Mining genomes and ''metagenomes'' for novel catalysts. Current Opinion in Biotechnology 16: 588-593.
13. Gong JH, Si WD, Forster RJ, Huang RL, Yu H, et al. (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. Fems Microbiology Ecology 59: 147-157.
14. Qu A, Brulc JM, Wilson MK, Law BF, Theoret JR, et al. (2008) Comparative metagenomics reveals host specific metavirulomes and horizontal gene transfer elements in the chicken cecum microbiome. PLoS One 3: e2945.
15. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027-1031.
16. Rawls JF, Samuel BS, Gordon JI (2004) Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences of the United States of America 101: 4596-4601.
17. Nelson KE, Zinder SH, Hance I, Burr P, Odongo D, et al. (2003) Phylogenetic analysis of the microbial populations in the wild herbivore gastrointestinal tract: insights into an unexplored niche. Environ Microbiol 5: 1212-1220.
18. Sahu NP, Kamra DN (2002) Microbial eco-system of the gastro-intestinal tract of wild herbivorous animals. Journal of Applied Animal Research 21: 207-230.
19. Glad T, Bernhardsen P, Nielsen KM, Brusetti L, Andersen M, et al. (2010) Bacterial diversity in faeces from polar bear (Ursus maritimus) in Arctic Svalbard. BMC Microbiology 10: 10.
20. Kuo CC, Lee LL (2003) Food availability and food habits of Indian giant flying squirrels (Petaurista philippensis) in Taiwan. Journal of Mammalogy 84: 1330-1340.
21. Lee PF, Progulske DR, Lin YS (1986) Ecological studies on two sympatric Petaurista species in Taiwan. Bulletin of the Institute of Zoology, Academia Sinica 25: 113-124.
22. Coley PD, Barone JA (1996) Herbivory and plant defenses in tropical forests. Annual Review of Ecology and Systematics 27: 305-335.
23. Hume ID (1989) Invited Perspectives in Physiological Zoology - Optimal Digestive Strategies in Mammalian Herbivores. Physiological Zoology 62: 1145-1163.
24. Stevens CE, Hume ID (1998) Contributions of microbes in vertebrate gastrointestinal tract to production and conservation of nutrients. Physiological Reviews 78: 393-427.
25. Lu HP, Wang YB, Huang SW, Lin CY, Wu M, et al. (2012) Metagenomic analysis reveals a functional signature for biomass degradation by cecal microbiota in the leaf-eating flying squirrel (Petaurista alborufus lena). BMC Genomics 13: 466.
26. Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nature Reviews Genetics 6: 805-814.
27. Shinzato N, Muramatsu M, Matsui T, Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus-growing termite Odontotermes formosanus. Bioscience Biotechnology and Biochemistry 71: 906-915.
28. Tuohy KM, Gougoulias C, Shen Q, Walton G, Fava F, et al. (2009) Studying the Human Gut Microbiota in the Trans-Omics Era - Focus on Metagenomics and Metabonomics. Current Pharmaceutical Design 15: 1415-1427.
29. Beja O, Spudich EN, Spudich JL, Leclerc M, DeLong EF (2001) Proteorhodopsin phototrophy in the ocean. Nature 411: 786-789.
30. Treusch AH, Kletzin A, Raddatz G, Ochsenreiter T, Quaiser A, et al. (2004) Characterization of large-insert DNA libraries from soil for environmental genomic studies of Archaea. Environmental Microbiology 6: 970-980.
31. Qin JJ, Li RQ, Raes J, Arumugam M, Burgdorf KS, et al. (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464: 59-U70.
32. Tasse L, Bercovici J, Pizzut-Serin S, Robe P, Tap J, et al. (2010) Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes. Genome Research 20: 1605-1612.
33. Huttenhower C, Gevers D, Knight R, Abubucker S, Badger JH, et al. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486: 207-214.
34. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, et al. (2009) Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol 11: 1358-1375.
35. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, et al. (2008) Microbial community gene expression in ocean surface waters. Proceedings of the National Academy of Sciences of the United States of America 105: 3805-3810.
