跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.155) 您好!臺灣時間:2025/11/15 01:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林峰益
研究生(外文):Feng-YI Lin
論文名稱:探討毒胡蘿蔔素藉由表觀遺傳修飾抑制肺癌細胞端粒酶活性及誘發細胞死亡之機制
論文名稱(外文):The mechanisms of thapsigargininhibit telomerase activity and induce cell death via epigenetic modification in lung cancer cells
指導教授:柯俊良柯俊良引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:112
相關次數:
  • 被引用被引用:0
  • 點閱點閱:610
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
毒胡蘿蔔素萃取自地中海植物 Thapsia garganica,具有高親脂性的特性而可滲透生物膜。毒胡蘿蔔素透過抑制sarco-內質網鈣離子ATP酶誘發內質網壓力,導致細胞質內鈣離子的增加。已有文獻指出毒胡蘿蔔素會誘導細胞凋亡和細胞自噬。而於我們實驗室發現毒胡蘿蔔素能使A549細胞的hTERT表現減少,進而抑制端粒酶活性。本實驗我們將探討毒胡蘿蔔素的細胞毒性、細胞衰老與表觀遺傳調控hTERT。於本實驗先前研究,松杉靈芝免疫調節蛋白具有抗癌的效果;可於具有野生型上皮生長因子受體之 A549 細胞中,藉由內質網壓力/鈣離子路徑抑制端粒酶活性。因此我們將探討松杉靈芝免疫調節蛋白FIP-gts對於上皮生長因子受體突變肺癌細胞的端粒酶活性與hTERT的影響。在MTT試驗中,毒胡蘿蔔素抑制A549、H1355和H1299的細胞存活率;而FIP-gts可減少A549、H1975 和HCC827的細胞存活率,然而H1650細胞不受抑制。於細胞群落形成實驗,毒胡蘿蔔素抑制A549細胞群落的生成。自噬抑制劑3-MA、Chloroquine和Bafilomycin A1被使用於釐清毒胡蘿蔔素誘導的細胞死亡途徑。然而只有3-MA為自噬起始抑制劑,增加了毒胡蘿蔔素誘導的殺傷作用。利用細胞流式儀分析偵測毒胡蘿蔔素誘導的活性氧與衰老。不同於大部分基因,啟動區高度甲基化啟動hTERT表現。使用染色體端粒酶重覆增幅步驟、反轉錄酶鏈聚合酶連鎖反應與定量聚合酶連鎖反應偵測毒胡蘿蔔素或FIP-gts處理下,肺癌細胞的端粒酶活性和hTERT表現。使用西方點墨法偵測毒胡蘿蔔素或共處理5-Azadc,A549細胞之hTERT、端粒重覆序列结合因子1與2的表現。結果顯示5-Azadc並不會影響毒胡蘿蔔素抑制的端粒酶活性與hTERT表現。DNA甲基轉移酶在甲基化DNA上扮演重要角色。於反轉錄酶鏈聚合酶連鎖反應和西方點墨實驗,毒胡蘿蔔素與5-Azadc 共同處理減少A549細胞中DNMT1和DNMT3B的表現,但不改變DNMT3A。為了詳盡的研究甲基化狀態,利用亞硫酸氫鹽測序分析細胞中毒胡蘿蔔素對hTERT啟動區(-196到+46)甲基化程度影響,發現毒胡蘿蔔素不會誘導hTERT啟動區特定位點CpG甲基化。報導基因分析用於調查轉錄因子於hTERT啟動區活性調控的影響,毒胡蘿蔔素可抑制不同片段(-548、-212、-196與-155) hTERT啟動區活性。我們的研究結果顯示,毒胡蘿蔔素誘導細胞死亡透過抑制hTERT與端粒酶活性。松杉靈芝免疫調節蛋白FIP-gts可抑制細胞的存活與端粒酶活性於上皮生長因子受體突變的肺癌細胞。

