跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 21:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃季修
研究生(外文):Ji-Xiu Huang
論文名稱:以溶凝膠法合成Cu、Ga、In摻雜於氧化鋅及其製作於薄膜電晶體之特性探討
論文名稱(外文):Investigation of Cu, Ga, In-doped ZnO films used in Thin Film Transistors by sol-gel synthesis methods
指導教授:廖朝光
指導教授(外文):Leo Chau-Kuang Liau
口試委員:劉維昇胡哲嘉
口試委員(外文):Wei-Sheng LiuChe-Chia Hu
口試日期:2017-06-08
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:123
中文關鍵詞:溶凝膠法氧化鋅金屬離子摻雜能態分佈薄膜電晶體
外文關鍵詞:Sol gel methodZnOmetal-ion dopingenergy levelthin film transistor.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用溶凝膠法合成金屬離子摻雜ZnO薄膜,如Cu-doped ZnO (CZO), In-doped ZnO (IZO), Ga-doped ZnO (GZO), In/Ga-doped ZnO (IGZO),將此薄膜製作於薄膜電晶體(thin film transistor, TFT)元件,探討金屬離子對ZnO與TFT特性的影響。金屬離子摻雜ZnO樣品是以低溫溶凝膠法,在60℃時以不同濃度的金屬離子,控制溶液的pH值下合成出ZnO摻雜金屬離子之樣品,並以分析儀器分析樣品的特性。結果得知,摻雜不同金屬離子的ZnO樣品,會造成ZnO結晶結構的扭曲,且隨著金屬摻雜濃度增高,晶粒大小則隨之減小。ZnO摻雜金屬離子後,其電阻率(resistivity)和載子遷移率(mobility)有下降之趨勢,但是載子濃度則有升高之趨勢。由於摻雜金屬影響ZnO結晶結構,以致ZnO的能態分佈,如導帶(Conduction band, Ec)和價帶( Valance band, Ev)會受到不同程度的影響,能隙(Energy gap, Eg)也進而(因此)受到改變。此外,將此樣品進一步製作於TFT的導電通道上,發現不同金屬離子摻雜的ZnO薄膜,對TFT元件的特性,如臨界電壓(threshold voltage, Vth)、電流開關比(Ion/off)、與次臨界擺幅(subthreshold swing, SS)會有明顯的影響。
In this study, we investigated the properties of Cu-doped ZnO(CZO) , In-doped ZnO (IZO), Ga-doped ZnO (GZO), and In- and Ga-doped ZnO (IGZO) crystals, used for the fabrication of thin film transistor (TFT). These Metal-doped ZnO samples with different dopant compositions were prepared by sol-gel synthesis at 60 oC and characterized. Results showed that the crystal sturture of the doped ZnO was distorted and the grain sizes of the crystals decreased in the presence of the metal ion dopants. The resistivity and mobility of all the doped ZnO samples decreased, but the carrier concentration increased in the presence of the metals. The energy levels of all crystals, such as conduction band (Ec) and valence band (Ev), were estimated and varied depending on the presence of different dopants in ZnO. The bandgap energy (Eg) of metal-doped ZnO was varied with respect to ZnO because of the variations of the energy levels. The metal-doped ZnO films, fabricated in TFT device, affected the device performance, i,e. on/off ratio (Ion/off), threshold voltage (Vth), and subthreshold swing (SS), was also affected by the presence of the dopants.
