|
[1] Ahmed, G. P., and P. Daly, \Finite-element method for inhomogineous waveguides," Inst. Elec. Eng. Proc.-J, vol. 116, pp. 1661{1664, 1969. [2] Ansbro, A. P., and I. Montrosset, \Vectorial finite difference scheme for isotropic dielectric waveguidesL transverse electric field prepresentation," Inst. Elec. Eng. Proc-J., vol. 140, pp. 253-259, 1993. [3] B¶erenger, J.-P., A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., vol. 114, pp. 185{200, 1994. [4] Bierwirth, K., N. Schulz, and F. Arndt, Finite-difference analysis of rectangular dielectric waveguides by a new finite difference method," J. Lightwave Technol., vol. 34, pp. 1104{1113, 1986. [5] Birks, T. A., P. J. Roberts, P. St. J. Russell, D. M. Atkin, and T. J. Shepherd, Full 2-D photonic bandgaps in silica/air structures," Electron. Lett., vol. 31, pp. 1941-1943, 1995. [6] Birks, T. A., J. C. Knight, and P. St. J. Russell, Endlessly single-mode photonic crystal fiber," Opt. Lett., vol. 22, pp. 961{963, 1997. [7] Bodewig, E., Matrix Calculus. Amsterdam: North Holland Pub. Co., 1956. [8] Brechet, F., J. Marcou, D. Pagnoux, and P. Roy, Complete analysis of the characteristics of propagation into photonic crystal fibers, by the finite element method," Opt. Fiber Technol., vol. 6, pp. 181-191, 2000. [9] Brixner, B., Refractive-index interpolation for fused silica," J. Opt.Soc. Amer., vol. 57, pp. 674-676, 1967. [10] Broderick, N. G. R., T. M. Monro, P. J. Bennett, and D. J. Richardson, Nonlinearity in holey optical fibers: measurement and future opportunities," Opt. Lett., vol. 24, pp. 1395-1397, 1999. [11] Burden, R. L., and J. D. Faires, Numerical Analysis. Boston, MA: PWSKENT, 1989. [12] Cendes, Z. J., and P. Silvester, Numerical solution of dielectric loaded waveguides: I-Finite-Element analysis," IEEE Trans. Microwave Theory Tech., vol. 18, pp. 1124-1131, 1970. [13] Chew, W. C., and W. H. Weedon, A 3D perfectly matched medium from modified Maxwell''s equations with stretched coordinates," Mi- crowave Opt. Technol. Lett., vol. 7, pp. 599-604, 1994. [14] Chiang, Y. C., Y. P. Chiou, and H. C. Chang, Improved full-vectorial finite-difference mode solver for optical waveguides with step-index profiles," J. Lightwave Technol., vol. 20, pp. 1609-1618, 2002. [15] Chiou, Y. P., Y. C. Chiang, and H. C. Chang, Improved three-point formulas considering the interface conditions in the finite-difference analysis of step-index optical devices," J. Lightwave Technol., vol. 18, pp. 243-251, 2000. [16] Chung, Y., and N. Dagli, \Analysis of z-invariant and z-variant semi- conductor rib waveguides by explict finite difference beam propagation method with nonuniform mesh configuration," IEEE J. Quantum Electron., vol. 27, pp. 2296-2305, 1991. [17] Deng, J.-J., and Y.-T. Huang, A novel hybrid coupler based on antiresonant reflecting optical waveguides," J. Lightwave Technol., vol. 16, pp. 1062-1068, 1998. [18] Dong, H., A. Chronopoulos, and J. Zou, Vectorial integrated finite- difference analysis of dielectric waveguides," J. Lightwave Technol., vol. 11, pp. 1559-1564, 1993. [19] Dridi, K. H., J. S. Hesthaven, and A. Ditkowski, Staircase-free finite- difference time-domain formulation for general materials in complex geometries," IEEE Trans. Antennas Propagat., vol. 49, pp. 749-756, 