Thapsigargin (TG) was isolated from the Mediterranean plant Thapsia garganica. The highly lipophilic characteristic of TG accounts for their excellent penetration of biological membranes. TG can induce ER Stress and increase intracellular calcium through inhibiting sarco-endoplasmic reticulum Ca2+-ATPases. It has been reported that TG induces apoptosis and autophagy. In our previous study, TG inhibits telomerase activity by decreasing hTERT expression in A549 cells. In this study, we investigated the effects of TG on cytotoxicity, cell senescence and epigenetic regulation of hTERT. In our previous studies, fungal immunomodulatory protein Ganoderma tsugae (FIP-gts) has anticancer effects. FIP-gts can inhibit telomerase activity via ER Stress/calcium pahway in wide-type EGFR A549 cells. In this study, we investigated the effects of FIP-gts on telomerase activity and hTERT expression in EGFR mutation lung cancer cells. On MTT assay, the cell viability was reduced by TG in A549, H1355 and H1299 cells and reduced by FIP-gts in A549, H1975 and HCC827 cells. However, FIP-gts did not inhibit cell survival in H1650 cells. On clonogenic assay, TG inhibited A549 cell colony formation. Several autophagy inhibitors, 3-methyladenine (3-MA), chloroquine (CQ), and bafilomycin A1 (BafA1) were used to clarify the role of autophagy in TG-induced cell death. However, only 3-MA, an autophagy initiation inhibitor, enhanced the TG-induced cell-killing effect. The flow cytometry analysis was performed to detect the TG-induced ROS and senescence. Different from most of the genes, promoter hypermethylation turns on the hTERT expression. The TRAP, RT-PCR and Real Time PCR were used to analyze telomerase activity and hTERT expression in lung cancer cells treated with TG or FIP-gts. The western blot assay was performed to detected hTERT, TRF1 and TRF2 expression in A549 cells treated TG with or without 5-Azadc. The results demonstrated that 5-Azadc did not affect the TG-inhibiting telomerase activity and hTERT expression. DNA methyltransferase(DNMTs) enzyme are plays an important role that methylated genomic DNA. On RT-PCR and western blot assay, TG and 5-Azadc co-treatment downregulated the expressions of DNMT1 and DNMT3b, but did not alter the DNMT3a in A549 cells. To study the methylation patterns in more detail, bisulfite sequencing analysis confirm the hTERT promoter region (-196 form +46) in TG-treated cells. TG did not induce the methylation of site-specific CpGs on the hTERT promoter. The reporter assay was used to investigate of effect of transcription factors on hTERT promoter activity regulation. Thapsigargin inhibited the transcriptional activities of hTERT promoter (-548, -212, -196 and -155). Our results suggested that TG induces cell death via inhibited hTERT and telomerase activity. FIP-gts can inhibit cell survival and telomerase activity in EGFR mutation lung cancer cells.

