跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/26 14:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林佩諭
研究生(外文):Pei-Yu Lin
論文名稱:南中國海及台灣東北海域深海底棲性生物的多樣性及食物網分析
論文名稱(外文):Studies of the diversity and food web of the deep-sea demersal organisms from the South China Sea and the eastern coast off Taiwan
指導教授:蕭仁傑蕭仁傑引用關係
口試委員:陳天任高樹基葉信明邱郁文
口試日期:2011-01-10
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:海洋研究所
學門:自然科學學門
學類:海洋科學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:85
中文關鍵詞:底棲生物深海生態系生物多樣性穩定性同位素食階
外文關鍵詞:Benthic organismDeep sea communityBiodiversityStable isotopeTrophic level
相關次數:
  • 被引用被引用:4
  • 點閱點閱:494
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣四周環海,周邊海域的海底地形多變化,在淺水域的生物研究非常廣泛,但深海域的生物研究相對缺乏。深海海域廣大,維持著高度的生物多樣性,在早期的研究中指出,深度在1000-2000米的深水域是生物多樣性最高的區域。深海區域的底棲生態系,食物來源多為海洋表層所沉降下來的有機碎屑,這些有機碎屑大多是表層的浮游生物及少部分的生物排遺、屍體;但到達海洋底部的有機物質其實不到表層生產力的10%,因此本研究嘗試探討在極度缺乏食物的深海底棲生態系統的運作機制。本研究使用底拖網於2008、2009年夏季分別於南中國海及台灣東北海域採樣了不同深度的6個測站,藉此比較深海區域與淺海區域的生物多樣性,並藉由測定生物組織中的穩定性碳氮同位素,來架構生物間的食物階層及食物來源。生物多樣性指數在深度1000~2000米的測站為最高,而淺海域的透光區比微光區域高;深海底棲生態系可分為5個食物階層、淺海則為3個食物階層;底棲生態系的食物來源多為大洋性沉降的有機物質,只有台灣宜蘭近海(St.5)因靠近淡水輸入處,食物來源為陸源性的有機物質。在先前的研究表示,有機物質在沉降的過程中,會被附著於其上的微生物持續利用,造成深度越深,有機物質的δ15N值會越高,我們也發現懸浮濾食者、捕食者/食腐者、魚類、蟹類分群的生物,其δ15N值與深度為正相關;在底泥撿食碎屑者、蝦類、所有底棲生物分群中的δ15N值與深度沒有顯著的關係。底棲生態系的有機物質來源不一定只侷限於大洋表層所沉降的有機物質;缺乏食物的深海底棲生物藉由有機質不斷循環利用來維持穩定的生態系;深度造成有機物質有較高的δ15N值,表示沉降性有機質是底棲性生物的重要氮源。

The seas around Taiwan are characterized by various marine habitats. But very few benthic communities were surveyed in the deep-sea areas. The deep-sea areas are inhabited by diversified organisms with highest biodiversity between the depths of 1000-2000 meter. Most deep-sea ecosystems rely on the organic particles, such as planktonic and mammal carcasses or bodys, sinking from the euphotic and mesopelagic zones to the seafloors. However, only 1–10% of the material produced in the euphotic zones can reach to the deep-sea floors. Therefore, this study aim to evaluate the biodiversities between deep-sea areas and shallow areas by sampling 6 stations with bottom trawling at different depths from South China Sea and eastern coast of Taiwan in summer 2008 and 2009.. Another aim is to understand the food source and the food web structure of demersal organism by stable isotopic anaylsis. The highest biodiversities were found at the depth between 1000 to 2000 meters, and the biodiversities in the euphotic zone were higher than the twilight zone. Five trophic levels were identified in the deep-sea benthic ecosystem, and only 3 trophic levels were found in shallow benthic ecosystem. Organic materials produced in the euphotic zone were the main food for the benthic ecosystem except the St.5 in I-Lan coast, which received mostly land-derived organic matter. Previous studies showed that organic matter during the sinking process will be repeatedly catabolized by micro-organisms and enrich the δ15N of the organic matter. We also found that δ15N of suspension feeders, predator/scavengers, fishes and crabs was positively correlated with the depth. The δ15N of deposit feeder, shrimp, and all benthic organisms had no significant relationship with depth. Food sources of benthic ecosystem are not necessarily confined to the ocean surface. In the deep-sea benthic communities, the organic matter was continuously recycled to maintain a stable ecosystem. Higher δ15N for the organisms in the deeper zone indicated that organic matters sinking from the euphotic zone were the important nitrogen source to deep-sea benthic communities.

