跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 04:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪偲僥
研究生(外文):Szu-Yao Hung
論文名稱:寬頻有線通訊之快速穩定及高線性度自動增益控制設計
論文名稱(外文):Design of Fast-Settling, High-Linearity Automatic Gain Control for Broadband Wireline Communication
指導教授:陳中平陳中平引用關係
指導教授(外文):Charlie Chung-Ping Chen
口試委員:曹恆偉李泰成張順志
口試委員(外文):Hen-Wai TsaoTai-Cheng LeeSoon-Jyh Chang
口試日期:2013-06-03
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:88
中文關鍵詞:快速穩定高線性度自動增益控制有線通訊
外文關鍵詞:Fast-settlinghigh-linearityautomatic gain controlwireline communication
相關次數:
  • 被引用被引用:0
  • 點閱點閱:412
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有線通訊因其高資料頻寬及可靠性在多媒體資訊傳輸上催生了許多研究發展。在數位家庭中,電力線通訊在多通道訊號傳輸中使用正交分頻多工調變達成高資料速率。接收器在前綴訊號期間透過自動增益控制評估通道特性,在有線通訊中,此機制扮演調整接收訊號敏感度的重要角色。
本論文旨在接受器前端高線性度以及快速穩定自動增益控制之分析與設計。兩個關鍵類比電路在此提出:一個高線性度、重構基礎可變增益放大器以及一個快速穩定前饋式自動增益控制。在可變增益放大器中,藉由可適性偏壓電路改善互補式放大器之線性度;採用二進制加權切換虛指數逼近技巧達成對數線性化的增益控制;另外也採用重構式可變增益放大器以減少寄生效應及電路複雜度。在自動增益控制中,提出一個適用於正交分頻多工接收器之前饋式架構達到快速迴路反應效果,其電路架構分析以及實務考量將在本論文中詳述。
藉由90-nm互補式金氧半導體製程實作本專題。實驗結果顯示,可變增益放大器之線性度可適用於正交分頻多工解調1024 正交振幅調變;在1.2伏特電源供應下,自動增益控制消耗3.7毫瓦,收斂時間小於0.1 微秒。

The wireline communication has spawned a revival of interest in multimedia content distribution due to its high data bandwidth and reliability. Powerline communication (PLC) in digital home employs orthogonal frequency-division multiplexing (OFDM) modulation for high data rates in multi-path signal channels. The receiver estimates the channel’s characteristics during the reception of the preamble by the process of automatic gain control (AGC), which is an essential function in wireline receivers to adjust sensitivity to incoming signal strength.
This work focuses on the analysis and design of high-linearity, fast-settling AGC in receiver front-end. Two key AGC building block applications, a high-linearity reconfiguration-based programmable gain amplifier (PGA) and a fast-settling feedforward AGC, are presented. In the PGA, linearity of amplifier is improved by adopting adaptive biasing circuit in a push-pull amplifier. Binary-weighted switching pseudo-exponential approximation technique is utilized for decibel-linear gain tuning. Reconfigurable PGA architecture is also employed to reduce parasitic effect and circuit complexity. In the AGC, a novel feedforward control scheme is proposed to achieve fast loop response requirement of OFDM-based receivers. The analysis and implementation consideration of key building blocks are provided in this work.
Fabricated in 90-nm CMOS technology, the experimental results show that the linear characteristic of PGA is suitable for 1024 QAM in OFDM demodulation and 0.1 μs is used for the AGC system convergence while consuming 3.7 mW through 1.2-V supply.


Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Application of Automatic Gain Control (AGC) 3
1.3 Powerline Communication (PLC) 4
1.4 Contribution of this Thesis 7

Chapter 2 Background 9
2.1 Fundamentals of Automatic Gain Control 9
2.1.1 Feedback-Type AGC 10
2.1.2 Feedforward-Type AGC 16
2.1.3 Generalized Settling Time Constraints 19
2.2 Fundamentals of Programmable Gain Amplifier 20
2.2.1 Various Approaches of VGA/ PGA 20
2.2.2 SNR of VGAs/PGAs 23
2.2.3 Circuit Design Parameters 25
2.3 Design Methodology 33

Chapter 3 A High Linearity Programmable Gain Amplifier 35
3.1 Introduction 36
3.2 The Proposed PGA Architecture 37
3.2.1 Design of PGA Transconductance Cell 38
3.2.2 Complementary Push-Pull Differential Amplifier 43
3.2.3 PGA Cell 45
3.2.4 Pseudo-Exponential Approximation 49
3.2.5 Binary-Weighted Switching Technique 51
3.2.6 Reconfiguration Technique 53
3.2.7 Fixed Gain Amplifier 54
3.3 Experimental Results 56
3.4 Chapter Summary 60

Chapter 4 A Fast-Settling Automatic Gain Control Amplifier 61
4.1 Introduction 62
4.2 The Proposed AGC Architecture 64
4.2.1 PGA 65
4.2.2 Power Detector 66
4.2.3 Charge-Redistribution SAR ADC 68
4.2.4 AGC Algorithm 76
4.3 Experimental Results 77
4.4 Chapter Summary 81