第一章緒論 1
一 肺癌 1
二 內質網壓力 2
三 真菌免疫調節蛋白 (FIP) 4
四 毒胡蘿蔔素(Thapsigargin) 5
五 端粒、端粒酶與腫瘤的關係 6
六 細胞衰老(cellular senescence) 9
七 表觀遺傳修飾機制調控基因表現 10
第二章 縮寫表 (Abbreviation) 12
第三章 研究動機 14
第四章 研究材料與研究方法 15
ㄧ 細胞株 (Cell lines) 15
二 藥品試劑 18
三 細胞存活試驗 20
四 細胞群落生成能力分析(Clonogenic assay) 21
五 染色體端粒酶重覆增幅步驟(Telomeric Repeat Amplification Protocol, TRAP assay) 22
六 衰老相關的β-半乳糖苷酶活性分析 23
七 活性氧物種(ROS)生成之測定 25
八 西方點墨法 26
九 反轉錄酶鏈聚合酶連鎖反應(RT-PCR) 28
十 定量聚合酶連鎖反應(Real-time PCR) 36
十一 報導基因分析 37
第五章 結果 39
ㄧ Thapsigargin對非小細胞肺癌細胞造成細胞毒殺性 39
二 Thapsigargin毒性抑制A549細胞生長 40
三 Thapsigargin抑制非小細胞肺癌細胞的端粒酶活性 40
四 ROS對Thapsigargin於A549癌細胞的細胞毒殺性與端粒酶活性之影響 41
五 化療藥物對Thapsigargin於A549癌細胞的細胞毒殺性之影響 42
六 抑制自噬作用對Thapsigargin於A549癌細胞的細胞毒殺性之影響 42
七 Thapsigargin對A549細胞於細胞自噬的影響 43
八 表觀遺傳修飾抑制劑對Thapsigargin於A549癌細胞的細胞存活率之影響 44
九 5-Azadc抑制劑對A549細胞於細胞型態的影響 44
十 5-Azadc抑制劑對A549細胞於端粒酶活性之影響 45
十一 Thapsigargin對A549細胞衰老之影響 45
十二 Thapsigargin合併5-Azadc抑制劑對A549細胞於hTERT、DNMT1蛋白表現之影響 46
十三 Thapsigargin合併TSA對A549細胞的Acetyl-Histone 3、Acetyl-Histone 4蛋白表現之影響 46
十四 Thapsigargin對A549細胞的TRF1、TRF2、CHOP與γH2AX蛋白表現之影響 47
十五 Thapsigargin合併5-Azadc抑制劑對A549細胞於DNMT與hTERT mRNA表現之影響 48
十六 Thapsigargin對肺癌細胞hTERT promoter甲基化之影響 48
十七Thapsigargin調控hTERTP promoter 轉錄活性 49
十八Thapsigargin抑制hTERT promoter的轉錄因子 50
十九Thapsigargin合併BAPTA-AM對A549細胞端粒酶活性與hTERT mRNA表現的影響 50
二十FIP-gts抑制端粒酶活性 51
二一FIP-gts對具有EGFR 突變的非小細胞肺癌之細胞毒殺性的影響 52
二十二FIP-gts對具有EGFR 突變的非小細胞肺癌之端類酶活性的影響 52
二十三FIP-gts對具有EGFR 突變的非小細胞肺癌之hTERT mRNA 的影響 53
第六章 討論 54
第七章 圖表 64
第八章 附表 101
第十一章 參考文獻 103



Araki T, Yashima H, Shimizu K, Aomori T, Hashita T, Kaira K, Nakamura T, Yamamoto K (2012) Review of the treatment of non-small cell lung cancer with gefitinib. Clin Med Insights Oncol 6: 407-421

Arnoldussen YJ, Saatcioglu F (2009) Dual specificity phosphatases in prostate cancer. Mol Cell Endocrinol 309: 1-7

Bar J, Onn A (2012) Overcoming molecular mechanisms of resistance to first-generation epidermal growth factor receptor tyrosine kinase inhibitors. Clin Lung Cancer 13: 267-279

Borchers AT, Krishnamurthy A, Keen CL, Meyers FJ, Gershwin ME (2008) The immunobiology of mushrooms. Exp Biol Med (Maywood) 233: 259-276

Bougel S, Lhermitte B, Gallagher G, de Flaugergues JC, Janzer RC, Benhattar J (2013) Methylation of the hTERT promoter: a novel cancer biomarker for leptomeningeal metastasis detection in cerebrospinal fluids. Clin Cancer Res 19: 2216-2223

Campisi J, d''Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8: 729-740

Cao Y, Bryan TM, Reddel RR (2008) Increased copy number of the TERT and TERC telomerase subunit genes in cancer cells. Cancer Sci 99: 1092-1099

Cedar H, Bergman Y (2011) Epigenetics of haematopoietic cell development. Nat Rev Immunol 11: 478-488

Cheong H, Lu C, Lindsten T, Thompson CB (2012) Therapeutic targets in cancer cell metabolism and autophagy. Nat Biotechnol 30: 671-678

Ching-Hsiung Lin G-TS, Yu-Wen Lin, Chin-Shui Yeh, Yu-Hsin Huang, Yen-Chein Lai, Jan-Gowth Chang, Jiunn-Liang Ko (2010) A new immunomodulatory protein from Ganoderma microsporum inhibits epidermal growth factor mediated migration and invasion in A549 lung cancer cells. Process Biochemistry: 1537–1542

