跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 10:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宇姮
研究生(外文):Yu-Heng Lin
論文名稱:WYC02-9於大腸癌細胞凋亡與細胞自噬之機轉
論文名稱(外文):WYC02-9 on Colorectal Cancer: Apoptosis and Autophagy
指導教授:梁明在袁行修
指導教授(外文):Ming-Tsai LiangShyng-Shiou Yuan
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:66
中文關鍵詞:大腸癌黃酮類化合物細胞週期細胞自噬細胞凋亡
外文關鍵詞:Colorectal CancerFlavonoidCell CycleApoptosisAutophagy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據行政院衛生署民國九十七年的統計資料發現,大腸癌高居國人十大癌症死亡比例的第二位;而大腸癌一般好發年齡大多聚集於五十歲以上的患者。而在大腸癌的臨床治療方法上,許多的化療藥物大多對於正常的組織部分具有高毒殺作用,對於病患往往會產生不良的副作用,因此,研發有效且對於正常組織具有低毒殺效果的抗癌化療藥物乃是目前刻不容緩的事情。
為了開發天然藥物於癌症治療上的應用,我們由台灣特有蕨類「粗毛金星蕨」的甲醇萃取物中,分離出新的黃酮類化合物WYC02,且經由活性測試結果得知,WYC02具有抗癌效果。WYC02-9係由實驗室所合成之WYC02的衍生物;在人類大腸癌細胞株HC116的毒殺效果中,WYC02-9比WYC02具有更顯著的毒殺性。在本研究中,藉由細胞群落分析及軟瓊脂培養方式發現 WYC02-9能有效抑制癌細胞的生長。細胞週期方面,了解WYC02-9會讓癌細胞週期停滯於G2/M期。而在細胞凋亡部分,發現WYC02-9會誘導活化caspase-8、caspase-9、caspase-3以及PARP,致使癌細胞走向細胞凋亡;在活體動物實驗發現,WYC02-9不僅能有效抑制腫瘤的生長,甚至對於裸鼠的體重、造血功能及肝、腎功能都無產生不良的副作用。WYC02-9亦會活化p38 MAPK表現,而利用抑制p38 MAPK的表現,可發現確實會造成癌細胞的存活比例上升,藉由結果可了解 p38 MAPK對於WYC02-9誘導癌細胞凋亡中佔有一席之地。另一方面,藉由西方墨點法及電子顯微鏡觀察等方式得知WYC02-9會誘導LC3-Ⅱ蛋白表現,造成細胞自噬的產生。
According to the data of Department of Health R.O.C. report, colorectal cancer (CRC) is the second leading cause of cancer death in Taiwan, and most of the cases occur after 50 old. Many chemotherapeutic agents used in clinics have high toxicity to normal tissues and cause many side-effects on patients. Therefore, it is important to search for effective and low toxic anticancer drugs for cancer therapy.
WYC02 is a novel flavonoids isolated from the whole plant of T. torresiana and has a potent anticancer effect. WYC02-9, a derivative of WYC02, shows a more potent cytotoxicity than WYC02 on HCT116 colorectal cancer cells. We identified that WYC02-9 inhibited the cancer cells growth by colony formation and soft agar assays. In nude mice model, WYC02-9 had a significant anti-cancer activity against colorectal tumor growth without major side effects. Moreover, WYC02-9 arrested cell cycle progression at G2/M phase. And, WYC02-9 forced cancer cells to go through apoptosis by inducing the activity of caspase-8, caspase-9, caspase-3, and inhibiting the activity of PARP. WYC02-9 inhibited cell proliferation by promoting the activity of p38 MAPK, which was reversed by p38 MAPK inhibitor, suggesting that p38 MAPK may play a major role in WYC02-9-induced cell death. On the other hand, WYC02-9 induced LC3-Ⅱ protein, and then induced autophagy in cancer cells.
