跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/17 06:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊孟哲
研究生(外文):Meng-Zhe Yang
論文名稱:聚氧化乙烯-磷酸鋯衍生物複合高分子電解質應用於鋰高分子電池研究
論文名稱(外文):Poly(ethylene oxide)- lithium zirconium phosphate sulfophenylphosphonate nanocomposites for solid polymer electrolyte and their application in lithium polymer batteries
指導教授:趙基揚
口試委員:方家振王復民
口試日期:2016-07-15
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:材料科學與工程學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:102
中文關鍵詞:固態電解質鋰金屬電池聚氧乙烯磷酸鋯衍生物複合高分子電解質
外文關鍵詞:solid polymer electrolytelithium metal batteryPoly(ethylene oxide)PEOlithium zirconium phosphate sulfophenylphosphonate (ZrSPPLi)composite polymer electrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:232
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於良好的化學穩定性及低成本,Poly(ethylene oxide) (PEO)系統固態高分子電解質受到廣泛研究,然而其室溫傳導度及離子遷移係數較差,必須升溫才可以應用。引入奈米陶瓷粒子於高分子主體PEO中,可以抑制PEO的結晶度,進而提升離子傳導性質。
本研究首將磷酸鋯衍生物lithium zirconium phosphate sulfophenylphosphonate (ZrSPPLi)導入PEO系統。ZrSPPLi為表面及內部皆飾有磺酸鋰之非晶質奈米粒子,其平均直徑大小為30nm。PEO-ZrSPPLi複合高分子電解質經由混合PEO(Mn~600K)、LiClO4、ZrSPPLi溶液於乙腈,並採用溶劑揮發法製備。我們系統化的研究ZrSPPLi添加量對PEO-ZrSPPLi複合電解質的熱性質,機械性質,傳導性質,電化學穩定性和鋰金屬電池充放電行為的影響。
在含有1wt%的ZrSPPLi之12系列電解質表現出最佳的傳導性質和電池充放電效率。由於ZrSPPLi抑制PEO的結晶度,其室溫的離子傳導度相較於無添加ZrSPPLi之電解質提升二倍。於60oC,鋰離子遷移係數自0.25提升到0.37,電化學穩定性可達4.8V,使用磷酸鋰鐵為陰極,鋰金屬為陽極,所組裝得鋰金屬電池,展性出優良的穩定性及庫倫效率。於0.8C的放電電容量可達138 mAh g-1。


Poly(ethylene oxide)-based solid polymer electrolytes (SPE) have been the most studied solid state electrolyte system for lithium batteries because of good chemical stability and low cost. Nevertheless, low ion conductivity, low lithium transference number (tLi+) and the need of operating at elevated temperatures severely challenged the success of this system. Introducing ceramic nanofillers into PEO matrix to form nanocomposites has been the most adopted approach to enhance the transport properties of PEO-based SPEs by suppressing the crystallinity of PEO.
In this research, lithium zirconium phosphate sulfophenylphosphonate (ZrSPPLi) is synthesized and incorporated into PEO for the first time . ZrSPPLi is an amorphous nanoparticle containing lithium sulfonate groups both within and at the surface of the globular particles with an average diameter of 30nm. The PEO-ZrSPPLi nanocomposites with different ZrSPPLi loading and EO/Li ratio are prepared by solvent-casting from the solution mixture of as-synthesized ZrSPPLi, PEO (Mn ~ 600k) and lithium perchlorate (LiClO4). Systematic studies regarding the loading amount of ZrSPPLi on ion conductivity, lithium transfer number( tLi+), mechanical property, thermal property as well as the performance of lithium metal battery and electrochemical stability are performed.
The composite with 1 wt% ZrSPPLi loading in EO/Li = 12/1 matrix exhibits the best transport property and cell performance among all composites. Comparing to the reference SPE without ZrSPPLi, the ion conductivity at room temperature is 2 times higher due to significantly suppressed crystallinity of PEO. With the addition of 1 wt% ZrSPPLi, tLi+ at 60oC would increase to 0.37 from 0.25 of the pristine PEO SPE and the composite exhibits a stable electrochemical window of 4.8V. The LiFePO4 /(PEO)12LiClO4-1wt%ZrSPPLi /Li battery operating at 60oC demonstrates good capacity retention and columbic efficiency at various discharge rate. The discharge capacity could reach 138 mAh g-1 at 0.8C.