2001. [20] Duguay, M. A., Y. Kokubun, and T. L. Koch, Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures," Appl. Phys. Lett., vol. 49, pp. 13-15, 1986. [21] Ferrando, A., E. Silvestre, J. J. Miret, P. Andr¶es, and M. V. Andr¶es, Full-vector analysis of a realistic photonic crystal fiber," Opt. Lett., vol. 24, pp. 276-278, 1999. [22] Ferrando, A., E. Silvestre, J. J. Miret, and P. Andr¶es, Nearly zero ultraflattened dispersion in photonic crystal fibers," Opt. Lett., vol. 25, pp. 790-792, 2000. [23] Gander, M. J., R. McBride, J. D. C. Jones, D. Mogilevtsev, T. A. Birks, J. C. Knight, and P. St. J. Russell, Experimental measurement of group velocity dispersion in photonic crystal fibres," Electron. Lett., vol. 35, pp. 63-65, 1999. [24] Hadley, G. R., Transparent boundary condition for the beam propagation method," IEEE J. Quantum Electron., vol. 28, pp. 963-970, 1992. [25] Hadley, G. R., and R. E. Smith, Full-vector waveguide modeling using an iterative finite-difference method with transparent boundary conditions," J. Lightwave Technol., vol. 13, pp. 465-469, 1995. [26] Hadley, G. R., High-accuracy finite-difference equations for dielectric waveguide analysis I: Uniform regions and dielectric interfaces," J. Light- wave Technol., vol. 20, pp. 1210-1218, 2002a. [27] Hadley, G. R., High-accuracy finite-difference equations for dielectric waveguide analysis II: Dielectric corners," J. Lightwave Technol., vol. 20, pp. 1219-1231, 2002b. [28] Hansen, T. P., J. Broeng, S. E. B. Libori, E. Knudsen, A. Bjarklev, J. R. Jensen, and H. Simonsen, Highly birefringent index-guiding photonic crystal fibers," IEEE Photon. Technol. Lett., vol. 13, pp. 588-590 ,2001. [29] Hasegawa, T., E. Sasaoka, M. Onishi, M. Nishimura, Y. Tsuji, and M. Koshiba, Hole-assisted lightguide fiber for large anomalous dispersion and low optical loss," Opt. Express, vol. 9, pp. 681-686, 2001. [30] Huang, W. P., M. Shubair, A. Nathan, and Y. L. Chow, The modal Characteristics of ARROW structures," J. Lightwave Technol., vol. 10, pp. 1015-1022, 1992. [31] Itoh, T. ed., Numerical Techniques for Microwave and Millimeter-Wave Passive Structure. New York: Wiley, 1989. [32] Jennings, A., Matrix Computation for Engineers and Scientists. New York: Wiley, 1977. [33] Jiang, W., J. Chrostowski, and M. Fontaine, Analysis of ARROW waveguides," Opt. Commun., vol. 72, pp. 180-185, 1989. [34] Knight, J. C., T. A. Birks, P. St. J. Russell, and D. M. Atkin, All-silica single-mode optical fiber with photonic crystal cladding," Opt. Lett., vol. 21, pp. 1547-549, 1996. [35] Knight, J. C., J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, Anomalous dispersion in photonic crystal fiber," IEEE Photon. Technol. Lett. vol. 12, pp. 807-809, 2000. [36] Koshiba, M, and K. Inoue, Vectorial finite-element formulation without spurious modes for dielectric waveguides," Electron. Lett., vol. 20, pp. 409-410, 1984. [37] Kubica, J., D. Uttamchandani, and B. Culshaw, Modal propagation within ARROW waveguides," Opt. Commun., vol. 78, pp. 133-136, 1990. [38] Kubica, J., J. Gazecki, and G. K. Reeves, Multimode operation of ARROW waveguides," Opt. Commun., vol. 102, pp. 217-220, 1993. [39] Kukubun, Y., T. Baba, and T. Sakaki, Low-loss antiresonant reflecting optical waveguide on Si substrate in visible-wavelength region," Electron. Lett., vol. 22, pp. 892-893, 1986. [40] Lee, J. F., D. K. Sun, and Z. J. Cendes, Full-wave analysis of dielec- tricwaveguides using tangential vector finite elememts," IEEE Trans. Microwave Theory Tech., vol. 39, pp. 1262-1271, 1991. [41] Lizier, J. T., and G. E. Town, Splice losses in holey optical fibers," IEEE Photon. Technol. Lett., vol. 13, pp. 794-96, 2001. [42] LÄusse, P., P. Stuwe, J. SchÄule, and H.