跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.167) 您好!臺灣時間:2025/10/31 18:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陶氏幸
研究生(外文):THI-HANH DAO
論文名稱:應用理想直接近法進行多屬性ABC存活分類分析
論文名稱(外文):A Study of Multi-criteria ABC Analysis Using Closeness-to-the-ideal Approach
指導教授:余銘忠余銘忠引用關係
指導教授(外文):Min-Chun Yu
口試委員:鄭為民廖光彬
口試委員(外文):Wei-Min ZhengLiao Kua-Ping
口試日期:2015-06-17
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:製造與管理外國學生碩士專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:59
中文關鍵詞:存貨分類
外文關鍵詞:Inventory classification
相關次數:
  • 被引用被引用:0
  • 點閱點閱:552
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:0
對於企業在計畫生產過程中,倉庫管理是很重要的一部分。因此,存貨的分類是必要的,每一份存庫類是要靠它的屬性,特徵來相應安排。為了有效地分類大量庫存物品和多標準,應用理想值接近法TOPSIS(技術優先順序通過逼近理想解法)模型和VIKOR為ABC分析來分析庫存物品,以庫存物品分為不同的類別A,B和C。傳統上,標準分類僅是根據每年的使用美金。此技術考慮到不同的評估屬性,如交貨時間,單位成本,與採購量。此方法應用層級分析法(AHP)來計算際每個屬性的權重。最後,利用一製造彩色液晶顯示器(LCD)零組件存貨之實際例子,示範此方法如何應用。
Inventory management is an important part of production planning process for many enterprises. Therefore, inventory classification is necessary so that each inventory class can be treated accordingly based on the attributes of that class. In order to effectively classify with large amount of inventory items and multi-criteria, using closeness to the ideal approach TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) model and VIKOR for ABC analysis of inventory items to classify inventory items into different categories A, B and C. Traditionally, the classification criteria is only based on annual dollar usage. The technique takes into consideration various criteria such as lead time, unit cost, purchaser volume. This approach utilizes AHP (Analytic Hierarchy Process) have consistency consideration in determine the weights of each criterion. Finally, a real life example regarding the inventory items used for color LCD monitor manufacturing is presented to demonstrate how the proposed method can be applied.
CONTENTS

Title i

Contents iii

List of Figures v

List of Tables vi

Abstract vii

摘要 viii

CHAPTER 1: INTRODUCTION 1

1.1 Research Background 1

1.2 Research Motivation 4

1.3 Research Objectives 4

1.4 Research Procedures 5

1.5 Research Organization 6

CHAPTER 2: LITERATURE REVIEW 7

2.1 Review of AHP Methodology 7

2.2 Review of TOPSIS 8

2.3 Review of VIKOR 10

CHAPTER 3: RESEARCH METHODOLOGY 11

3.1 Research Framework 11

3.2 Criteria Selection 14

3.3 AHP method 14

3.4 The Expert choice software 16

3.5 TOPSIS Method 16

3.6 VIKOR Method 18

CHAPTER 4: A NUMERIC EXAMPLE 19

4.1 Hierarchical structure 19

4.2 Calculate the weights of criteria 20

4.3 TOPSIS method 22

4.4 VIKOR Method 34

CHAPTER 5: CONCLUSIONS AND SUGGESTIONS 41

3

5.1 Research Conclusion 41

5.2 Managerial Implication 42

5.3 Directions for Future Research 43

REFERENCES 44

4

LIST OF FIGURES

Figure 1.1: Classification sample for three categories 2

Figure 1.2: Diagram of thesis procedures 6

Figure 3.1: Research framework 13

Figure 3.2: Hierarchical Structure for AHP (Saaty, 1977 and 1994) 14

Figure 4.1: Hierarchical structure 20

5

LIST OF TABLES

Table 2.1: Some applications of TOPSIS 9

Table 3.1: Nine-point intensity of importance scale and its description. 15

Table 4.1: For expert D1 pairwise comparison matrix 21

Table 4.2: For expert D2 pairwise comparison matrix 21

Table 4.3: For expert D3 pairwise comparison matrix 21

Table 4.4: For expert D4 pairwise comparison matrix 21

Table 4.5: For expert D5 pairwise comparison matrix 22

Table 4.6: Weight of criteria 22

Table 4.7: Original data decision-making matrix 22

Table 4.8: Normalization decision matrix 25

Table 4.9: Weighted normalized matrix 27

Table 4.10: Distances of each alternative from the ideal solutions 29

Table 4.11: Distances of each alternative from negative-ideal solutions 30

Table 4.12: Result classification under multi-criteria by TOPSIS and Traditional ABC 32