中文摘要I
英文摘要II
誌謝III
目錄IV
表目錄VI
圖目錄VII
第一章 研究背景1
1-1 大腸癌(Colorectal cancer)1
1-2 細胞凋亡(Apoptosis)2
1-3 細胞凋亡訊息傳遞路徑 (Apoptosis signaling pathway)2
1-4 細胞自噬(Autophagy)4
1-5 黃酮類化合物(Flavonoids)6
第二章 研究動機9
2-1 研究動機9
2-2 實驗架構11
第三章 研究方法與材料12
3-1 細胞培養12
3-2 細胞計數法13
3-3 細胞增生試驗13
3-4 細胞形態學觀察14
3-5 細胞群落分析15
3-6 軟瓊脂培養法15
3-7 細胞週期分析16
3-8 Annexin V-FITC細胞凋亡分析17
3-9 電子顯微鏡觀察18
3-10 SB203580及3-Methyladenine(3-MA)之抑制劑處理19
3-11 西方墨點法19
3-12 裸鼠動物實驗22
3-13 免疫組織染色23
第四章 研究成果與討論24
4-1 研究成果24
4-1-1 WYC02-9抑制大腸癌細胞增生與細胞群落形成24
4-1-2 WYC02-9抑制大腸癌細胞週期的進行25
4-1-3 WYC02-9引起大腸癌細胞進行細胞凋亡作用25
4-1-4 WYC02-9活化大腸癌細胞株HCT116中p38 MAPK活性26
4-1-5 p38 MAPK在WYC02-9引起的生物活性上所扮演的角色26
4-1-6 WYC02-9在活體實驗中,藉由產生細胞凋亡作用及活化p38 MAPK而抑制腫瘤的生長27
4-1-7 WYC02-9引起大腸癌細胞株HCT116進行細胞自噬作用28
4-1-8 Autophagy在WYC02-9引起的生物活性上所扮演的角色28
4-2 成果圖表30
4-3 成果討論47
第五章 結論與未來展望50
第六章 參考文獻52
表目錄
Table 1. IC50 of novel flavonoid compounds and oxaliplatin on colorectal cancer cells30
Table 2. Complete blood count and biochemical profile for the nude mice after treatment with WYC02-9 for 6 weeks42
圖目錄
附圖一 細胞凋亡傳導路徑7
附圖二 MAPK pathway 7
附圖三 PI3K/AKT pathway 8
附圖四 粗毛金星蕨、WYC02及WYC02-9結構圖10
附圖五 實驗流程圖11
附圖六 細胞凋亡的型態變化14
附圖七 軟瓊脂培養基示意圖16
附圖八 磷脂絲胺酸(PS)外翻現象17
Figure 1. Effects of WYC02-9 on inhibiting the growth of HCT116 colorectal cancer cells 31
Figure 2. The effects of WYC02-9 on colony formation of HCT116 cells 32
Figure 3. The effect of WYC02-9 on soft agar colony formation of HCT116 cells 33
Figure 4. The effects of WYC02-9 on cell cycle distribution of HCT116 colorectal cancer cells 34
Figure 5. Protein involved in G2/M progression were modulated by WYC02-9 35
Figure 6. WYC02-9 induced apoptotic cell death in HCT116 colorectal cancer cells 36
Figure 7. Proteins involved in apoptosis pathway upon WYC02-9 treatment 37
Figure 8. WYC02-9 enhanced the activation of MKK 3/6 and p38 MAPK in HCT116 colorectal cancer cells 38
Figure 9. SB203580 reversed the WYC02-9 induced activation of p38 MAPK and growth inhibition in HCT116 colorectal cancer cells 39
Figure 10. SB203580 reversed the WYC02-9 induced activation of p38 MAPK and growth inhibition in HCT116 colorectal cancer cells by western blot 40
Figure 11. WYC02-9 suppressed HCT116 colorectal tumor growth in nude mice xenograft assay 41
Figure 12. The cleavage PARP and p-p38 MAPK expression in colorectal tumor tissues 43
Figure 13. Proteins involved in autophagic maker were regulated by WYC02-9 44
Figure 14. WYC02-9 induces autophagy in HCT116 colorectal cancer cells 45
Figure 15. 3-MA reversed WYC02-9 induced autophagy and growth inhibition in HCT116 colorectal cancer cells 46
中文部份
[1]賴榮祥 (1998) 在台東區農業改良場所舉行: 「蕨類植物種原蒐集及應用」之演講稿。
英文部份
[1]Brusselmans K, Vrolix R, Verhoeven G, Swinnen JV (2005). Induction of cancer cell apoptosis by flavonoids is associated with their ability to inhibit fatty acid synthase activity. The Journal of Biological Chemistry 280(7): 5636-5645.
