參考文獻
1.蔡宛妮,應用自我組織網路於直接負載控制績效評估之研究,中原大學電機工程研究所碩士論文,2001。2.Beccali, M., Cellura, M., Brano, V. L., & Marvuglia, A., Forecasting daily urban electric load profiles using artificial neural networks. Energy Conversion and Management, 2004, pp. 2879-2900.
3.Cannata, A., Gerosa, M., & Taisch, M., SOCRADES: A framework for developing intelligent systems in manufacturing. IEEE International Conference, 2008, pp.1904-1908.
4.Chang, F.-J., Chen, Y.-C., Estuary water-stage forecasting by using radial basis function neural network. Journal of Hydrology, 2003, pp.158-166.
5.Cortes, C., & Vapnik, V., Support-vector networks, Machine learning,20(3), 1995,pp.273-297.
6.Di Orio, G., Cândido, G., & Barata, J., The Adapter module: A building block for Self-Learning Production Systems, Robotics and Computer-Integrated Manufacturing, 2015.
7.De Silva, D., Yu, X., Alahakoon, D., & Holmes, G., A data mining framework for electricity consumption analysis from meter data. Industrial Informatics, IEEE Transactions on, 2011, pp. 399-407.
8.Domınguez, M., Fuertes, J. J., Dıaz, I., Cuadrado, A. A., Alonso, S., & Morán, A. Analysis of electric power consumption using self-organizing maps, World Congress, 2011, pp. 12213-12218.
9.Figueiredo, V., Rodrigues, F., Vale, Z., & Gouveia, J. B., An electric energy consumer characterization framework based on data mining techniques, Power Systems, IEEE Transactions on, 2005, pp.596-602.
10.Götze, U., Koriath, H. J., Kolesnikov, A., Lindner, R., & Paetzold, J., Integrated methodology for the evaluation of the energy-and cost-effectiveness of machine tools, CIRP Journal of Manufacturing Science and Technology, 2012, pp.151-163.
11.Hecht-Nielsen, R., Counterpropagation networks, Applied optics, 1987, pp.4979-4984.
12.Hopfield, J. J., & Tank, D. W., Computing with neural circuits- A model, Science, 1986, pp.625-633.
13.Keim, D., Information visualization and visual data mining, Visualization and Computer Graphics, IEEE Transactions on, 2002, pp.1-8.
14.Le, C. V., & Pang, C. K., An energy data-driven decision support system for high-performance manufacturing industries, International Journal of Automation and Logistics, 2013, pp.61-79.
15.Laughman, C., Lee, K., Cox, R., Shaw, S., Leeb, S., Norford, L., & Armstrong, P., Power signature analysis, Power and Energy Magazine, IEEE, 2003, pp.56-63.
16.Le, C. V., Pang, C. K., Gan, O. P., Chee, X. M., Zhang, D. H., Luo, M., ... & Lewis, F. L., Classification of energy consumption patterns for energy audit and machine scheduling in industrial manufacturing systems, Transactions of the Institute of Measurement and Control, 2013, pp.583-592.
17.McCulloch, W. S., & Pitts, W., A logical calculus of the ideas immanent in nervous activity, The bulletin of mathematical biophysics, 5(4),1943, pp.115-133.
18.Monedero, I., Biscarri, F., León, C., Guerrero, J. I., González, R., & Pérez-Lombard, L., Decision system based on neural networks to optimize the energy efficiency of a petrochemical plant, Expert Systems with Applications, 2012, pp.9860-9867.
19.Nagi, J., Yap, K. S., Tiong, S. K., Ahmed, S. K., & Mohamad, M. Nontechnical loss detection for metered customers in power utility using support vector machines. Power Delivery, IEEE Transactions on, 2010, pp.1162-1171.
20.Nizar, A. H., & Dong, Z. Y., Identification and detection of electricity customer behaviour irregularities, Power Systems Conference and Exposition,2009, pp.1-10.
21.Nizar, A. H., Zhao, J. H., & Dong, Z. Y., Customer information system data pre-processing with feature selection techniques for non-technical losses prediction in an electricity market, International Conference on. IEEE, 2006, pp. 1-7.
22.O'Driscoll, E., Kelly, K., & O'Donnell, G. E., Intelligent energy based status identification as a platform for improvement of machine tool efficiency and effectiveness, Journal of Cleaner Production, 2015.
23.Powell, K. E., Thompson, P. D., Caspersen, C. J., & Kendrick, J. S., Physical activity and the incidence of coronary heart disease, Annual review of public health, 8(1),1987, 253-287.
24.Räsänen, T., Ruuskanen, J., & Kolehmainen, M., Reducing energy consumption by using self-organizing maps to create more personalized electricity use information, Applied Energy, 2008, pp.830-840.
25.Sequeira, H., Carreira, P., Goldschmidt, T., & Vorst, P., Energy Cloud: real-time cloud-native Energy Management System to monitor and analyze energy consumption in multiple industrial sites, Proceedings of the 2014 IEEE/ACM 7th International Conference on Utility and Cloud Computing, 2014, pp. 529-534.
26.Schmitt, R., Bittencourt, J. L., & Bonefeld, R., Modelling machine tools for self-optimisation of energy consumption, Glocalized Solutions for Sustainability in Manufacturing, 2011, pp.253-257.
27.Velázquez, D., González-Falcón, R., Pérez-Lombard, L., Gallego, L. M., Monedero, I., & Biscarri, F., Development of an energy management system for a naphtha reforming plant: A data mining approach, Energy Conversion and Management, 2013, pp.217-225.
28.Vikhorev, K., Greenough, R., & Brown, N., An advanced energy management framework to promote energy awareness, Journal of Cleaner Production, 2013, pp.103-112.
29.Weinert, N., Chiotellis, S., & Seliger, G., Methodology for planning and operating energy-efficient production systems, CIRP Annals-Manufacturing Technology, 2011, pp.41-44.