Chitnis NS, Pytel D, Bobrovnikova-Marjon E, Pant D, Zheng H, Maas NL, Frederick B, Kushner JA, Chodosh LA, Koumenis C, Fuchs SY, Diehl JA (2012) miR-211 is a prosurvival microRNA that regulates chop expression in a PERK-dependent manner. Mol Cell 48: 353-364

Chu BF, Karpenko MJ, Liu Z, Aimiuwu J, Villalona-Calero MA, Chan KK, Grever MR, Otterson GA (2013) Phase I study of 5-aza-2''-deoxycytidine in combination with valproic acid in non-small-cell lung cancer. Cancer Chemother Pharmacol 71: 115-121

Collins K (2006) The biogenesis and regulation of telomerase holoenzymes. Nat Rev Mol Cell Biol 7: 484-494

Day JJ, Sweatt JD (2011) Epigenetic mechanisms in cognition. Neuron 70: 813-829

de Jesus BB, Blasco MA (2012) Assessing cell and organ senescence biomarkers. Circ Res 111: 97-109

Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4: 1798-1806

Denchi EL, de Lange T (2007) Protection of telomeres through independent control of ATM and ATR by TRF2 and POT1. Nature 448: 1068-1071

Denmeade SR, Jakobsen CM, Janssen S, Khan SR, Garrett ES, Lilja H, Christensen SB, Isaacs JT (2003) Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J Natl Cancer Inst 95: 990-1000

Denmeade SR, Mhaka AM, Rosen DM, Brennen WN, Dalrymple S, Dach I, Olesen C, Gurel B, Demarzo AM, Wilding G, Carducci MA, Dionne CA, Moller JV, Nissen P, Christensen SB, Isaacs JT (2012) Engineering a prostate-specific membrane antigen-activated tumor endothelial cell prodrug for cancer therapy. Sci Transl Med 4: 140ra186

Devereux TR, Horikawa I, Anna CH, Annab LA, Afshari CA, Barrett JC (1999) DNA methylation analysis of the promoter region of the human telomerase reverse transcriptase (hTERT) gene. Cancer Res 59: 6087-6090

El Enshasy HA, Hatti-Kaul R (2013) Mushroom immunomodulators: unique molecules with unlimited applications. Trends Biotechnol 31: 668-677

Estrada JC, Torres Y, Benguria A, Dopazo A, Roche E, Carrera-Quintanar L, Perez RA, Enriquez JA, Torres R, Ramirez JC, Samper E, Bernad A (2013) Human mesenchymal stem cell-replicative senescence and oxidative stress are closely linked to aneuploidy. Cell Death Dis 4: e691

Fu M, Li L, Albrecht T, Johnson JD, Kojic LD, Nabi IR (2011) Autocrine motility factor/phosphoglucose isomerase regulates ER stress and cell death through control of ER calcium release. Cell Death Differ 18: 1057-1070

Fullgrabe J, Hajji N, Joseph B (2010) Cracking the death code: apoptosis-related histone modifications. Cell Death Differ 17: 1238-1243

Gabory A, Attig L, Junien C (2011) Developmental programming and epigenetics. Am J Clin Nutr 94: 1943S-1952S

Ganley IG, Wong PM, Gammoh N, Jiang X (2011) Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 42: 731-743

Ghantous A, Gali-Muhtasib H, Vuorela H, Saliba NA, Darwiche N (2010) What made sesquiterpene lactones reach cancer clinical trials? Drug Discov Today 15: 668-678

Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674

Harley CB (2008) Telomerase and cancer therapeutics. Nat Rev Cancer 8: 167-179

Hartwig FP, Collares T (2013) Telomere dysfunction and tumor suppression responses in dyskeratosis congenita: balancing cancer and tissue renewal impairment. Ageing Res Rev 12: 642-652

Hetz C (2012) The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 13: 89-102

Hetz C, Chevet E, Harding HP (2013) Targeting the unfolded protein response in disease. Nat Rev Drug Discov 12: 703-719