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第二章 理論基礎與文獻回顧 3
2.1薄膜電晶體(Thin Film Transistor)的介紹 3
2.2薄膜電晶體半導體材料 5
2.3金屬離子摻雜氧化鋅 6
2.4製作摻雜金屬離子的氧化鋅 6
第三章 實驗方法與分析 12
3.1製備CZO、GZO、IZO、IGZO 12
3.2薄膜電晶體製備 14
3.3樣品量測 15
3.3.1薄膜電晶體量測 15
3.3.2線性伏安法測定 16
3.4實驗藥品 21
3.5實驗與分析儀器 23
第四章 結果與討論 30
4.1.1醋酸鋅醋酸銅滴定曲線分析 31
4.1.2 CZO樣品的UV-Vis光譜分析 35
4.1.3 CZO樣品的的UV-Vis光譜分析 38
4.1.4 CZO樣品的的能態分析 40
4.1.5 CZO樣品的XRD分析 45
4.1.6 CZO樣品的表面結構分析 51
4.1.7 CZO樣品的電性分析 52
4.2氧化鋅摻雜鎵和銦 58
4.2.1硝酸鋅硝酸鎵硝酸銦溶液滴定曲線分析 58
4.2.2 GZO和IZO樣品的UV-Vis光譜分析 61
4.2.3 GZO和IZO樣品的能態分析 64
4.2.4 GZO和IZO樣品的XRD分析 69
4.2.5 GZO和IZO樣品的表面結構分析 75
4.2.6 GZO和IZO樣品的電性分析 77
4.2.7 GZO和IZO樣品的光至螢光譜分析 82
4.3氧化鋅共摻雜鎵銦 84
4.3.1 IGZO樣品的UV-Vis光譜分析 84
4.3.2 IGZO樣品的能態分析 87
4.3.4 IGZO樣品的表面結構分析 96
4.3.5 IGZO樣品的電性分析 98
4.3.6 IGZO樣品的光至螢光譜分析 102
4.4薄膜電晶體分析 103
4.4.1薄膜電晶體分析 103
第五章 結論 115
參考文獻 116

[1] J. R. Ligenza, W. G. Spitzer, “The mechanisms for silicon oxidation in steam and oxygen”, Journal of Physics and Chemistry of Solids, 14(0), (1960) 131-136.
[2] 李嗣涔, 管傑雄, 孫台平,”半導體元件物理”, 三民書局 (1995)
W. Shockley, "A Unipolar "Field-Effect" Transistor", Proceedings of the IRE, (11), (1952) 1365-1376.
[3] 顧鴻壽,周本達,陳密,張德安, 樊雨心,周宜衡”光電平面顯示器基本概論” ,高立圖書有限公司(2002)
[4] L. Zhang, J. Li, X. W. Jiang, Z. L. Zhang, “High-performance ZnO thin film transistors with sputtering SiO2/Ta2O5/SiO2 multilayer gate dielectric”, Thin Solid Films, 518, (2010) 6130-6133.
[5] K. W. Cho, M. G. Kang, S. M. Oh, C. Y. Kang, Y. P. Lee, S. J. Yoon, “Low voltage ZnO thin-film transistors with Ti-substituted BZN gate insulator for flexible electronics”, Thin Solid Films, 518, (2010) 6277-6279.
[6] H . Cerdeira, et al.  “New procedure for the extraction of basic aSi:H TFT model parameters in the linear and saturation regions”,Solid-State Electronics,45(7) , (2001) 1077-1080.
[7] H . Gleskova, S. Wagner,“a-Si:H thin film transistors after very high strain”,Journal of Non-Crystalline Solids,Vol.266-269 B, p. (2000) 1320-1324.
[8] T. Shimoda, Y. Matsuki, M. Furusawa, T. Aoki, I. Yudasaka1, H.Tanaka, H. Iwasawa, D. Wang, M. Miyasaka and Y. Takeuch, “Solution-processed silicon films and transistors” ,Nature 440, (2006) 783-786.
[9] R. L. Hoffman, B. J. Norris, and J. F. Wager , “ ZnO-based transparent thin-film transistors” , 82, (2003) 733.
[10] D. K. Ngwashi, R. B. M. Cross, S. Paul, “Electrically air-stable ZnO produced by reactive RF magnetron sputtering for Thin-Film Transistor (TFT) applications”, in Materials Research Society Symposium Proceedings (2010).
[11] J. Phillips , J. Jeffrey, Siddiqui “Fabrication and Comparison of ZnO Thin Film Transistors with Various Gate Insulators”, Electrical Engineering, The Cooper Union for the Advancement of Science and Art (2006)
[12] C. Y. Lee, M. Y. Lin, W. H. Wu, J. Y. Wang, Y. Chou, W. F. Su, Y. F. Chen, C. F. Lin, “Flexible ZnO transparent thin-film transistors by a solution based process at various solution concentrations,” Semicond. Sci. Technol. 25, (2010) 105008 (5pp).
[13] L. Bixia, F. Zhuxi, J. Yunbo and L. Guihong, “Defect Photoluminescence of Undoping ZnO Films and ItsDependence on Annealing Conditions, ” Journal of The Electrochemical Society, (2001) G110-G113.