中文摘要 I
Abstract II
圖目錄 VII
表目錄 XI
第一章 緒論 1
1.1研究背景 1
1.2研究動機與架構 3
第二章 文獻回顧 7
2.1鋰離子電池的發展 7
2.2鋰離子電池的工作原理 9
2.2.1陽極材料(anode) 10
2.2.2 陰極材料(Cathode) 11
2.2.3 高分子電解質(Polymer Electrolyte)14
2.2.4 固態高分子電解質(Solid Polymer Electrolyte , SPE) 16
2.2.5 膠態高分子電解質(Gel Polymer Electrolyte , GPE) 20
2.2.6 複合高分子電解質(Composite Polymer Electrolyte , CPE) 29
2.2.7 單離子導體(Single ion conductor) 33
2.2.8 磷酸鋯及其衍生物(Zirconium phosphate and phosphonate) 35
第三章 實驗步驟與儀器原理 36
3.1實驗藥品 36
3.2複合高分子電解質製備 37
3.2.1 Lithium m-sulfophenylphosphonate (SPPLi)之製備 37
3.2.2 Lithium zirconium phosphate sulfophenylphosphonate (ZrSPPLi)製備 38
3.2.3 複合高分子電解質PEO-LiClO4-ZrSPPLi之製備 38
3.2.4 CR2032鈕扣型電池組裝 38
3.3 儀器分析 40
3.3.1 核磁共振光譜儀 (Nuclear Magnetic Resonance,NMR) 40
3.3.2 傅立葉式紅外線光譜儀 (Fourier-Transform Infrared Spectroscopy,FTIR) 40
3.3.3 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 40
3.3.4 X光射線繞射(X-Ray diffraction,XRD) 40
3.3.5 穿透式電子顯微鏡(Transmission Electron Microscopy,TEM) 41
3.3.6 微差掃描熱卡計(Differential Scanning Calorimetry,DSC) 41
3.3.7 動態機械分析儀(Dynamic Mechanical Analysis,DMA) 41
3.3.8 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 41
3.3.9 交流阻抗分析儀(AC Impedence)及傳導度(conductivity)之量測 42
3.3.10 鋰離子遷移係數(Lithium transference number,TLi+)之量測 43
3.3.11 線性掃描伏安法(Linear Sweep Voltammetry,LSV)之量測 43
3.3.12 電池循環充放電量測 44
第四章 結果與討論 45
4.1ZrSPPLi 的合成與鑑定 45
4.1.1Lithium m-sulfophenylphosphonate (SPPLi)合成與鑑定 45
4.1.2Lithium zirconium phosphate sulfophenylphosphonate (ZrSPPLi)合成與鑑定 47
4.2PEO-LiClO4-ZrSPPLi複合高分子電解質(CPE) 52
4.2.1 微差掃描熱卡計(Differential Scanning Calorimetry,DSC)分析 52
4.2.2 動態機械分析儀(Dynamic Mechanical Analysis,DMA)分析 54
4.2.3 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 分析 57
4.2.4 高分子電解質之離子傳導度(Ionic conductivity)量測與分析 62
4.2.5 鋰離子遷移係數(Lithium transference number,TLi+)量測與分析 67
4.2.6 線性掃描伏安法(Linear Sweep Voltammetry,LSV)量測與分析 69
4.2.7 複合高分子電解質應用於鋰電池性能測試與分析 71
第五章 結論 76
第六章 未來展望 77
第七章 附錄 78
7.1熱性質與機械性質 78
7.2離子傳導性質 80
7.3鋰電池之電化學圖譜 85
參考文獻 90





1.Brissot,C.;Rosso,M.,“Dendritic growth mechanisms in lithium/polymer cells”, Journal of Power Sources, 1999. 81-82, 925-929.
2.Armand, M., Fast Ion Transport in Solid, New York : North-Holland,1973, 665.