Table 4.13: The best value and the worst value of all the criteria 34

Table 4.14: S and R interval numbers 35

Table 4.15: Q interval numbers 36

Table 4.16: Ranking of alternatives via Si, Ri, Qj. 38

Table 4.17: Comparison result of TOPSIS and VIKOR method 39



REFERENCES
Abo-Sinna, M. A., & Amer, A. H. (2005). Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied Mathematics and Computation, 162(1), 243-256.
Byun, H. S., & Lee, K. H. (2005). A decision support system for the selection of a rapid prototyping process using the modified TOPSIS method. The International Journal of Advanced Manufacturing Technology, 26(11-12), 1338-1347.
Canada, J. R., Sullivan W.G., White J. A. (1996), Capital Investment Analysis for Engineering and Management, 2nd edition, Prentice Hall, New Jersey.
Chen, S. J. J., Hwang, C. L., Beckmann, M. J., & Krelle, W. (1992). Fuzzy multiple attribute decision making: methods and applications. Springer-Verlag New York, Inc..
Cheng, S., Chan, C. W., & Huang, G. H. (2002). Using multiple criteria decision analysis for supporting decisions of solid waste management. Journal of Environmental Science and Health, Part A, 37(6), 975-990.
Chu, T. C. (2002). Facility location selection using fuzzy TOPSIS under group decisions. International journal of uncertainty, fuzziness and knowledge-based systems, 10(06), 687-701.
Dağdeviren, M. (2008). Decision making in equipment selection: an integrated approach with AHP and PROMETHEE. Journal of Intelligent Manufacturing,19(4), 397-406.
Dağdeviren, M., Yavuz, S., & Kılınç, N. (2009). Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Systems with Applications, 36(4), 8143-8151.
Deaton, K., Lysons, P., & Gedeon, S. (2003). U.S. Patent Application 10/625,836.
Deng, H., Yeh, C. H., & Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers & Operations Research,27(10), 963-973.
Flores, B. E., & Whybark, D. C. (1987). Implementing multiple criteria ABC analysis. Journal of Operations Management, 7(1), 79-85.
Guvenir, H. A., & Erel, E. (1998). Multicriteria inventory classification using a genetic algorithm. European journal of operational research, 105(1), 29-37.
Hsu, C. W., Kuo, R. J., & Chiou, C. Y. (2014). A multi-criteria decision-making approach for evaluating carbon performance of suppliers in the electronics industry. International Journal of Environmental Science and Technology,11(3), 775-784.
Hwang, C. L., and K. Yoon, 1981. “Multiple Attribute Decision Making: Methods and Applications”. Springer-Verlag, New York
Ishizaka, A., & Labib, A. (2009). Analytic hierarchy process and expert choice: Benefits and limitations. OR Insight, 22(4), 201-220.
Ishizaka, A., & Lusti, M. (2004). An expert module to improve the consistency of AHP matrices. International Transactions in Operational Research, 11(1), 97-105.
Jahanshahloo, G. R., Lotfi, F. H., & Izadikhah, M. (2006). An algorithmic method to extend TOPSIS for decision-making problems with interval data.Applied mathematics and computation, 175(2), 1375-1384.
Janić, M. (2014). Advanced Transport Systems: Infrastructure, Technologies, Operations, Economics, Environment, and Society/Policy. In Advanced Transport Systems (pp. 235-276). Springer London.
Jiang, K.-S. (2009). Multi-criteria Inventory Classification Using Fuzzy-TOPSIS, Master Thesis, National Kaohsiung University of Applied Sciences.
Kaya, T., & Kahraman, C. (2011). Fuzzy multiple criteria forestry decision making based on an integrated VIKOR and AHP approach. Expert Systems with Applications, 38(6), 7326-7333.
Keeney, R. L., & Raiffa, H. (1993). Decisions with multiple objectives: preferences and value trade-offs. Cambridge university press.
Kilincci, O., & Onal, S. A. (2011). Fuzzy AHP approach for supplier selection in a washing machine company. Expert systems with Applications, 38(8), 9656-9664.
Milani, A. S., Shanian, A., Madoliat, R., & Nemes, J. A. (2005). The effect of normalization norms in multiple attribute decision making models: a case study in gear material selection. Structural and multidisciplinary optimization, 29(4), 312-318.
Opricovic, S. (1998). Multicriteria optimization of civil engineering systems.Faculty of Civil Engineering, Belgrade, 2(1), 5-21.
Opricovic, S. (2009). Compromise in cooperative game and the VIKOR method. Yugoslav Journal of Operations Research ISSN: 0354-0243 EISSN: 2334-6043, 19(2).
Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445-455.
Park, J., Bae, H., & Bae, J. (2014). Cross-evaluation-based weighted linear optimization for multi-criteria ABC inventory classification. Computers & Industrial Engineering, 76, 40-48.
Parkan, C., & Wu, M. L. (1999). Decision-making and performance measurement models with applications to robot selection. Computers & Industrial Engineering, 36(3), 503-523.
Partovi, F. Y., & Burton, J. (1993). Using the analytic hierarchy process for ABC analysis. International Journal of Operations & Production Management,13(9), 29-44.
Peng, Y., Kou, G., Wang, G., & Shi, Y. (2011). FAMCDM: A fusion approach of MCDM methods to rank multiclass classification algorithms. Omega, 39(6), 677-689.
Saaty, T. L. (1977). A scaling method for priorities in hierarchical structures.Journal of mathematical psychology, 15(3), 234-281.
Saaty, T. L. (1994). How to make a decision: the analytic hierarchy process.Interfaces, 24(6), 19-43.
Srdjevic, B., Medeiros, Y. D. P., & Faria, A. S. (2004). An objective multi-criteria evaluation of water management scenarios. Water resources management, 18(1), 35-54.
Wädt, W. (2009). ABC-Analyse-Anwendung und Umsetzung im Marketing. BoD–Books on Demand.
Yang, T., & Chou, P. (2005). Solving a multiresponse simulation-optimization problem with discrete variables using a multiple-attribute decision-making method. Mathematics and Computers in simulation, 68(1), 9-21.
YOON, K., & HWANG, C. L. (1985). Manufacturing plant location analysis by multiple attribute decision making: Part I—single-plant strategy. International Journal of Production Research, 23(2), 345-359.
Yu, M. C. (2011). Multi-criteria ABC analysis using artificial-intelligence-based classification techniques. Expert Systems with Applications, 38(4), 3416-3421.
Zhou, P., & Fan, L. (2007). A note on multi-criteria ABC inventory classification using weighted linear optimization. European journal of operational research,182(3), 1488-1491.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top