[14] M. Raja, N. Muthukumarasamy, D. Velauthapillai, R. Balasundraprabhu, S. Agilan , T. S. Senthil, Quantum dot sensitized aluminium doped and copper doped ZnO nanostructure based solar cells, J Mater Sci: Mater Electron. 25 (2014) 5035–5040.
[15] A. C. Saritha, M. R. Shijeesh, L. S. Vikas, R. R. Prabhu, M. K. Jayara, Growth and characterization of p-ZnO:Cu thin film and its homojunction application, J. Appl. Phys. 49 (2016) 295105.
[16] P. K. Sharma, M. Kumar, A. C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs, J Nanopart. Res. 13 (2011) 1629–1637.
[17] H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, F. R. Zhu, Nano-crystalline Cu-doped ZnO thin film gas sensor for CO, Sens. Actuators. B 115 (2006) 247–251.
[18] H. G. Pozos, E. J .L. Arredondo, A. M. Álvarez, R. Biswal , Y. Kudriavtsev, J. V. Pérez , Y. L. C. Moreno, M. D. L. L. O. Amador, Cu-Doped ZnO Thin Films Deposited by a Sol-Gel Process Using Two Copper Precursors: Gas-Sensing Performance in a Propane Atmosphere, Mater.9 (2016) 87–103.
[19] M. Fu, Y. Li, S. Wu, P. Lu, J. Liu, and F. Dong, Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles, Appl. Surf. Sci. 258 (2011) 1587–1591.
[20] H. Bai, Z. Liu, D. D. Sun, Hierarchical ZnO/Cu‘‘corn-like’’ materials with high photodegradation and antibacterial capability under visible light, Phys. Chem. Chem. Phys.13 (2011) 6205–6210.
[21] P. Jongnavakit, P. Amornpitoksuk, S. Suwanboon, N. Ndiege, Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method, Appl. Surf. Sci. 258 (2012) 8192–8198.
[22] M. Suja, S.B. Bashar, M.M. Morshed, J. Liu, Realization of Cu-Doped p‑Type ZnO Thin Films by Molecular Beam Epitaxy, ACS Appl. Mater. Interfaces 7 (2015) 8894−8899.
[23] S. Singhal, J. Kaur, T. Namgyal, R. Sharma, Cu-doped ZnO nanoparticles: Synthesis, structural and electrical properties, Phys. B 407 (2012) 1223–1226.
[24] T. M. Hammad, J. K. Salem, R. G. Harrison, R. Hempelmann, N. K. Hejazy, Optical and magnetic properties of Cu-doped ZnO nanoparticles, Mater. Electron. 24 (2013) 2846–2852.
[25] L. C. Chen, C. A. Hiseh, and X. Zhang, Electrical Properties of CZO Films Prepared by Ultrasonic Spray Pyrolysis, Mater. 7 (2014) 7304–7313.
[26] U. P. S. Gahlaut, V. Kumar, R. K. Pandey, Y. C. Goswami, Highly luminescent ultra small Cu doped ZnO nanostructures grownby ultrasonicated sol–gel route, Optik 127 (2016) 4292–4295.
[27] C. Abinaya , M. Marikkannan , M. Manikandan , J. Mayandi , P. Suresh, V. Shanmugaiah , C. Ekstrum , J. M. Pearce, Structural and optical characterization and efficacy of hydrothermal synthesized Cu and Ag doped zinc oxide nanoplate bactericides , Mater. Chem. Phys. 184 (2016) 1–11.
[28] C. H. Xia, F. Wang, C. L. Hu, Theoretical and experimental studies on electronic structure and optical properties of Cu-doped ZnO, J. Alloys. Comp. 589 (2014) 604–608.
[29] Y. Darma, T.S. Herng, R. Marlina, R. Fauziah, and J. Ding, Interplay of Cu and oxygen vacancy in optical transitions and screening of excitons in ZnO:Cu films, Appl. Phys. Lett. 104 (2014) 081–922.
[30] W. L. Ong, H. Huang, J. Xiao, K. Zeng, and G. W. Ho, Tuning of multifunctional Cu-doped ZnO films and nanowires for enhanced piezo/ferroelectric-like and gas/photoresponse properties, Nanoscale 6 (2014), 1680–1690.