3.Peled, E., “The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems--The Solid Electrolyte Interphase Model”, Journal of The Electrochemical Society, 1979. 126, 2047-2051.
4.Reimers, J.N.;Dahn,J.R, “Ionic and Electronic Conductivity of Poly-(3-methylpyrrole-4-carboxylic Acid)”, Journal of The Electrochemical Society, 1992, 139,2091-2097.
5.Chen, Z.; Lu,Z.; Dahn,J.R, “Staging Phase Transitions in LixCoO2, Journal of The Electrochemical Society”, 2002, 149, A1604-A1609.
6.Rougier, A.;Gravereau,P.; Delmas,C., “Optimization of the Composition of the Li1-zNi1 +zO2 Electrode Materials: Sfructural, Magnetic,and Electrochemical Studies”, Journal of The Electrochemical Society, 1996,143,1168-1175.
7.Amatucci, G.; Tarascon,J.M., “Optimization of Insertion Compounds Such as LiMn2O4 for Li-Ion Batteries”, Journal of The Electrochemical Society, 2002,149,K31-K46.
8.Tarascon, J.M.;Wang,E.,Shokohi,F.K., “The Spinel Phase of LiMn2O4 as a Cathode in Secondary Lithium Cells”,Journal of The Electrochemical Society, 1991,138,2859-2864.
9.Xia,Y.;Zhou,Y;Yoshio,M., “Capacily Fading on Cycling of 4 V Li/LiMn2O4 Cells”, Journal of The Electrochemical Society, 1997,144,2593-2600.
10.Padhi, A.K.;Nanjundaswamy,K.S.;Goodenough,J.B., “Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries”, Journal of The Electrochemical Society, 1997, 144,1188-1194
11.Wang, C.;Hong,J., “Ionic/Electronic Conducting Characteristics of LiFePO4
Cathode Materials”, Electrochemical and Solid-State Letters, 2007,10,A65-A69.
12.Tukamoto, H.;West,A.R. “Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping”,Journal of The Electrochemical Society, 1997,144,3164-3168.
13.Chitra,S.,et al., “ Physical Properties of LiMn204 Spinel Prepared at Moderate Temperature”, Ionics, 1998.,4,8-15.
14.Evans, J.;Vincent,C.A., “ Electrochemical measurement of transference numbers in polymer electrolytes”, POLYMER, 1987,28, 2324-2328.
15.Doyle, M.;Newman,J., “Analysis of Transference Number Measurements Based on the Potentiastatic Polarization of Solid Polymer Electrolytes”, Journal of The Electrochemical Society, 1995. 142, 3465-3498.
16.Fenton, D.E.;Parker,J.M.;Wright,P.V., “Complexes of alkali metal ions with
poly(ethylene oxide)”, POLYMER, 1973,14,589.
17.Armand, M., “Polymer solid electrolytes-An overview”, Solid state Ionics, 1983,9-10,745-754.
18.PAPK, B.L.;Ratner,M.A.;Shriver,D.F., “Vibrational Spectroscopy and structure of polymer electrolytes , Poly(Ethylene Oxide) complexes of Alkali metal salts” , Journal of Physics and Chemistry of Solids, 1981, 42,493-500.
19.Teeters, D.;Frech,R., “Temperature-dependent spectroscopic of Poly(Ethylene Oxide) and Poly(Propylene Oxide)-inorganic salt complexes “,Solid states Ionics, 1986. 18-19,271-276.
20.Ratner,M.A.;Shriver,D.F., “Ionic Transport in Solvent-Free Polymers”, Chemical Reviews , 1988,88,109-124.
21.Watanabe, M.;Ogata,N., “Ionic conductivity of polymer electrolytes and future application”, British Polymer Journal, 1988, 20,181-192.
22.Wright, P.V., “Electrical Conductivity in Ionic Complexes of Poly(ethy1ene oxide)”, British Polymer Journal, 1975,7,319-327.
23.Gray, F.M., Solid Polymer Electrolytes, VCH , 1991.
24.Armand, M., Polymer Electrolyte Reviews — I, Elsevier, London, 1987,1,1.