Chapter 5 Conclusion 83

Bibliography 85


[1] O. Jeon, R.M. Fox, et al., “Analog AGC Circuitry for a CMOS WLAN Receiver,” IEEE J. Solid-State Circuits, Vol.41, No. 10, pp.2291-2300, Oct. 2006.
[2] J. M. Khoury, “On the design of constant settling time AGC circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 3, pp. 283-294, Mar. 1998.
[3] T. Oshima, K. Maio, et al., “Automatic tuning of RC filters and fast automatic gain control for CMOS low-IF transceiver,” in Proc. IEEE Custom Integrated Circuits Conference, 2003, pp. 5–8.
[4] E. Öjefor et al., “A 820 GHz SiGe chipset for terahertz active imaging applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 224–226.
[5] C.-F. Liao and S.-L. Liu, “A 10 Gb/s CMOS amplifier with 35 dB dynamic range for 10 Gb ethernet,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 2092–2101.
[6] I.-H. Wang and S.-I. Liu, “A 0.18-μm CMOS 1.25-Gbps automatic-gain-control amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs , vol. 55, no. 2, pp. 136–140, Feb. 2008.
[7] Michael W. Baker and R. Sarpeshkar, “Low-power single-loop and dual-loop AGCs for bionic ears,” IEEE J. Solid-State Circuits , vol. 41, no. 9, pp. 1983–1996, Sep. 2006.
[8] T. Rouphael, RF and Digital Signal Processing for Software-Defined Radio: A Multi-Standard Multi-Mode Approach, Newnes Inc., Oxford, 2008
[9] Australian Communications Authority, Broadband Powerline Communications Systems: A Background Brief, 2003
[10] Quoc-Hoang Duong, Le-Quan, and Sang-Gug Lee; “An All CMOS 84dB-Linear Low-Power Variable Gain Amplifier”; Digest of Technical Papers Symposium on VLSI Circuits; pp. 114 –117, 2005.
[11] J.P. Pérez, Automatic Gain Control: Techniques and Architectures for RF Receivers, Springer, 2011.
[12] D. Green; “Global stability analysis of automatic gain control circuits”; Circuits and Systems, IEEE Transactions on; Vol. 30, Issue 2, pp. 78–83, Feb. 1983.
[13] J. Israelsohn; “Gain control”; EDN; pp. 38–46, 2002.
[14] B. Gilbert; “Limiting-Logarithmic Amplifiers”; Electronics Laboratories Advanced Engineering Course on RF IC Design for Wireless Communication Systems; Lausanne, Switzerland, Jul. 1995.
[15] H. Burger, J. Khoury, and T. L. Viswanathan, “Variable gain voltage signal amplifier,” U.S. Patent 5 412 346, May 2, 1995.
[16] J. Hauptmann, F. Dielacher, et al.,“A low-noise amplifier with automatic gain control and anticlipping control in CMOS technology,” IEEE J. Solid-State Circuits, vol. 27, pp. 974–981, July 1992.
[17] D. Welland, S. Phillip, et al., “A digital read/write channel with EEPR4 detection,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, 1994, pp. 276–277, 352.
[18] C. T. Fu et al., “A CMOS linear-in-dB high-linearity variable gain amplifier for UWB receivers,” in Proc. IEEE ASSCC’07, pp. 103–106.
[19] T. Yamaji et al., “A temperature stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 553–558, May 2002.
[20] Q. H. Doung et al., “An all CMOS 84 dB-linear low-power variable gain amplifier,” in Symp. VLSI Circuits Dig., 2005, pp. 114–117.
[21] O. Watanabe et al., “A 380 MHz CMOS linear-in-dB signal-summing variable gain amplifier with gain compensation techniques for CMOS systems,” in Symp. VLSI Circuits Dig., 2005, pp. 114–117.
[22] H. Elwan et al., “A differential ramp based 65 dB-linear VGA technique in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2503-2514, Sept. 2009.
[23] J. Xiao, I. Mehr, J. Silva-Matinez, “A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner,” IEEE JSSC, vol. 42, NO. 2, pp292-301, Feb 2007.
[24] Behzad Razavi. RF microelectronics. Prentice Hall, Upper Saddle River, NJ, 1998.
[25] C.S. Kim; Y.H. Kim; S.B. Park, “New CMOS linear transconductor” Electronics Letters, Volume 28, Issue 21, 8 Oct. 1992, Page(s):1962 - 1964
[26] H. H. Nguyen, et al., “A High-Linearity Low-Noise Reconfiguration-Based Programmable Gain Amplifier,” European Solid State Circuits Conference, pp. 166-169, September 2010.
[27] Q.-H. Duong, Q. Le, C.-W. Kim, and S.-G. Lee, “A 95-dB linear low power variable gain amplifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 8, pp. 1648–1657, Aug. 2006.
[28] H.-Y. Huang et al. , “A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback,” IEEE J. Solid-State Circuits , vol. 42, no. 5, pp. 1111–1120, May 2007.
[29] Xiaojie Chu, Min Lin et al., "A CMOS programmable gain amplifier with a novel DC-offset cancellation technique," IEEE Custom Integrated Circuits Conference, pp. 1-4, Sep. 2010.
[30] H.-C. Lee, C.-C. Lin, and C.-K. Wang, “A 290MHz 50dB Programmable Gain Amplifier for Wideband Communications,” in IEEE Asian Solid-State Circuits Conf., Nov. 13–15, 2006, pp. 379–382.
[31] Y.-C. Huang, H.-H. Hsieh, et al., “A low-noise amplifier with integrated current and power sensors for RF BIST applications,” in IEEE VLSI Test Symp., May 2007, pp. 401–406.
[32] J. David and K. Martin, Analog Integrated Circuits Design, New York: John Wiley & Sons, Inc., 1997.
[33] A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, pp. 1055–1057, Jun. 1996.
[34] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang. A 10-bit 50MS/s SAR ADC with a Monotonic Capacitor Switching Procedure. IEEE J. Solid-State Circuits, 2010, 45(4): 731
[35] J. P. Alegre, S. Celma, B. Calvo, N. Fiebig, and S. Halder, “SiGe analog AGC circuit for an 802.11a WLAN direct conversion receiver,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 93–96, Feb. 2009.
[36] J. P. Alegre, B. Calvo, and S. Celma, “A high performance CMOS feedforward AGC circuit for wideband wireless receivers,” in Proc. IEEE Int. Symp. Ind. Electron., 2008, pp. 1657–1661.
[37] I.-H. Wang and S.-I. Liu, “A 0.18-um CMOS 1.25-Gbps automatic-gain-control amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 2, pp. 136–140, Feb. 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文