[1]Ohsaki, M., and Katoh, N., “Topology optimization of trusses with stress and local constraints on nodal stability and member intersection”, Struct. Multidisc. Optim., vol. 29, pp. 190–197, 2005.
[2]Bendsøe, M. P., and Kikuchi, N., “Generating Optimal topologies in structural Design a Homogenization Method”, Computer Methods in Applied Mechanics and Engineering, vol.71, pp. 197-224, 1988.
[3] Suzuki, K., and Kikuchi, N., “A homogenization method for shape and topology optimization”, Computer Methods in Applied Mechanics and Engineering, vol.93, pp.291–318, 1991.
[4]Thomsen, J., “Topology optimization of structures composed of one or two materials”, Structural Optimization, vol.5, pp. 108–115, 1992.
[5]Hassani, B., and Hinton, E., “ A review of homogenization and topology optimization I - homogenization theory for media with periodic structure ”, Computers & Structures, vol. 69, pp. 707-717, 1998.
[6]Hassani, B., and Hinton, E., “ A review of homogenization and topology optimization II - analytical and numerical solution of homogenization equations”, Computers & Structures, vol. 69, pp. 719-738, 1998.
[7]Hassani, B., and Hinton, E., “ A review of homogenization and topology optimization III - topology optimization using optimality criteria”, Computers & Structures, vol. 69, pp. 739-756, 1998.
[8]Yang, R. J., “ Multidiscipline topology optimization”, Computers & Structures, vol. 63, pp. 1205-1212 ,1997.
[9]Chen, T. Y., Wang, B. P., Chen, C. H., “Minimum Compliance Design Using Topology Approach”, Proceedings of the 〖12〗^thNational Conference on Mechanical Engineering of CSME, pp. 841-848, 1995.
[10]Svanberg, K., “The method of moving asymptotes – a new method for structural optimization”, International Journal for Numerical Methods in Engineering, vol. 24, pp. 359-373., 1987.
[11]Jiang, T., and Papalambros, P. Y., “A first order method of moving asymptotes for structural optimization”, Proceedings of the 4th International Conference on Computer Aided Optimum Design of Structures, pp. 75-83, 1995.
[12]Bruyneel, M., and Fleury, C., “Composite structures optimization using sequential convex programming”, Advances in Engineering Software, vol. 33, pp. 697-711, 2002.
[13]陳匡佑,”應用移動漸近線法於有限元素的最佳化設計”,淡江大學機械與機電工程研究所碩士論文,2007。[14]Wang, N., and Ni, Q., “A new method of moving asymptotes for large-scale unconstrained optimization”, Applied Mathematics and Computation, vol. 203, pp. 62-71, 2008.
[15]Chang, Y. K., Hu, F. B., Lin, T. C., “Application of Fuzzy Theory for Structural Topology Optimization”, Aeronautical and Astronautical Society of the Republic of China (AASRC),2008.
[16]Chen, T. Y. and Shieh, C. C., “Fuzzy Multi-objective topology optimization”, Computer & Structures, vol. 78, pp. 459-466., 2000.
[17]Luo, Z., Chen, L. P., Yang, J., Zhang, Y. Q., and Karim, A. M.,“Fuzzy tolerance multilevel approach for structural topology optimization”, Computer & Structures, vol. 84, pp. 127-140, 2006.
[18]胡芳斌,應用模糊理論於結構拓樸最佳化設計之研究,淡江大學航空太空工程研究所碩士論文,2008。[19]Lin, J., Luo, Z., and Tong, L., “A new multi-objective programming scheme topology optimization of compliant mechanisms ”, Structure Multidisc Optim, vol. 40, pp. 241-255, 2010.
[20]Sherar, P. A.,Thompson, C. P., Xu, B., and Zhong, B., “An optimization method based on B-Spline shape function and knot insertion algorithm”, Proceeding of the world Congress on Engineering, vol. 2, 2007.
[21]顏金田,應用拓樸最佳化與B-Spline函數於結構外形設計之研究,淡江大學航空太空工程研究所碩士論文,2007。[22]Fleury, C., “Mathematical Programming Methods for Constrained Optimization: Duel Method”, Structural Optimization: Status and Promise, pp. 123-150, 1992.