跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/24 00:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張嘉珮
研究生(外文):Chang, Chia Pei
論文名稱:視訊物件之切割及其浮水印研究
論文名稱(外文):Object Segmentation and Watermarking for Video Coding
指導教授:貝蘇章
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:英文
論文頁數:103
中文關鍵詞:視訊切割視訊物件數位影像浮水印物件浮水印
外文關鍵詞:video segmentationvideo objectdigital image watermarkobject watermark
相關次數:
  • 被引用被引用:0
  • 點閱點閱:128
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  MPEG-4 是一種以影像內容為基礎(content-based)的視訊編碼標準,它的主要應用對象是傳輸速率較慢的廣播或窄頻網路。在此標準中,視訊影像以任意形狀的物件(object)為單位,各物件分別經過材質編碼(texture coding)及形狀編碼(shape coding)處理,傳送時依頻寬限制動態調整傳送內容。由於MPEG-4中的各物件獨立,使用者亦可將來源不同的數個物件合成新的視訊影片。
  本篇論文除了為MPEG-4中最重要的「視訊切割」(video segmentation)提出一套有效率的系統之外,也針對視訊物件的材質及形狀特性研究其浮水印,希望能有效保護視訊物件的智財權。
  我們提出以「變動偵測」(change detection)為基礎的視訊切割系統,輔以一些簡單的型態濾波器(morphological filters)和邏輯運算,加上背景資料的即時統計和更新,能有效切割出靜態背景中的移動物件。在物件浮水印部份,我們採用視覺密碼學,將浮水印藏在原影像的幾個位元平面裡,為物件材質加密;而針對物件的外形,我們提出一種新的浮水印技術,藉著更動物件輪廓,把浮水印資訊藏進物件輪廓的統計特性中。實驗結果顯示這兩種浮水印技術皆能確實應用在視訊物件編碼中,且能有效抵擋攻擊。

 MPEG-4 is a content-based video coding standard. It focuses on offering video storage and transmission over the channel at very low bit-rate. In MPEG-4 standard, the video is composed of many objects. Before transmitted, each object is coded through texture coding and shape coding individually. Users can synthesize a new video sequence with different objects at the receiver end.
 In this thesis, we develop a segmentation system and watermarking techniques for video objects. The proposed segmentation system is based on change detection. With some simple morphological filters and the statistical background information, the moving objects can be segmented out of static background efficiently. The texture watermark of video objects is embedded in the bit-planes of the image using visual threshold scheme. As to the shape watermark, we propose a new technique that modifies the object contour slightly and embeds the watermark in the statistical properties of the contour. Experimental results show the practicability and robustness of the proposed methods.

CHAPTER 1 INTRODUCTION 1
 1.1 Video Objects in MPEG-4
 1.2 Related Works
  1.2.1 Video Segmentation
  1.2.2 Digital Image Watermarking
 1.3 Organization of This Thesis
CHAPTER 2 VIDEO SEGMENTATION WITH STATIC BACKGROUND
 2.1 Introduction
 2.2 Change Detection Mask
  2.2.1 Change Detection
  2.2.2 Selective Erosion
  2.2.3 Scan and Fill
 2.3 Remove Uncovered Background
 2.4 Background Recovery
  2.4.1 Systematical Background Information
  2.4.2 Remove Shadows
 2.5 Experimental Results
CHAPTER 3 DIGITAL IMAGE WATERMARKING
 3.1 Introduction
 3.2 Watermarking on Still Images
  3.2.1 Watermarking in 2-D DFT Domain
  3.2.2 Attacks on the Watermark
 3.3 Watermarking on Object Texture
  3.3.1 Visual Cryptography
  3.3.2 Watermark Detection & Experimental Results
 3.4 Watermarking on Object Shape
  3.4.1 Watermark Embedding
  3.4.2 Embedding Techniques
  3.4.3 Watermark Detection
  3.4.4 Experimental Results
CHAPTER 4 CONCLUSION & FUTURE WORK
APPENDIX PROCESS OF 20 THREE-PIXEL PATTERNS

[1]Thomas Meier and King N. Ngan, “Video Segmentation for Content-Based Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 9, no. 8, pp. 1190-1203, Dec. 1999
[2]Yining Deng and B. S. Manjunath, “Unsupervised Segmentation of Color-Texture Region in Images and Video,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23 no. 8, pp. 800-810, Aug. 2001.