36. Mason OU, Hazen TC, Borglin S, Chain PSG, Dubinsky EA, et al. (2012) Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. Isme Journal 6: 1715-1727.
37. Shi YM, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. Isme Journal 5: 999-1013.
38. Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ (2012) The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J 6: 2257-2268.
39. Stewart FJ, Sharma AK, Bryant JA, Eppley JM, DeLong EF (2011) Community transcriptomics reveals universal patterns of protein sequence conservation in natural microbial communities. Genome Biology 12.
40. Yu K, Zhang T (2012) Metagenomic and metatranscriptomic analysis of microbial community structure and gene expression of activated sludge. PLoS One 7: e38183.
41. Shi Y, Tyson GW, Eppley JM, DeLong EF (2011) Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J 5: 999-1013.
42. Act WC Wildlife Conservation Act.
43. Li W, Godzik A (2006) Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22: 1658-1659.
44. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, et al. (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35: 7188-7196.
45. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, et al. (2012) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 40: D13-25.
46. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28: 27-30.
47. Tatusov RL, Galperin MY, Natale DA, Koonin EV (2000) The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Research 28: 33-36.
48. Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, et al. (2012) The Pfam protein families database. Nucleic Acids Research 40: D290-D301.
49. Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, et al. (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37: D233-238.
50. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, et al. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332: 970-974.
51. Pope PB, Denman SE, Jones M, Tringe SG, Barry K, et al. (2010) Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U S A 107: 14793-14798.
52. Gilbert JA, Field D, Huang Y, Edwards R, Li WZ, et al. (2008) Detection of Large Numbers of Novel Sequences in the Metatranscriptomes of Complex Marine Microbial Communities. PLoS One 3.
53. Neumann S, Hansen CH, Wingreen NS, Sourjik V (2010) Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J 29: 3484-3495.
54. Di Paola V, Marijuan PC, Lahoz-Beltra R (2004) Learning and evolution in bacterial taxis: an operational amplifier circuit modeling the computational dynamics of the prokaryotic ''two component system'' protein network. Biosystems 74: 29-49.
55. Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8: 548-557.
56. Jojima T, Omumasaba CA, Inui M, Yukawa H (2010) Sugar transporters in efficient utilization of mixed sugar substrates: current knowledge and outlook. Appl Microbiol Biotechnol 85: 471-480.
57. Sirotek K, Slovakova L, Kopecny J, Marounek M (2004) Fermentation of pectin and glucose, and activity of pectin-degrading enzymes in the rabbit caecal bacterium Bacteroides caccae. Letters in Applied Microbiology 38: 327-332.
58. Liljebjelke K, Adolphson R, Baker K, Doong RL, Mohnen D (1995) Enzymatic-Synthesis and Purification of Uridine-Diphosphate [C-14] Galacturonic Acid - a Substrate for Pectin Biosynthesis. Analytical Biochemistry 225: 296-304.
59. Loman NJ, Constantinidou C, Chan JZ, Halachev M, Sergeant M, et al. (2012) High-throughput bacterial genome sequencing: an embarrassment of choice, a world of opportunity. Nat Rev Microbiol 10: 599-606.
60. Xiong X, Frank DN, Robertson CE, Hung SS, Markle J, et al. (2012) Generation and analysis of a mouse intestinal metatranscriptome through Illumina based RNA-sequencing. PLoS One 7: e36009.
61. Gosalbes MJ, Durban A, Pignatelli M, Abellan JJ, Jimenez-Hernandez N, et al. (2011) Metatranscriptomic approach to analyze the functional human gut microbiota. PLoS One 6: e17447.
62. Poroyko V, White JR, Wang M, Donovan S, Alverdy J, et al. (2010) Gut microbial gene expression in mother-fed and formula-fed piglets. PLoS One 5: e12459.
63. Turnbaugh PJ, Quince C, Faith JJ, McHardy AC, Yatsunenko T, et al. (2010) Organismal, genetic, and transcriptional variation in the deeply sequenced gut microbiomes of identical twins. Proc Natl Acad Sci U S A 107: 7503-7508.
64. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, et al. (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6: 1415-1426.
65. Maron PA, Ranjard L, Mougel C, Lemanceau P (2007) Metaproteomics: A new approach for studying functional microbial ecology. Microbial Ecology 53: 486-493.
66. Poretsky RS, Bano N, Buchan A, LeCleir G, Kleikemper J, et al. (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71: 4121-4126.
67. Durban A, Abellan JJ, Jimenez-Hernandez N, Ponce M, Ponce J, et al. (2011) Assessing gut microbial diversity from feces and rectal mucosa. Microb Ecol 61: 123-133.
68. Peris-Bondia F, Latorre A, Artacho A, Moya A, D''Auria G (2011) The active human gut microbiota differs from the total microbiota. PLoS One 6: e22448.
69. Shi Y, Tyson GW, DeLong EF (2009) Metatranscriptomics reveals unique microbial small RNAs in the ocean''s water column. Nature 459: 266-269.
70. Hewson I, Poretsky RS, Dyhrman ST, Zielinski B, White AE, et al. (2009) Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean. Isme Journal 3: 1286-1300.
71. Ciulla D, Giannoukos G, Earl A, Feldgarden M, Gevers D, et al. (2010) Evaluation of bacterial ribosomal RNA (rRNA) depletion methods for sequencing microbial community transcriptomes. Genome Biology 11.
72. Giannoukos G, Ciulla DM, Huang K, Haas BJ, Izard J, et al. (2012) Efficient and robust RNA-seq process for cultured bacteria and complex community transcriptomes. Genome Biology 13.
73. He S, Wurtzel O, Singh K, Froula JL, Yilmaz S, et al. (2010) Validation of two ribosomal RNA removal methods for microbial metatranscriptomics. Nature Methods 7: 807-812.
74. Martin FPJ, Dumas ME, Wang YL, Legido-Quigley C, Yap IKS, et al. (2007) A top-down systems biology view of microbiome-mammalian metabolic interactions in a mouse model. Molecular Systems Biology 3: -.
75. Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens RD, et al. (2010) Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem 285: 22082-22090.
76. Sato T, Matsumoto K, Okumura T, Yokoi W, Naito E, et al. (2008) Isolation of lactate-utilizing butyrate-producing bacteria from human feces and in vivo administration of Anaerostipes caccae strain L2 and galacto-oligosaccharides in a rat model. FEMS Microbiol Ecol 66: 528-536.
77. Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al. (2007) The Human Microbiome Project. Nature 449: 804-810.
78. Kurokawa K, Itoh T, Kuwahara T, Oshima K, Toh H, et al. (2007) Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Research 14: 169-181.
79. Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, et al. (2012) Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS One 7: e29913.
80. Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, et al. (2012) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol.
81. Duck LW, Walter MR, Novak J, Kelly D, Tomasi M, et al. (2007) Isolation of flagellated bacteria implicated in Crohn''s disease. Inflammatory Bowel Diseases 13: 1191-1201.
82. Andersen-Nissen E, Smith KD, Strobe KL, Barrett SL, Cookson BT, et al. (2005) Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A 102: 9247-9252.
83. Feuillet V, Medjane S, Mondor I, Demaria O, Pagni PP, et al. (2006) Involvement of Toll-like receptor 5 in the recognition of flagellated bacteria. Proc Natl Acad Sci U S A 103: 12487-12492.
84. Gomez-Gomez JM, Manfredi C, Alonso JC, Blazquez J (2007) A novel role for RecA under non-stress: promotion of swarming motility in Escherichia coli K-12. Bmc Biology 5: 14.
85. Kearns DB (2010) A field guide to bacterial swarming motility. Nat Rev Microbiol 8: 634-644.
86. Szurmant H, Ordal GW (2004) Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol Mol Biol Rev 68: 301-319.
87. Dehority BA (2002) Gastrointestinal tracts of herbivores, particularly the ruminant: Anatomy, physiology and microbial digestion of plants. Journal of Applied Animal Research 21: 145-160.