口試委員會審定書----------------------------------------------------------------Ⅰ
致謝----------------------------------------------------------------------------------Ⅱ
中文摘要----------------------------------------------------------------------------Ⅲ
英文摘要----------------------------------------------------------------------------Ⅳ
目錄----------------------------------------------------------------------------------Ⅴ
表目錄-------------------------------------------------------------------------------Ⅷ
圖目錄-------------------------------------------------------------------------------Ⅸ
一、 前言
1-1. 深海底棲生態-------------------------------------------------------1
1-2. 台灣周遭海域-------------------------------------------------------2
1-3. 食物階層及食物網-------------------------------------------------3
1-4. 研究目的-------------------------------------------------------------5

二、 材料與方法
2-1. 研究地點--------------------------------------------------------------6
2-2. 採樣方法--------------------------------------------------------------6
2-3. 樣本處理
2-3.1. 生物樣本分析----------------------------------------------------7
2-3.2. 魚類胃內含物分析----------------------------------------------7
2-3.3. 穩定性同位素分析----------------------------------------------8
2-4. 統計分析------------------------------------------------------------10

三、 結果
3-1. 各測站水文概述---------------------------------------------------12
3-2. 各測站底棲生物物種與組成------------------------------------13
3-3. 各測站生物多樣性及群聚分析---------------------------------14
3-4. 胃內含物分析------------------------------------------------------15
3-5. 生物肌肉組織之穩定性同位素碳、氮值
3-5.1 整體穩定性同位素值分佈-----------------------------------16
3-5.2 整體食物階層結構--------------------------------------------17
3-5.3 穩定性同位素氮值空間上的趨勢--------------------------17

四、 討論
4-1. 生物多樣性
4-1.1 生物物種組成---------------------------------------------------20
4-1.2 生物群聚分析與多樣性---------------------------------------21
4-2. 底棲生物食物網
4-2.1 底棲生物食物來源---------------------------------------------22
4-2.2 底棲生物食物階層
4-2.2.1 綜合底棲生物食物網-----------------------------------26
4-2.2.2 食性層級--------------------------------------------------26
4-2.2.3 物種層級--------------------------------------------------28
4-2.3 穩定性同位素在空間上的差異-------------------------------29

五、 結論----------------------------------------------------------------------------33
六、 參考文獻----------------------------------------------------------------------34
七、 表-------------------------------------------------------------------------------40
八、 圖-------------------------------------------------------------------------------57

九、 附錄
附圖一、Cr866航次在南海St.1採樣的深海魚類-------------------81
附圖二、Cr866航次在南海St.2採樣的深海魚類-------------------82
附圖三、Cr880航次在南海St.3採樣的深海魚類-------------------83
附圖四、Cr906航次在台灣東部海域St.5採樣的深海魚類-------84
附圖五、Cr906航次在台灣東部海域St.6採樣的深海魚類-------85