-G. Unger, Analysis of vectorial mode fields in optical waveguides by a new finite difference method," J. Lightwave Technol., vol. 12, pp. 487{494, 1994. [43] Mitchell, A. R., and D. F. Griffiths, The Finite Difference Method in Partical Differential Equations. New York: Wiley, 1987. [44] Mogilevtsev, D., T. A. Birks, and P. St. J. Russell, Localized function method for modeling defect modes in 2-D photonic crystals," J. Lightwave Technol., vol. 17, pp. 2078-2081, 1999. [45] Monro, T. M., P. J. Bennett, N. G. R. Broderick, and D. J. Richardson, Holey fibers with random cladding distributions," Opt. Lett., vol. 25, pp. 206-208, 2000. [46] Mortensen, N. A. Effective area of photonic crystal fibers," Opt. Ex- press., vol. 10, pp. 341-348, 2002. [47] Pekel, ÄU., and R. Mittra, \A ‾nite-element method frequency-domain application of the perfectly matched layer (PML) concept," Microwave Opt. Technol. Lett., vol. 9, pp. 117-122, 1995. [48] Rahman, B. M. A., and J. B. Davies, Finite-element analysis of optical and microwave waveguide problems," IEEE. Trans. Microwvae Theory Tech., vol. 32, pp. 20-28, 1984. [49] Sacks, Z. S., D. M. Kinsland, R. Lee, and J. F. Lee,, A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., vol. 43, pp. 1460-1463, 1995. [50] Saitoh, K., and M. Koshiba, Full-Vectorial Imaginary-Distance Beam Propagation Method Based on a Finite Element Scheme: Application to Photonic Crystal Fibers," IEEE J. Quantum Electron,, vol. 38, pp. 927-933, 2002. [51] Stern, M. S., P. C. Kendall, and P. W. A. Mcllroy, \Analysis of the spectral index method for vector modes of rib waveguides," Inst. Elec. Eng. Proc.-J., vol. 137, pp. 21-26, 1990. [52] Svedin, Jan A. M., \A modified finite-element method for dielectric waveguides using an asymptotically correct approximation on infinite elements," IEEE Tans. Microwave Theory Tech., vol. 39, pp. 258-266, 1991. [53] Taflove, A., and S. C. Hagness, Computational Electromagnetics: The Finite Difference Time Domain Method, Second Edition,. Boston, MA: Artech House, 2000. [54] Vandenbulcke, P., and P. E. Lagasse, Eigenmode analysis of anisotropic optical fibers or integrated optical waveguides," Electron. Lett., vol.12, pp. 120-121, 1976. [55] Xu, C. L., W. P. Huang, M. S. Stern, and S. K. Chaudhuri, Full- vectorial mode calculations by finite difference method," Inst. Elec. Eng. Proc.-J., vol. 141, pp. 281-286, 1994. [56] Yu, C.-P., and H.-C. Chang, Finite Difference Modal Analysis of Photonic Crystal Fibers," Proc. 2001 Progress in Electromagnetics Research Symposium (PIERS 2001), p. 432, Osaka, Japan, July 18{22, 2001. [57] Zhu, Z., and T. G. Brown, Multipole analysis of hole-assisted optical fibers," Opt. Commun., vol. 206, pp. 333-339, 2002a. [58] Zhu, Z., and T. G. Brown, Full-vectorial finite-difference analysis of mi- crostructured optical fibers," Opt. Express, vol. 10, pp. 853-864, 2002b.
|