Hoffman Y, Pilpel Y, Oren M (2014) microRNAs and Alu elements in the p53-Mdm2-Mdm4 regulatory network. J Mol Cell Biol 6: 192-197

Hrdlickova R, Nehyba J, Bargmann W, Bose HR, Jr. (2014) Multiple tumor suppressor microRNAs regulate telomerase and TCF7, an important transcriptional regulator of the Wnt pathway. PLoS One 9: e86990

Hsin IL, Hsiao YC, Wu MF, Jan MS, Tang SC, Lin YW, Hsu CP, Ko JL (2012) Lipocalin 2, a new GADD153 target gene, as an apoptosis inducer of endoplasmic reticulum stress in lung cancer cells. Toxicol Appl Pharmacol 263: 330-337

Jair KW, Bachman KE, Suzuki H, Ting AH, Rhee I, Yen RW, Baylin SB, Schuebel KE (2006) De novo CpG island methylation in human cancer cells. Cancer Res 66: 682-692

Juergens RA, Wrangle J, Vendetti FP, Murphy SC, Zhao M, Coleman B, Sebree R, Rodgers K, Hooker CM, Franco N, Lee B, Tsai S, Delgado IE, Rudek MA, Belinsky SA, Herman JG, Baylin SB, Brock MV, Rudin CM (2011) Combination epigenetic therapy has efficacy in patients with refractory advanced non-small cell lung cancer. Cancer Discov 1: 598-607

Kanwal R, Gupta S (2012) Epigenetic modifications in cancer. Clin Genet 81: 303-311

Kawabata S, Mercado-Matos JR, Hollander MC, Donahue D, Wilson W, 3rd, Regales L, Butaney M, Pao W, Wong KK, Janne PA, Dennis PA (2014) Rapamycin Prevents the Development and Progression of Mutant Epidermal Growth Factor Receptor Lung Tumors with the Acquired Resistance Mutation T790M. Cell Rep 7: 1824-1832

Kehrer JP (2010) Lipocalin-2: pro- or anti-apoptotic? Cell Biol Toxicol 26: 83-89

Koch MW, Metz LM, Kovalchuk O (2013) Epigenetic changes in patients with multiple sclerosis. Nat Rev Neurol 9: 35-43

Kuilman T, Michaloglou C, Mooi WJ, Peeper DS (2010) The essence of senescence. Genes Dev 24: 2463-2479

Kumari A, Srinivasan R, Wig JD (2009) Effect of c-MYC and E2F1 gene silencing and of 5-azacytidine treatment on telomerase activity in pancreatic cancer-derived cell lines. Pancreatology 9: 360-368

Kuo CH, Lo CY, Chung FT, Lee KY, Lin SM, Wang CH, Heh CC, Chen HC, Kuo HP (2012) Concomitant active tuberculosis prolongs survival in non-small cell lung cancer: a study in a tuberculosis-endemic country. PLoS One 7: e33226

Kurz DJ, Decary S, Hong Y, Erusalimsky JD (2000) Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci 113 ( Pt 20): 3613-3622

Kyo S, Takakura M, Fujiwara T, Inoue M (2008) Understanding and exploiting hTERT promoter regulation for diagnosis and treatment of human cancers. Cancer Sci 99: 1528-1538

Li Y, Tergaonkar V (2014) Noncanonical functions of telomerase: implications in telomerase-targeted cancer therapies. Cancer Res 74: 1639-1644

Liao BC, Lin CC, Yang JC (2013) First-line management of EGFR-mutated advanced lung adenocarcinoma: recent developments. Drugs 73: 357-369

Liao CH, Hsiao YM, Hsu CP, Lin MY, Wang JC, Huang YL, Ko JL (2006) Transcriptionally mediated inhibition of telomerase of fungal immunomodulatory protein from Ganoderma tsugae in A549 human lung adenocarcinoma cell line. Mol Carcinog 45: 220-229