[31] K. Joshi, M. Rawat, S. K. Gautam, R. C. Singh, R. C. Ramola, Band gap widening and narrowing in Cu-doped ZnO thin films, J. Appl. Phys. 68 (2016) 252–258.
[32] T. Saidani, M. Zaabat, M. S. Aida, A. Benaboud, S. Benzitouni, A. Boudine, Influence of annealing temperatureon the structural, morphological and optical properties of Cu doped ZnO thin films deposited by the sol–gel method, Superlattice. Microst. 75 (2014) 47–53.
[33] H. Yuan, M. Xu, Q. Z. Huang, Effects of pH of the precursor sol on structural and optical properties of Cu-doped ZnO thin films, J. Alloys. Comp. 616 (2014) 401–407.
[34] M. Caglar, S. Ilican, Y. Caglar ,Influence of dopant concentration on the optical properties of ZnO: In films by sol-gel method. Thin Solid Films 517 (2009) 5023−5028.
[35] L. M. Li, C. C. Li, J. Zhang, Z. F. Zou, S. B Du, H. C Yu, Y. G. Wang, Band gap narrowing and ethanol sensing properties of In-doped ZnO nanowires. Nanotechnol. 18 (2007)
[36] S. El. Yamny, M. A. Rafea, Preparation and characterization of ZnO:In transparent conductor by low cost dip coating technique. J. Mod. Phys. 3 (2012) 1060−1069.
[37] M. Häming, A. Issanin, D. Walker, H Seggern. W. Jägermann, K. Bonrad, Interrelation between chemical, electronic, and charge transport properties of solution-processed Indium−Zinc oxide semiconductor thin films, J. Phys. Chem. C .120 (2016) 7467−7475.
[38] Z. F.Liu, F. K. Shan, J. Y. Sohn, G. Y. Kim, X. Y. Li, Y. S. Yu,Photoluminescence of ZnO:Ga Thin Films Fabricated by Pulsed Laser Deposition Technique. J. Electroceram. 13 (2004) 183−187.
[39] A. Kalaivanan, S. Perumal, N. Neelalkanda Pillai, K. R. Murali,Characteristics of GZO thin films deposited by sol-gel dip coating. Mater. Sci. Semicond. Process. 14 (2001) 94−96.
[40] C. Y. Tasy, C. W. Wu, C. M. Lei, F. S. Chen, C. K. Lin, Microstructural and optical properties of Ga-doped ZnO semiconductor thin films prepared by sol-gel process. Thin Solid Films. 519 (2010) 1516−1520.
[41] M. Hjiri, R. Dhahri, L. El Mir, A. Bonavita, N. Donato, S. G. Leonardi, G. Neri, CO sensing properties of Ga-doped ZnO prepared by sol-gel route. J. Alloys Compd. 634 (2015) 187−192.
[42] T. Kamiya, K. Nomura, H. Hosono, Present status if amorphous In-Ga-Zn-O thin-film transistors. Sci. Technol. Adv. Mater. 11 (2010).
[43] J.S. Park, H. Kim, I. D. Kim, Overview of electroceramic materials for oxide semiconductor thin film transistors. J. Electroceram. 32 (2014) 117−140.
[44] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono,Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Natrue. 432 (2004) 488−492.
[45] K. Lee, K. Nomura, H. Yanagi, T. Kamiya, Hosono, H. Photovoltaic properties of n-type amorphous In-Ga-Zn-O and p-type single crystal Si heterojunction solar cell: Effect of Ga content. Thin Solid Films. 520 (2012) 3808−3812.
[46] C. Y. Chung, B. Zhu, R. G. Greene, M. O. Thompson, D. G. Ast, High mobility, dual layer, c-axis aligned crystalline/amorphous IGZO thin film transistor. Appl. Phys. Lett. 107 (2015).
[47] J. Park, C. S. Kim, B. D. Ahn, H. Ryu, H. S. Kim, Flexible In-Ga-Zn-O thin-film transistors fabricated on polyimide substrates and mechanically induced instability under negative bias illumination stress. J. Electroceram. 35 (2015) 106−110.