[2]Chang HL, Wu YC, Su JH, Yeh YT, Yuan SS (2008). Protoapigenone, a novel flavonoid, induces apoptosis in human prostate cancer cells through activation of p38 mitogen-activated protein kinase and c-Jun NH2-terminal kinase 1/2. The Journal of Pharmacology and Experimental Therapeutics 325: 841-849.
[3]Chang HL, Su JH, Yeh YT, Lee YC, Chen HM, Wu YC, Yuan SS (2008). Protoapigenone, a novel flavonoid, inhibits ovarian cancer cell growth in vitro and in vivo. Cancer Letters 267: 85-95.
[4]Chen HM, Wu YC, Chia YC, Chang FR, Hsu HK, Hsieh YC, Chen CC, Yuan SS (2009). Gallic acid, a major component of Toona sinensis leaf extracts, contains a ROS-mediated anti-cancer activity in human prostate cancer cells. Cancer letters 286: 161-171.
[5]Chen HM, Chang FR, Hsieh YC, Cheng YJ, Hsieh KC, Tsai LM, Lin AS, Wu YC, Yuan SS (2011). A novel synthetic protoapigenone analogue, WYC02-9, induces DNA damage and apoptosis in DU145 prostate cancer cells through generation of reactive oxygen species. Free Radical Biology & Medicine 50(9): 1151-1162.
[6]Cilla A, Lagarda MJ, Barberá R, Romero F (2010). Polyphenolic profile and antiproliferative activity of bioaccessible fractions of zinc-fortified fruit beverages in human colon cancer cell lines. Nutr Hosp. 25(4): 561-571.
[7]Conradt B, Xue D (2005). Programmed cell death. Worm Book 6: 1-13.
[8]Denecker G, vercammen D, Steemans M, Berghe TV, Brouckaert G, Loo GV, Zhivotovsky B, Fiers W, Grooten J, Declercq W, Vandenabeele P (2001). Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death and Differentiation 8: 829-840.
[9]Deschesnes RG, Huot J, Valerie K, Landry J (2001). Involvement of p38 in apoptosis-associated membrane blebbing and nuclear condensation. Molecular Biology of the Cell 12: 1569-1582.
[10]Edinger AL, Thompson CB (2004). Death by design: apoptosis, necrosis and autophagy. Curr Opin Cell Biol 16: 663-669.
[11]Friedman M, Mackey BE, Kim HJ, Lee IS, Lee KR, Lee SU, Kozukue E, Kozukue N (2007). Structureactivity relationships of tea compounds against human cancer cells. J Agric Food Chem 55:243-253.
[12]Gorbunov NV, Kiang JG (2009). Up-regulation of autophagy in small intestine Paneth cells in response to total-body γ-irradiation. Journal of Pathology 219: 242-252.
[13]Hengartner MO (2000). The biochemistry of apoptosis. Nature 407: 770-776.
[14]Hickman JA (2002). Apoptosis and tumourigenesis. Current Opinion in Genetics & Development 12: 67-72.
[15]Hosseinimehr SJ (2010). Flavonoids and genomic instability induced by ionizing radiation. Drug Discovery Today 15: 907-918.
[16]Institute for Food Toxicology and Analytical Chemistry (2009). Automated soft agar for the high-throughput screening of anticancer compounds. Analytical Biochemistry 387: 318-320.
[17]Junttila MR, Li SP, Westermarck J (2008). Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. The FASEB Journal 22: 954-965.
[18]Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000). Tor-mediated induction of autophagy via an apg1 protein kinase complex. The Journal of Cell Biology 150: 1507-1513.