Liao CH, Hsiao YM, Lin CH, Yeh CS, Wang JC, Ni CH, Hsu CP, Ko JL (2008) Induction of premature senescence in human lung cancer by fungal immunomodulatory protein from Ganoderma tsugae. Food Chem Toxicol 46: 1851-1859

Liao CH, Hsiao YM, Sheu GT, Chang JT, Wang PH, Wu MF, Shieh GJ, Hsu CP, Ko JL (2007) Nuclear translocation of telomerase reverse transcriptase and calcium signaling in repression of telomerase activity in human lung cancer cells by fungal immunomodulatory protein from Ganoderma tsugae. Biochem Pharmacol 74: 1541-1554

Ma Y, Hendershot LM (2004) The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer 4: 966-977

Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8: 741-752

Marada S, Stewart DP, Bodeen WJ, Han YG, Ogden SK (2013) The unfolded protein response selectively targets active smoothened mutants. Mol Cell Biol 33: 2375-2387

Martinez P, Blasco MA (2011) Telomeric and extra-telomeric roles for telomerase and the telomere-binding proteins. Nat Rev Cancer 11: 161-176

Martinez P, Thanasoula M, Munoz P, Liao C, Tejera A, McNees C, Flores JM, Fernandez-Capetillo O, Tarsounas M, Blasco MA (2009) Increased telomere fragility and fusions resulting from TRF1 deficiency lead to degenerative pathologies and increased cancer in mice. Genes Dev 23: 2060-2075

Mateen S, Raina K, Agarwal C, Chan D, Agarwal R (2013) Silibinin synergizes with histone deacetylase and DNA methyltransferase inhibitors in upregulating E-cadherin expression together with inhibition of migration and invasion of human non-small cell lung cancer cells. J Pharmacol Exp Ther 345: 206-214

Mathon NF, Lloyd AC (2001) Cell senescence and cancer. Nat Rev Cancer 1: 203-213

Momparler RL (2005) Epigenetic therapy of cancer with 5-aza-2''-deoxycytidine (decitabine). Semin Oncol 32: 443-451

Mu H, Zhang A, Zhang W, Cui G, Wang S, Duan J (2012) Antioxidative Properties of Crude Polysaccharides from Inonotus obliquus. Int J Mol Sci 13: 9194-9206

Natsume A, Kondo Y, Ito M, Motomura K, Wakabayashi T, Yoshida J (2010) Epigenetic aberrations and therapeutic implications in gliomas. Cancer Sci 101: 1331-1336

Oh RS, Pan WC, Yalcin A, Zhang H, Guilarte TR, Hotamisligil GS, Christiani DC, Lu Q (2012) Functional RNA interference (RNAi) screen identifies system A neutral amino acid transporter 2 (SNAT2) as a mediator of arsenic-induced endoplasmic reticulum stress. J Biol Chem 287: 6025-6034

Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11: 381-389

Palm W, de Lange T (2008) How shelterin protects mammalian telomeres. Annu Rev Genet 42: 301-334

Peinado H, Ballestar E, Esteller M, Cano A (2004) Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Mol Cell Biol 24: 306-319

Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057-1068

Racek T, Mise N, Li Z, Stoll A, Putzer BM (2005) C-terminal p73 isoforms repress transcriptional activity of the human telomerase reverse transcriptase (hTERT) promoter. J Biol Chem 280: 40402-40405

Raffoux E, Cras A, Recher C, Boelle PY, de Labarthe A, Turlure P, Marolleau JP, Reman O, Gardin C, Victor M, Maury S, Rousselot P, Malfuson JV, Maarek O, Daniel MT, Fenaux P, Degos L, Chomienne C, Chevret S, Dombret H (2010) Phase 2 clinical trial of 5-azacitidine, valproic acid, and all-trans retinoic acid in patients with high-risk acute myeloid leukemia or myelodysplastic syndrome. Oncotarget 1: 34-42

Renaud S, Loukinov D, Abdullaev Z, Guilleret I, Bosman FT, Lobanenkov V, Benhattar J (2007) Dual role of DNA methylation inside and outside of CTCF-binding regions in the transcriptional regulation of the telomerase hTERT gene. Nucleic Acids Res 35: 1245-1256