[3]Yining Deng, S. Kenny, M. S. Moore, and B. S. Manjunath, “Peer Group Filtering and Perceptual Color Image Quantization,” Proceedings of IEEE International Symposium on Circuits and Systems VLSI, vol. 4, pp. 21-24, Jun. 1999.
[4]Jianping Fan, Xingquan Zhu, and Lide Wu, “Automatic Model-Based Semantic Object Extraction Algorithm,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 11, no. 10, pp. 1073-1084, Oct. 2001.
[5]Munchurl Kim, J. G. Jeon, J. S. Kwak, M. H. Lee, and C. Ahn, “Moving Object Segmentation in Video Sequence by User Interaction and Automatic Object Tracking,” Image and Vision Computing 19, pp. 245-260, 2001.
[6]Hongzan Sun and Tieniu Tan, ”Spatial-temporal Segmentation for Video Surveillance,” Electronics Letters, vol. 37, no. 1, pp. 20-21, 4th Jan. 2001.
[7]Ioannis Kompatsiaris and Michael Gerassimos Strintzis, “Spatial-temporal Segmentation Tracking of Objects for Visualization of Videoconference Image Sequences,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no. 8, pp. 1388-1402, Dec. 2000.
[8]Luis Garrido, Albert Oliveras, and Philippe Salembier, “Motion Analysis of Image Sequences Using Connected Operations,”
[9]Emrullah Durucan, Touradj Ebrahimi, “Robust and Illumination Invariant Change Detection Based on Linear Dependence for Surveillance Application,” EUSIPCO, Tampere Finland, Sep. 2000.
[10]Shao-Yi Chien, Shyh-Yih Ma, and Liang-Gee Chen, “An Efficient Video Segmentation Algorithm for Real-time MPEG-4 Camera System,” 2000 IEEE International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS 2000), Honolulu, Hawaii, U.S.A., Nov. 2000.
[11]Thanarat Horprasert, David Harwood, Larry S. Davis. "A Robust Background Subtraction and Shadow Detection” Proc. ACCV 2000, Taipei, Taiwan, Jan. 2000.
[12]Fuhui Long, Dragan Feng, Hanchuan Peng, Wan-Chi Siu. "Extracting Semantic Video Objects" IEEE Computer Graphics & Applications, vol. 21, no. 1, January/February 2001.
[13]Thomas Meier, King N. Ngan. "Video Segmentation for Content-Based Coding" IEEE Transactions On Circuits And Systems For Video Technology, vol. 9, no. 8, pp.1190-1203, Dec. 1999.
[14]Gerhard C. Langelaar, Iwan Setyawan, and Reginald L. Lagendijk. “Watermarking Digital Image and Video Data, A State-of —The-Art Overview” IEEE Signal Processing Magazine, Sep. 2000.
[15]Vassilios Solachidis and Ioannis Pitas. “Circularly Symmetric Watermark Embedding in 2-D DFT Domain” IEEE Transactions On Image Processing, vol. 10, no. 11, pp1741-1753, Nov. 2001.
[16]Frank Hartung, and Martin Kutter, “Multimedia Watermarking Techniques,” Proceedings of the IEEE, vol. 87, no. 7, Jul. 1999.
[17]Wen-Nung Lie, Guo-Shiang Lin, and Ta-Chun Wang, “Digital Watermarking for Object-based Compressed Video,” Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS-2001), Sydney, Australia, pp. II-49-52.
[18]R. Schäfer. “MPEG-4: a multimedia compression standard for interactive applications and services” Electronics & Communication Engineering Journal, pp253-262, Dec. 1998.
[19]G. R. Blakley, “Safeguarding Cryptographic Key,” Proceedings of the National Computer Conference, 1979, American Federation of Information Processing Societies Proceedings, vol. 48, pp.86-106, 1979
[20]A. Shamir, “How to Share a Secret,“ Communications of the ACM, vol. 22, pp.612-613, 1979.
[21]G. Ateniese, C. Blundo, A. De Santis, D.R. Stinson, “Visual Cryptography for General Access Structure,” Information and Computation 129, pp. 86-106, 1996.
[22]T. Gevers, and A. W. M. Smeulders, “Color-based object recognition,” Pattern Recognition 32, pp. 453-464, 1999.
[23]T. Gevers and H.M.G. Stokman, "Classifying color transitions into shadow-geometry, illumination, highlight or material edges," International Conference on Image Processing, Vancouver, Canada, September 2000.