[19]Kandaswami C, Lee LT, Lee PP, Hwang JJ, Ke FC, Huang YT, Lee MT (2005). The antitumor activities of flavonoids. In Vivo 19: 895-909.
[20]Kaufmann SH, Earnshaw WC (2000). Induction of apoptosis by cancer chemotherapy. Experimental Cell Research 256: 42-49.
[21]Klionsky DJ, Meijer AJ, Codogno P, Neufeld TP, Scott RC (2005). Autophagy and p70S6 kinase. Autophagy 1(1): 59-61.
[22]Kong AN, Yu R, Hebbar V, Chen C, Owuor E, Hu R, Ee R, Mandlekar S (2001). Signal transduction events elicited by cancer prevention compounds. Mutation Research 480-481: 231-241.
[23]Levine B, Kroemer G (2008). Autophagy in the pathogenesis of disease. Cell 132: 27-42.
[24]Li J, Hou N, Faried A, Tsutsumi S, Kuwano H (2010). Inhibition of autophagy augments 5-fluorouracil chemotherapy in human colon cancer in vitro and in vivo model. European journal of cancer 46: 1900-1909.
[25]Lin AS, Chang FR, Wu CC, Liaw CC, Wu YC (2005). New cytotoxic flavonoids from thelypteris torresiana. Planta Medica 71(9): 867-870.
[26]Lin HH, Chen JH, Huang CC, Wang CJ (2007). Apoptotic effect of 3, 4-dihydroxybenzoic acid on human gastric carcinoma cells involving JNK/p38 MAPK signaling activation. International Journal of Cancer 120(11): 2306-2316.
[27]Liu H, Xiao Y, Xiong C, Wei A, Ruan J (2011). Apoptosis induced by a new flavonoid in human hepatoma HepG2 cells involves reactive oxygen species-mediated mitochondrial dysfunction and MAPK actication. European Journal of Pharmacology 654(3): 209-216.
[28]Macfarlane M, Cohen GM, Dickens M (2000). JNK (c-Jun N-terminal Kinase) and p38 activation in receptor-mediated and chemically-induced apoptosis of T-cells: differential requirements for caspase activation. The Biochemical Journal 348: 93-101.
[29]Mclean K, Vandeven NA, Sorenson DR, Daudi S, Liu JR (2009). The HIV protease inhibitor saquinavir induces endoplasmic reticulum stress, autophagy, and apoptosis in ovarian cancer cells. Gynecologic Oncology 112: 623-630.
[30]Nicholson DW, Thornberry NA (1997). Caspases: killer proteases. Trends in Biochemical sciences 22(8): 299-306.
[31]O’Donovan TR, O’sullivan GC, Mckenna SL (2011). Induction of autophagy by drug-resistant esophageal cancer cells promotes their survival and recovery following treatment with chemotherapeutics. Autophagy 7(5): 1-16.
[32]Olson JM, Hallahan AR (2004). p38 MAP kinase: a convergence point in cancer therapy. TRENDS in Molecular Medicine 10(3).
[33]Ooi KL, Muhammad TST, Sulaiman SF (2010). Growth arrest and induction of apoptotic and non-apoptotic programmed cell death by, Physalis minima L. chloroform extract in human ovarian carcinoma Caov-3 cells. Journal of Ethnopharmacology 128: 92-99.
[34]Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkan FH, Hillman GG (2006). Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6: 107-117.
[35]Rampone B, Schiavone B, Martino A, Confuorto G (2010). Current role of hyperthermic intraperitoneal chemotherapy in the reatment of peritoneal carcinomatosis from colorectal cancer. World J Gastroenterol 16(11): 1299-1302.
[36]Ren W, Qiao Z, Wang H, Zhu L, Zhang L (2003). Flavonoids: Promising Anticancer Agents. Medicinal Research Reviews 23(4): 519-534.
[37]Rubio S, Quintana J, Eiroa JL, Triana J, Estevez F (2007). Acetyl derivative of quercetin 3-methyl ether-induced cell death in human leukemia cells is amplified by the inhibition ERK. Carcinogenesis 28(10): 2105-2113.