Adams TS, Sterner RW (2000) The effect of dietary nitrogen content on trophic level 15N enrichment. Journal Limnology and Oceanography 45, 601–607.
Altabet MA, Francois R (2001) Nitrogen isotope biogeochemistry of the Antarctic Polar Frontal Zone at 170°W. Deep-Sea Research Part II 48, 4247–4273.
Archer D, Maier-Reimer E (1994) Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration. Nature 367, 260–263.
Bergmann M, Dannheim J, Bauerfeind E, Klages M (2009) Trophic relationships along a bathymetric gradient at the deep-sea observatory HAUSGARTEN. Deep-Sea Research Part I 56, 408–424.
Biggs DC, Berkowitz SP, Altabet MA, Bidigare RR, DeMaster DJ, Dunbar RB, Leventer A, Macko SA, Nittrouer CA, Ondrusek ME (1987) A cooperative study of upper-ocean particulate fluxes in the Weddell Sea. Proceedings of the Ocean Drilling Program 113, 77–85.
DeNiro MJ, Epstein S (1978) Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42, 495–506.
Etter RJ, Mullineaux LS (2001) Deep-Sea communities. In: Bertness, M.D., Gaines, S.D., Hay, M.E. (Eds.). Marine community Ecology. Sinauer Associate, Inc. Massachusetts. p.367–393.
Gage J, Tyler P (1991) Deep-Sea Biology: A Natural History of Organisms at the Deep-Sea Floor. Cambridge University Press, New York.
Grassle JP, Snelgrove PVR, Butman CA, (1992) Larval habitat choice in still water and flume flows by the opportunistic bivalve Mulinia lateralis. Netherlands Journal of Sea Research 30, 33–44.
Hall S, Raffaelli D (1993) Food webs: theory and reality. Advances in Ecological Research 24, 187–239.
Hessler RR, Jumars PA (1974) Abyssal community analysis from replicate box cores in the central North Pacific. Deep-Sea Research 21, 185–209.
Hessler RR, Sanders HL (1967) Faunal diversity in the deep sea. Deep-Sea Research 14, 65–78.
Hobson KA, Wassenaar LI (1999) Stable isotope ecology: an introduction. Oecologia 120, 312–313.
Hobson KA, Welch HE (1992) Determination of trophic relationships within a high Arctic marine food web using δ13C and δ15N analysis. Marine Ecological Progress Series 84, 9–18.
Hobson K, Alisauskas R, Clark R (1993) Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. The Condor 95, 388–394.
Iken K, Brey T, Wand U, Voigt J, Junghans P (2001) Food web structure of the benthic community at the Porcupine Abyssal Plain (NE Atlantic): a stable isotope analysis. Progress in Oceanography 50, 383–405.
Iken K, Bluhm BA, Gradinger R, (2005) Food web structure in the high Arctic Canada Basin: evidence from δ13C and δ15N analysis. Polar Biology 28, 238–249.
Jaeckisch N (2004) Characterisation of the mega-epibenthic community along a depth gradient in the deep Fram Strait (Arctic Ocean). Dissertation, University of Hamburg.
Klages M, Vopel K, Bluhm H, Brey T, Soltwedel T, Arntz WE (2001) Deep-sea food falls: first observation of a natural event in the Arctic Ocean. Polar Biology 24, 292–295.
Klages M, Boetius A, Christensen JP, Deubel H, Piepenburg D, Schewe I, Soltwedel T (2003) The benthos of Arctic Seas and its role for the carbon cycle at the seafloor. In: Stein, R., Macdonald, R.W. (Eds.). Springer, Heidelberg, pp. 139–167.
Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow chemistry and microbes. Oceanography and Marine Biology: An Annual Review 43, 1-46.
Liang MD, Jan JC, Tang TY (2000) Climatological wind and upper ocean heat content in the South China Sea. Acta Oceanography Taiwanica 38, 91–114.
Liang MD, Tang TY, Yang YJ, Ko MT, Chuang WS (2003) Upper-ocean contents around Taiwan. Deep-Sea Research Part II 50,1085–1105.
Maciolek NJ, Grassle JF, Hecker B, Broen B, Blake JA, Boehm PD, Petrecca R, Duffy S, Baptiste E, Ruff RE (1987) Study of biological processes on the U.S. north Atlantic slope and rise. Final Report prepared for U.S. Dept. of Interior, Minerals Management Service, Washington, DC.
Maciolek-Blake NJ, Grassle JF, Blake JA, Neff JM (1985) Georges bank infauna monitoring program: final report for the third year of sampling. Prepared for U.S. Dept. of Interior, Minerals Management Service, Washington, DC.