[24]E. Salvador, A. Cavallaro, and T. Ebrahimi, “Shadow Identification and Classification Using Invariant Color Models,” Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3,
pp. 1545-1548, 2001
[25]Y. B. Wang, Y. J. Wu, J. T. Hsieh, and M. C. Chen, “Digital Watermark with Wavelet Transform and Spread Spectrum Techniques”.
[26]S. C. Pei, and M. J. Hsu, “Two-dimensional Invariant Color Pattern Recognition Using a Complex Log Mapping Transform,” Optical Engineering vol. 32, no. 7, pp. 1616-1622, Jul. 1993.
[27]Joseph J. K., O Ruanaidh, and Thierry Pun, “Rotation, Scale, and Translation Invariant Spread Spectrum Digital Image Watermarking,” Elsevier Signal Processing 66 (1998) pp.307-317.
[28]George Wolberg, and Siavash Zokai, “Robust Image Registration Using Log-Polar Transform,” Proceedings of IEEE International Conference on Image Processing, Vancouver, Canada, Sep. 2000.
[29]A. Piva, F. Bartolini, V. Cappellini, and M. Barni, “Improving DFT Watermarking Robustness Through Optimum Detection and Synchronization,” Multimedia and Security Workshop at ACM Multimedia ’99, GMD Report 85, pp.65-69, Orlando, Florida, Oct. 1999.
[30]Paraskevi Bassia, Ioannis Pitas, and Nikos Nikolaidis, “Robust Audio Watermarking in the Time Domain,” IEEE Transactions on Multimedia, vol. 3, no. 2, pp. 232-241, Jun. 2001.
[31]Chun-Shien Lu and Hong-Yuan Mark Liao, “Video Object-based Watermarking: A Robust and Flipping Resilient Scheme,” Proceedings of IEEE International Conference on Image Processing, vol. 2, pp. 483-486, Oct. 2001.
[32]Bas P. and Macq B, “A New Video-object Watermarking Scheme Robust to Object Manipulation,” Proceedings of IEEE International Conference on Image Processing, vol.2, pp. 526-529, Oct. 2001.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 3. 尹章華,從消費權益論信用卡法律關係(下),司法周刊,第七九九期,二版,一九九六年,十月。
2. 3. 尹章華,從消費權益論信用卡法律關係(下),司法周刊,第七九九期,二版,一九九六年,十月。
3. 2. 尹章華,從消費權益論信用卡法律關係(上),司法周刊,第七九八期,二版,一九九六年,十月。
4. 2. 尹章華,從消費權益論信用卡法律關係(上),司法周刊,第七九八期,二版,一九九六年,十月。
5. 2. 尹章華,從消費權益論信用卡法律關係(上),司法周刊,第七九八期,二版,一九九六年,十月。
6. 1. 甘添貴,信用卡犯罪類型及其法律適用,月旦法學雜誌,第八十七期,二○○二年,八月,頁七六至八八。
7. 1. 甘添貴,信用卡犯罪類型及其法律適用,月旦法學雜誌,第八十七期,二○○二年,八月,頁七六至八八。
8. 1. 甘添貴,信用卡犯罪類型及其法律適用,月旦法學雜誌,第八十七期,二○○二年,八月,頁七六至八八。
9. 5. 李忠雄,信用卡詐欺法律問題之研究,全國律師,六月號,二○○○年,六月,頁五四至六六。
10. 5. 李忠雄,信用卡詐欺法律問題之研究,全國律師,六月號,二○○○年,六月,頁五四至六六。
11. 5. 李忠雄,信用卡詐欺法律問題之研究,全國律師,六月號,二○○○年,六月,頁五四至六六。
12. 3. 尹章華,從消費權益論信用卡法律關係(下),司法周刊,第七九九期,二版,一九九六年,十月。
13. 8. 楊淑文,信用卡交易之法律性質及其相關法律問題之研究-信用卡交易之三面法律關係及冒用風險轉嫁條款,政大法學評論,第五十九期,一九九八年,六月,頁一○三至一五三。
14. 8. 楊淑文,信用卡交易之法律性質及其相關法律問題之研究-信用卡交易之三面法律關係及冒用風險轉嫁條款,政大法學評論,第五十九期,一九九八年,六月,頁一○三至一五三。
15. 8. 楊淑文,信用卡交易之法律性質及其相關法律問題之研究-信用卡交易之三面法律關係及冒用風險轉嫁條款,政大法學評論,第五十九期,一九九八年,六月,頁一○三至一五三。