[38]Sanchez MJ, Martinez C, Nieto A, Castellsaque X, Quintana MJ, Bosch FX, Munoz N, Herrero R, Franceschi S (2003). Oral and oropharyngeal cancer in spain: influence of dietary patterns. European Journal of Cancer Prevention 12(1): 49-56.
[39]Sarkar FH, Li Y (2004). Cell signaling pathways altered by natural chemopreventive agents. Mutation Research 555: 53-64.
[40]Schwarz M, Navarro MAA, Gross A (2007). Mitochondrial carriers and pores: key regulators of the mitochondrial apoptotic program? Apoptosis 12: 869-876.
[41]Sen S (1992). Programmed cell death: concept, mechanism and control. Biological Reviews of the Cambridge Philosophical Society 67(3): 287-319.
[42]Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, Mccubrey JA (2004). JAK/STAT, Raf/MEK/ERK, PI3K/AKT and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18: 189-218.
[43]Tafani M, Schito L, Anwar T, Indelicato M, Sale P, Vito MD, Morgante E, Beraldi R, Makovec F, Letari O, Caselli G, Spadafora C, Pucci B, Russo MA (2008). Induction of autophagic cell death by a novel molecule is increased by hypoxia. Autophagy 4(8): 1042-1053.
[44]Timmer T, Vries EGE, Jong S (2002). Fas receptor-mediated apoptosis: a clinical application? Journal of Pathology 196: 125-134.
[45]Wu YT, Tan HL, Shui G, Bauvy C, Huang Q, Wenk MR, Ong CN, Codogno P, Shen HM (2010). Dual role of 3-Methyladenine in modulation of autophagy via different temporal patterns of inhibition on classⅠ and Ⅲ phosphoinositide 3-kinase. The Journal of Biological Chemistry 285(14): 10850-10861.
[46]Yoshinmori T (2004). Autophagy: a regulated bulk degradation process inside cells. Biochemical and Biophysical Research Communications 313(2): 453-458.
[47]Zoring M, Hueber AO, Baum W, Evan G (2001). Apoptosis regulators and their role in tumorigenesis. Biochimica et Biophysica Acta 1551: F1-F37.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 彭淑華(1997)。台灣地區受虐婦女專業整合服務現況之探討─社會福利機構工作人員的觀點。社區發展季刊,79,26-57。
2. 林曉凌、呂碧鴻(2000)。如何進行家庭功能評估。當代醫學,27(7),頁536-540。
3. 陳江水(2003)。談後現代主義對當前教育的啟示。師說,176,頁35-40。
4. 連廷嘉(2004)。網路諮商之定位及其相關倫理議題探討。諮商與輔導,219,頁30-33。
5. 許春金、周文勇、蔡田木(1996)。男性與女性少年偏差行為及其成因差異之實證研究。犯罪學期刊,第二期,頁1-14。
6. 張華葆(1993)。歷史學與社會學的交錯又歷史社會學之興起。東海學報,34,463-475。
7. 周新富(1999)。促進群性發展的教學法。教育資料文摘,252,頁151-169。
8. 李露芳(2003)。教師信念研究回顧。景女學報,3,頁213-223。
9. 宋根瑜(1981)。父母管教態度與少年犯罪。警學叢刊,12,頁171-176。
10. 吳宜貞(2002)。家庭環境因素對兒童閱讀能力影響之探討。教育心理學報,34(1),頁1-19.
11. 林惠雅(1995)。父母教養方式和子女行為之探討。社區發展季刊,72,頁41-47。
12. 2. 顏澤宇,曾俊豪,“LCD面板雷射切割技術發展現況與趨勢”,工業技術研究院機械所,機械工業雜誌,第270期(2005)。
13. 蘇素美 (1993)。刺激尋求動機、親子關係、學校環境知覺與國中生偏差行為關係之研究。中華輔導學報,1,90-130。
14. 羅國英(1995)。家庭研究中的測量問題─文獻探討。東吳社會工作學報,第一期,頁37-90。
15. 賴保禎(1995)。犯罪少年的親子關係之研究。空大生活科學學報(1),1-23。