Magurran AE (1988) Ecological Diversity and its Measurement. Princeton University Press. Princeton, U.S.A., p.7–45.
Margalef R (1969) Diversity and stability: Apractical proposal and a model of interdependence. In: Woodwell, G.M. and Smith, H.H. (Eds.), Diversity and Stability in Ecological Systems, Brookhaven Symposium in Biology, No.22, New York: Brookhaven National Laboratory, p.25–37
Martinez P, Schminke HK (2005) DIVA-1 expedition to the deep sea of the Angola Basin in 2000 and DIVA-1 workshop 2003. Organisms Diversity and Evolution 5, 1–2.
Mellor CA, Paull CK (1994) Sea beam bathymetry of the Manteo 467 lease block off Cape Hatteras, North Carolina. Deep-Sea Research 41, 711–718.
Merrett NR (1994) Reproduction in North Atlantic oceanic ichthyofauna and relationship between fecundity amd species’s sizes. Environmental Bology of Fishes 41, 207–245.
Mincks SL, Smith CR, De Master DJ (2005) Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: evidence of a sediment ‘food bank’. Marine Ecology Progress Series 300, 3–19.
Mintenbeck K, Jacob U, Knust R, Arntz WE, Brey T (2007) Depth- dependence instable isotope ratio δ15N of benthic pom consumers : the role of particle dynamics and organism trophic guild. Deep-Sea Research Part I 54, 1015–1023.
Nakabo T (2002) Fishes of Japan with pictorial keys to thespecies, English edition. Tokia University Press.
Peacry WG, Stein RL, Carney RS (1982) The deep-sea benthic fish fauna of the northestern Pacific Ocean on Cascadia and Tufts Abyssal Plains and adjoining continental slopes. Biological Oceanography 1, 375–428.
Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293–320.
Pielou EC (1966) Shannon’s formula as a measure of specific diversity: its use and misuse. The American Naturalist 100 (914): 463–465.
Polunin NVC, Morales-Nin B, Pawsey WE, Cartes JE, Pinnegar JK, Moranta J (2001) Feeding relationships in Mediterranean bathyal assemblages elucidated by carbon and nitrogen stable-isotope data. Marine Ecology Progress Series 220, 13–23.
Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology Letters 83, 703–718.
Sahling H, Galkin SV, Salyuk A, Greinert J, Foerstel H, Piepenburg D, Suess E (2003) Depth-related structure and ecological significance of cold-seep communities —a case study from the Sea of Okhotsk. Deep-Sea Research Part I 50, 1391–1409.
Smith DC, Simon M, Alldredge AL, Azam F (1992) Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution. Nature 359, 139–142.
Snelgrove PVR, Smith CR (2003) A riot of species in an environmental calm: the paradox of the species-rich deep-sea floor. Oceanography and Marine Biology: An Annual Review 40, 311–342.
Soltwedel T, Juterzenka KV, Premke K, Klages M (2003) What a lucky shot! Photographic evidence for a medium-sized natural food-fall at the deep seafloor. Oceanologica Acta 26, 623–628.
Sweeting CJ, Jennings S, Polunin NVC (2005) Variance in isotopic signatures as a descriptor of tissue turnover and degree of omnivory. Functional Ecology 19, 777–784.
Thiel H (1979) Structural aspect of the deep-sea benthos. Ambio Special Report 6, 25–31.
Wenzhofer F, Adler M, Kohls O, Hensen C, Strotmann, Boehme BS, Schulz H D (2001) Calcite dissolution driven by benthic mineralization in the deep-sea: in situ measurements of Ca2+, pH, pCO2 and O2. Geochimica et Cosmochimica Acta 65, 2677–2690.
Yool A, Martin AP, Fernández C, Clark DR (2007) The significance of nitrification for oceanic new production. Nature 447, 999–1002.
Zhou J, Wu Y, Zhang J, Kang Q, Liu Z (2006) Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere 65, 310–317.

台灣魚類資料庫–The Fish Database of Taiwan。
吉良哲明 (1954) 原色日本貝類圖鑑 Colored Illustrations of the Shells of Japan。
沈世傑 (1993) 台灣魚類誌,國立台灣大學動物學系,共960頁。
許家維 (2010) 南海時間序列測站沉降通量變化之研究,國立中山大學海洋地質及化學研究所碩士論文,共62頁。
陳鎮東 (2001) 南海海洋學,國立編譯館,共506頁。
奧谷喬司 (2000) 日本近海產貝類圖鑑Marine Mollusks in Japan。
奧谷喬司 (2004) 世界文化生物大圖鑑–貝類篇 Encyclopedia of Shellfish。
謝秀苓 (2008) 2006年夏季台灣周遭海域碳化學參數與二氧化碳通量之空間分佈變化,國立中山大學海洋地質及化學研究所碩士論文,共47頁。
藤倉克則、奧谷喬司、丸山正 (2008) Deep Sea Life - Biological observations using research submersibles。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