|
[1] O. Jeon, R.M. Fox, et al., “Analog AGC Circuitry for a CMOS WLAN Receiver,” IEEE J. Solid-State Circuits, Vol.41, No. 10, pp.2291-2300, Oct. 2006. [2] J. M. Khoury, “On the design of constant settling time AGC circuits,” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45, no. 3, pp. 283-294, Mar. 1998. [3] T. Oshima, K. Maio, et al., “Automatic tuning of RC filters and fast automatic gain control for CMOS low-IF transceiver,” in Proc. IEEE Custom Integrated Circuits Conference, 2003, pp. 5–8. [4] E. Öjefor et al., “A 820 GHz SiGe chipset for terahertz active imaging applications,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2011, pp. 224–226. [5] C.-F. Liao and S.-L. Liu, “A 10 Gb/s CMOS amplifier with 35 dB dynamic range for 10 Gb ethernet,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp. 2092–2101. [6] I.-H. Wang and S.-I. Liu, “A 0.18-μm CMOS 1.25-Gbps automatic-gain-control amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs , vol. 55, no. 2, pp. 136–140, Feb. 2008. [7] Michael W. Baker and R. Sarpeshkar, “Low-power single-loop and dual-loop AGCs for bionic ears,” IEEE J. Solid-State Circuits , vol. 41, no. 9, pp. 1983–1996, Sep. 2006. [8] T. Rouphael, RF and Digital Signal Processing for Software-Defined Radio: A Multi-Standard Multi-Mode Approach, Newnes Inc., Oxford, 2008 [9] Australian Communications Authority, Broadband Powerline Communications Systems: A Background Brief, 2003 [10] Quoc-Hoang Duong, Le-Quan, and Sang-Gug Lee; “An All CMOS 84dB-Linear Low-Power Variable Gain Amplifier”; Digest of Technical Papers Symposium on VLSI Circuits; pp. 114 –117, 2005. [11] J.P. Pérez, Automatic Gain Control: Techniques and Architectures for RF Receivers, Springer, 2011. [12] D. Green; “Global stability analysis of automatic gain control circuits”; Circuits and Systems, IEEE Transactions on; Vol. 30, Issue 2, pp. 78–83, Feb. 1983. [13] J. Israelsohn; “Gain control”; EDN; pp. 38–46, 2002. [14] B. Gilbert; “Limiting-Logarithmic Amplifiers”; Electronics Laboratories Advanced Engineering Course on RF IC Design for Wireless Communication Systems; Lausanne, Switzerland, Jul. 1995. [15] H. Burger, J. Khoury, and T. L. Viswanathan, “Variable gain voltage signal amplifier,” U.S. Patent 5 412 346, May 2, 1995. [16] J. Hauptmann, F. Dielacher, et al.,“A low-noise amplifier with automatic gain control and anticlipping control in CMOS technology,” IEEE J. Solid-State Circuits, vol. 27, pp. 974–981, July 1992. [17] D. Welland, S. Phillip, et al., “A digital read/write channel with EEPR4 detection,” in Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, 1994, pp. 276–277, 352. [18] C. T. Fu et al., “A CMOS linear-in-dB high-linearity variable gain amplifier for UWB receivers,” in Proc. IEEE ASSCC’07, pp. 103–106. [19] T. Yamaji et al., “A temperature stable CMOS variable-gain amplifier with 80-dB linearly controlled gain range,” IEEE J. Solid-State Circuits, vol. 37, no. 5, pp. 553–558, May 2002. [20] Q. H. Doung et al., “An all CMOS 84 dB-linear low-power variable gain amplifier,” in Symp. VLSI Circuits Dig., 2005, pp. 114–117. [21] O. Watanabe et al., “A 380 MHz CMOS linear-in-dB signal-summing variable gain amplifier with gain compensation techniques for CMOS systems,” in Symp. VLSI Circuits Dig., 2005, pp. 114–117. [22] H. Elwan et al., “A differential ramp based 65 dB-linear VGA technique in 65nm CMOS,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2503-2514, Sept. 2009. [23] J. Xiao, I. Mehr, J. Silva-Matinez, “A High Dynamic Range CMOS Variable Gain Amplifier for Mobile DTV Tuner,” IEEE JSSC, vol. 42, NO. 2, pp292-301, Feb 2007. [24] Behzad Razavi. RF microelectronics. Prentice Hall, Upper Saddle River, NJ, 1998. [25] C.S. Kim; Y.H. Kim; S.B. Park, “New CMOS linear transconductor” Electronics Letters, Volume 28, Issue 21, 8 Oct. 1992, Page(s):1962 - 1964 [26] H. H. Nguyen, et al., “A High-Linearity Low-Noise Reconfiguration-Based Programmable Gain Amplifier,” European Solid State Circuits Conference, pp. 166-169, September 2010. [27] Q.-H. Duong, Q. Le, C.-W. Kim, and S.-G. Lee, “A 95-dB linear low power variable gain amplifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 8, pp. 1648–1657, Aug. 2006. [28] H.-Y. Huang et al. , “A 10-Gb/s inductorless CMOS limiting amplifier with third-order interleaving active feedback,” IEEE J. Solid-State Circuits , vol. 42, no. 5, pp. 1111–1120, May 2007. [29] Xiaojie Chu, Min Lin et al., "A CMOS programmable gain amplifier with a novel DC-offset cancellation technique," IEEE Custom Integrated Circuits Conference, pp. 1-4, Sep. 2010. [30] H.-C. Lee, C.-C. Lin, and C.-K. Wang, “A 290MHz 50dB Programmable Gain Amplifier for Wideband Communications,” in IEEE Asian Solid-State Circuits Conf., Nov. 13–15, 2006, pp. 379–382. [31] Y.-C. Huang, H.-H. Hsieh, et al., “A low-noise amplifier with integrated current and power sensors for RF BIST applications,” in IEEE VLSI Test Symp., May 2007, pp. 401–406. [32] J. David and K. Martin, Analog Integrated Circuits Design, New York: John Wiley & Sons, Inc., 1997. [33] A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, pp. 1055–1057, Jun. 1996. [34] Chun-Cheng Liu, Soon-Jyh Chang, Guan-Ying Huang. A 10-bit 50MS/s SAR ADC with a Monotonic Capacitor Switching Procedure. IEEE J. Solid-State Circuits, 2010, 45(4): 731 [35] J. P. Alegre, S. Celma, B. Calvo, N. Fiebig, and S. Halder, “SiGe analog AGC circuit for an 802.11a WLAN direct conversion receiver,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 2, pp. 93–96, Feb. 2009. [36] J. P. Alegre, B. Calvo, and S. Celma, “A high performance CMOS feedforward AGC circuit for wideband wireless receivers,” in Proc. IEEE Int. Symp. Ind. Electron., 2008, pp. 1657–1661. [37] I.-H. Wang and S.-I. Liu, “A 0.18-um CMOS 1.25-Gbps automatic-gain-control amplifier,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 2, pp. 136–140, Feb. 2008.
|