88. Hume ID (2002) Digestive strategies of mammals. Acta Zoologica Sinica 48: 1-19.

Chapter 5 References
1. Losos JB (2008) Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters 11: 995-1003.
2. Pal C, Papp B, Lercher MJ (2005) Adaptive evolution of bacterial metabolic networks by horizontal gene transfer. Nat Genet 37: 1372-1375.
3. Ren QH, Paulsen IT (2007) Large-scale comparative genomic analyses of cytoplasmic membrane transport systems in prokaryotes. Journal of Molecular Microbiology and Biotechnology 12: 165-179.
4. Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, et al. (2008) The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci U S A 105: 15076-15081.
5. Lozupone C, Faust K, Raes J, Faith JJ, Frank DN, et al. (2012) Identifying genomic and metabolic features that can underlie early successional and opportunistic lifestyles of human gut symbionts. Genome Research 22: 1974-1984.
6. Woese CR (1987) Bacterial Evolution. Microbiological Reviews 51: 221-271.
7. Yarza P, Richter M, Peplies J, Euzeby J, Amann R, et al. (2008) The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31: 241-250.
8. Koonin EV, Wolf YI (2008) Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Research 36: 6688-6719.
9. Dagan T, Artzy-Randrup Y, Martin W (2008) Modular networks and cumulative impact of lateral transfer in prokaryote genome evolution. Proc Natl Acad Sci U S A 105: 10039-10044.
10. Daubin V, Moran NA, Ochman H (2003) Phylogenetics and the cohesion of bacterial genomes. Science 301: 829-832.
11. Beiko RG, Harlow TJ, Ragan MA (2005) Highways of gene sharing in prokaryotes. Proc Natl Acad Sci U S A 102: 14332-14337.
12. Takahashi M, Kryukov K, Saitou N (2009) Estimation of bacterial species phylogeny through oligonucleotide frequency distances. Genomics 93: 525-533.
13. Choi IG, Kim SH (2007) Global extent of horizontal gene transfer. Proc Natl Acad Sci U S A 104: 4489-4494.
14. Long M, Betran E, Thornton K, Wang W (2003) The origin of new genes: glimpses from the young and old. Nature Reviews Genetics 4: 865-875.
15. Marri PR, Hao W, Golding GB (2006) Gene gain and gene loss in streptococcus: is it driven by habitat? Mol Biol Evol 23: 2379-2391.
16. Bratlie MS, Johansen J, Sherman BT, Huang da W, Lempicki RA, et al. (2010) Gene duplications in prokaryotes can be associated with environmental adaptation. BMC Genomics 11: 588.
17. Koskiniemi S, Sun S, Berg OG, Andersson DI (2012) Selection-driven gene loss in bacteria. Plos Genetics 8: e1002787.
18. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003) The COG database: an updated version includes eukaryotes. Bmc Bioinformatics 4: 41.
19. DeSantis TZ, Jr., Hugenholtz P, Keller K, Brodie EL, Larsen N, et al. (2006) NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Res 34: W394-399.
20. Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2). Cladistics 5: 163-166.
21. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, et al. (2010) QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7: 335-336.
22. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27: 209-220.
23. Mantel N, Valand RS (1970) A technique of nonparametric multivariate analysis. Biometrics 26: 547-558.
24. Rosenberg MS, Anderson CD (2011) PASSaGE: Pattern Analysis, Spatial Statistics and Geographic Exegesis. Version 2. Methods in Ecology and Evolution 2: 229-232.
25. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, et al. (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39: D561-568.
26. Cohen O, Pupko T (2010) Inference and characterization of horizontally transferred gene families using stochastic mapping. Molecular Biology and Evolution 27: 703-713.
27. Mendonca AG, Alves RJ, Pereira-Leal JB (2011) Loss of genetic redundancy in reductive genome evolution. Plos Computational Biology 7: e1001082.
28. Snel B, Bork P, Huynen MA (2002) Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Research 12: 17-25.
29. Gogarten JP, Doolittle WF, Lawrence JG (2002) Prokaryotic evolution in light of gene transfer. Mol Biol Evol 19: 2226-2238.