[48] G. H. Kim, B. D. Ahn, S. H. Shin, W. H. Jeong,; H. J. Kim, H. J. Kim,Effect of indium composition ratio on solution-processed nanocrytstalline InGaZnO thin film transistors. Appl. Phys. Lett. 94 (2009) 233501.
[49] J. H. Lim, J. H. Shim, J. H. Choi, J. Joo, k. Park, H. Jeon, M. R. Jung, D. H. Kim, H. J. Lee, Solution-processed InGaZnO-Based thin film transistors for printed electronics applications. Appl. Phys. Lett. 96 (2009) 012108.
[50] Y. M. Kim, M.K. Han, J. I. Han, S. K. Park, Effect of Metallic Composition on Electrical Properties of Solution-Processed Indium-Gallium-Zinc-Oxide thin-film transistors. IEEE Trans. Electron Devices. 57 (2010) 1009−1014.
[51] C. Bae, D. Kim, S. Moon, T. Choi, Y. Kim, B. S. ;Kim, J. S. Lee, H. Shin, J. Moon, Aging dynamics of solution-processed amorphous oxide semiconductor field effect transistors. ACS Appl. Mater. 2 (2010) 626−632.
[52] S. K. Park, Y. H. Kim, J. I. Han, All solution-processed high-resolution bottom-contact transparent metal-oxide thin film transistor. J. Phys. D: Appl. Phys. 42 (2009).
[53] J. H. Choi, S. M. Hwang, C. M. Lee, J. C. Kim, G. C. Park, J. Joo, J. H. Lim,Effect of Ga content and sintering time on electrical properties of InGaZnO thin film transistors fabricated by sol–gel process. J. Cryst. Growth .326 (2011) 175−178.
[54] S. Jeong, J.Y. Lee, S. S. Lee, S.W. Oh,. H. H. Lee, Y. H. Seo, B. H. Ryu, Y. Choi, Chemically improved high performance printed indium gallium zinc oxide thin-film transisors. J. Mater. Chem. (21) 2011.
[55] C. Y. Tsay,T. Y. Yan, Solution processed amorphous InGaZnO semiconductor thin films and transistors. J. of phys. and Chem. of Solids .75 (2014) 142−147.
[56] R. A. Street, T. N. Ng, R. A. Lujan, Sol-gel solution-deposited InGaZnO thin film transistors. ACS Appl. Mater. 6 (2014) 4428−4437
[57] T. H. Chiang, B. S. Yeh, J. F. Wager,Amorphous IGZO thin-film transistors with ultrathin channel layers. IEEE Trans. Electron Devices . 62 (2015) 3692−3696
[58] X. Li, Q. Li, J. Zhang, Transparent amorphous Indiun-Gallium-Zinc-Oxygen thin film transistors using solution technology at low temperature. J. Sol-Gel Sci. Technol. 66 (2013) 497−503.
[59] N. Nimizuka, S. Yamazaki, Crystalline oxide semiconductor CAAC-IGZO. Wiley: New York, (2017).
[60] H. Hosono,“Ionic amorphous oxide semiconductors: Material design,carrier transport, and device application”, Journal of Non-Crystalline Solids, (2006) 851-858.
[61] A. l. CHEN, D. XU, X. Y. CHEN, W. Y. ZHANG, X. H. LIU, “Measurements of zinc oxide solubility in sodium hydroxide solution from 25 to 100 °C” , Trans. Nonferrous Met. Soc. (2012) 1513−1516.
[62] M. Wang,L Jiang, E. J. Kim, S. H. Hahnc, “Eletronic structure and optical properties of Zn(OH)2:LDA+U calculations and intensre yellow luminescence” ,RSC Advance,87496, (2015).
[63] Jim Lee ,A. J. Easteal, Allan, U. Pal,D. Bhattacharyya, Debes “Evolution of ZnO nanostrure in sol-gel sythesis” ,Current Appiled physics,792796 (2009).
[64] N.M. Mangan, R. E. Brandt, V Steinmann, R. Jaramillo, C. Yang, J. R. Poindexter, R. Chakraborty, H.H. Park, X. Zhao, R.G. Gordon, and T. Buonassisi, Framework to predict optimal buffer layer pairing for thin film solar cell absorbers: A case study for tin sulfide/zinc oxysulfide, J. Appl. Phys. 118 115102 (2015).
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