Robison AJ, Nestler EJ (2011) Transcriptional and epigenetic mechanisms of addiction. Nat Rev Neurosci 12: 623-637

Roll JD, Rivenbark AG, Jones WD, Coleman WB (2008) DNMT3b overexpression contributes to a hypermethylator phenotype in human breast cancer cell lines. Mol Cancer 7: 15

Rosati E, Sabatini R, Rampino G, De Falco F, Di Ianni M, Falzetti F, Fettucciari K, Bartoli A, Screpanti I, Marconi P (2010) Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood 116: 2713-2723

Rosenberger S, Thorey IS, Werner S, Boukamp P (2007) A novel regulator of telomerase. S100A8 mediates differentiation-dependent and calcium-induced inhibition of telomerase activity in the human epidermal keratinocyte line HaCaT. J Biol Chem 282: 6126-6135

Ruden M, Puri N (2013) Novel anticancer therapeutics targeting telomerase. Cancer Treat Rev 39: 444-456

Schonthal AH (2012) Endoplasmic reticulum stress: its role in disease and novel prospects for therapy. Scientifica (Cairo) 2012: 857516

Shay JW, Wright WE (2002) Telomerase: a target for cancer therapeutics. Cancer Cell 2: 257-265

Steinhusen U, Weiske J, Badock V, Tauber R, Bommert K, Huber O (2001) Cleavage and shedding of E-cadherin after induction of apoptosis. J Biol Chem 276: 4972-4980

Teske BF, Fusakio ME, Zhou D, Shan J, McClintick JN, Kilberg MS, Wek RC (2013) CHOP induces activating transcription factor 5 (ATF5) to trigger apoptosis in response to perturbations in protein homeostasis. Mol Biol Cell 24: 2477-2490

Toaldo C, Pizzimenti S, Cerbone A, Pettazzoni P, Menegatti E, Daniela B, Minelli R, Giglioni B, Dianzani MU, Ferretti C, Barrera G (2010) PPARgamma ligands inhibit telomerase activity and hTERT expression through modulation of the Myc/Mad/Max network in colon cancer cells. J Cell Mol Med 14: 1347-1357

Wali JA, Rondas D, McKenzie MD, Zhao Y, Elkerbout L, Fynch S, Gurzov EN, Akira S, Mathieu C, Kay TW, Overbergh L, Strasser A, Thomas HE (2014) The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity. Cell Death Dis 5: e1124

Wang HH, Wu MM, Chan MW, Pu YS, Chen CJ, Lee TC (2014) Long-term low-dose exposure of human urothelial cells to sodium arsenite activates lipocalin-2 via promoter hypomethylation. Arch Toxicol

Winther AM, Liu H, Sonntag Y, Olesen C, le Maire M, Soehoel H, Olsen CE, Christensen SB, Nissen P, Moller JV (2010) Critical roles of hydrophobicity and orientation of side chains for inactivation of sarcoplasmic reticulum Ca2+-ATPase with thapsigargin and thapsigargin analogs. J Biol Chem 285: 28883-28892

Wu XQ, Huang C, He X, Tian YY, Zhou DX, He Y, Liu XH, Li J (2013) Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer. Cell Signal 25: 2462-2468

Yun M, Wu J, Workman JL, Li B (2011) Readers of histone modifications. Cell Res 21: 564-578

Zhang K, Kaufman RJ (2008) From endoplasmic-reticulum stress to the inflammatory response. Nature 454: 455-462

Zhou J, Mao B, Zhou Q, Ding D, Wang M, Guo P, Gao Y, Shay JW, Yuan Z, Cong YS (2014) Endoplasmic reticulum stress activates telomerase. Aging Cell 13: 197-200

Zinn RL, Pruitt K, Eguchi S, Baylin SB, Herman JG (2007) hTERT is expressed in cancer cell lines despite promoter DNA methylation by preservation of unmethylated DNA and active chromatin around the transcription start site. Cancer Res 67: 194-201




QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top