30. Kurland CG, Canback B, Berg OG (2003) Horizontal gene transfer: a critical view. Proc Natl Acad Sci U S A 100: 9658-9662.
31. Popa O, Hazkani-Covo E, Landan G, Martin W, Dagan T (2011) Directed networks reveal genomic barriers and DNA repair bypasses to lateral gene transfer among prokaryotes. Genome Research 21: 599-609.
32. Andam CP, Gogarten JP (2011) Biased gene transfer in microbial evolution. Nat Rev Microbiol 9: 543-555.
33. Lerat E, Daubin V, Ochman H, Moran NA (2005) Evolutionary origins of genomic repertoires in bacteria. PLoS Biol 3: e130.
34. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009) Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. Plos Genetics 5: e1000344.
35. von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, et al. (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315: 1126-1130.
36. Kanhere A, Vingron M (2009) Horizontal Gene Transfers in prokaryotes show differential preferences for metabolic and translational genes. Bmc Evolutionary Biology 9: 9.
37. Rivera MC, Jain R, Moore JE, Lake JA (1998) Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci U S A 95: 6239-6244.
38. Jain R, Rivera MC, Lake JA (1999) Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci U S A 96: 3801-3806.
39. Cohen O, Gophna U, Pupko T (2011) The complexity hypothesis revisited: connectivity rather than function constitutes a barrier to horizontal gene transfer. Mol Biol Evol 28: 1481-1489.
40. Nakamura Y, Itoh T, Matsuda H, Gojobori T (2004) Biased biological functions of horizontally transferred genes in prokaryotic genomes. Nat Genet 36: 760-766.
41. Gevers D, Vandepoele K, Simillon C, Van de Peer Y (2004) Gene duplication and biased functional retention of paralogs in bacterial genomes. Trends in Microbiology 12: 148-154.
42. Moran NA (2002) Microbial minimalism: genome reduction in bacterial pathogens. Cell 108: 583-586.
43. Toft C, Andersson SG (2010) Evolutionary microbial genomics: insights into bacterial host adaptation. Nature Reviews Genetics 11: 465-475.
44. Treangen TJ, Rocha EP (2011) Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes. Plos Genetics 7: e1001284.

Chapter 6 References
1. Meyer F, Paarmann D, D''Souza M, Olson R, Glass EM, et al. (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. Bmc Bioinformatics 9: 386.
2. Konopka A (2009) What is microbial community ecology? ISME J 3: 1223-1230.
3. Strom SL (2008) Microbial ecology of ocean biogeochemistry: a community perspective. Science 320: 1043-1045.
4. Denef VJ, Banfield JF (2012) In situ evolutionary rate measurements show ecological success of recently emerged bacterial hybrids. Science 336: 462-466.
5. Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL, et al. (2010) Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468: 60-66.
6. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, et al. (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4: 102-112.
7. Green JL, Bohannan BJ, Whitaker RJ (2008) Microbial biogeography: from taxonomy to traits. Science 320: 1039-1043.
8. Ward DM (1998) A natural species concept for prokaryotes. Current Opinion in Microbiology 1: 271-277.
9. Riley MA, Lizotte-Waniewski M (2009) Population genomics and the bacterial species concept. Methods Mol Biol 532: 367-377.
10. Schloss PD, Handelsman J (2005) Introducing DOTUR, a computer program for defining operational taxonomic units and estimating species richness. Applied and Environmental Microbiology 71: 1501-1506.
11. Marco D (2008) Metagenomics and the niche concept. Theory in Biosciences 127: 241-247.
12. von Mering C, Hugenholtz P, Raes J, Tringe SG, Doerks T, et al. (2007) Quantitative phylogenetic assessment of microbial communities in diverse environments. Science 315: 1126-1130.
13. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, et al. (2008) Evolution of mammals and their gut microbes. Science 320: 1647-1651.
14. Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, et al. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332: 970-974.
15. Ochman H, Worobey M, Kuo CH, Ndjango JB, Peeters M, et al. (2010) Evolutionary relationships of wild hominids recapitulated by gut microbial communities. PLoS Biol 8: e1000546.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top