25.MacCallum, J.R., Polymer Electrolyte Reviews — I, Elsevier, London, 1987,2,23.
26.Olsen,I.;Koksbang,R;Skou,E, “Transference number measurement on a hybrid polymer electrolyte”, Electrochimica Acta, 1995, 40,1701-1706.
27.Petersen, G.;Jacobsson,P;Torell,L.M., “A Raman study of ion-polymer and ion-ion interaction in low molecular weight polyether-LiCF3SO3 complexes”, Electrochimica Acta, 1992, 37,1495-1497.
28.Bruce, P.G.;Vincent,G.A., “Effect of Ion Association on Transport in Polymer Electrolytes”, Faraday Discussions of the Chemical Society, 1989,88,43-54.
29.Lightfoot,P.;Mehta,M.A.;Bruce,P.G., “ Crystal structure of the polymer electrolyte poly(ethylene oxide)3:LiCF3SO3 ”,Science, 1993, 262,883-885.
30.Kumar, B.;Schaffer,D., “ An electrochemical study of PEO:LiBF4-glass composite electrolytes”, Journal of Power Sources, 1994, 47,63-78.
31.Chiodelli, G.;Ferloni,P.;Magistris,A.;Sanesi,M., “Ionic conduction and thermal properties of Poly(Ethylene Oxide)-Lithium Tetrafluoroborate films”, Solid State lonics ,1988,28-30,1009-1013.
32.Fullerton-Shirey,S.;Maranas,J., “Effect of LiClO4 on the Structure and Mobility of PEO-Based Solid Polymer Electrolytes”, Macromolecules ,2009. 42, 2142-2156.
33.Croce, F.,et al, “Physical and chemical properties of nanocomposite polymer electrolytes”, The Journal of Physical Chemistry B,1999, 103, 10632-10638.
34.Dissanayake, M.A.K., “Nano-composite solid polymer electrolytes for solid state ionic devices”, Ionics, 2004, 10,221-225.
35.Tao, R. ; T. Fujinami, “ Improvement of electrochemical properties of PEO–LiTFSI electrolyte by incorporation of boroxine polymers with different backbone lengths”, Journal of Applied Electrochemistry, 2005. 35, 163-168.
36.Porcarelli, L., et al., “Super soft all-ethylene oxide polymer electrolyte for safe all-solid lithium batteries”, Scientific Reports, 2016,6(19892),1-14.
37.Monroe, C.;Newman,J., “The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces”, Journal of The Electrochemical Society, 2005, 152,A396-A404.
38.Kang, Y.;Seo,Y.;Lee,C., “Synthesis and conductivity of PEGME branched poly(ethylene-alt-maleimide)”,Korean Chemical Society , 2000,21,241-244.
39.Niitani, T., et al., “Synthesis of Li+ ion conductive PEO-PSt block copolymer
electrolyte with microphase Separation Structure”, Electrochemical and Solid-State Letters, 2005, 8,A385-A388.
40.Ünügür Çelik, S.;Bozkurt,A., “PEG crosslinked poly(vinylbenzene boronic acid) polymer electrolytes for Li-ion batteries”,Current Applied Physics, 2013,13,1668-1673.
41.Jaipal Reddy, M.;Kumar,J.,Subba Rao,U.V.;Peter P,Chu., “Structural and ionic conductivity of PEO blend PEG solid polymer electrolyte”, Solid State Ionics, 2006, 177,253-256.
42.Feuillade,G.; Perche,Ph., “Ion-conductive macromolecular gels and membranes
for solid lithium cells”, Journal of Applied Electrochemistry, 1975,5,63-69.
43.Alamgir, M.;Abraham,K.M., “ Room temperature polymer electrolytes and batteries based on them”, Solid State lonics, 1994,70-71, 20-26.
44.Stefano,S.,Nagasubramanion,G., “12-Crown-4 Ether-Assisted Enhancement of Ionic Conductivity and Interfacial Kinetics in Polyethylene Oxide Electrolytes”, Journal of The Electrochemical Society ,1990,137,830-3835.
45.Kalita, M.,et al, “Effect of calixpyrrole in PEO–LiBF4 polymer electrolytes”, Electrochimica Acta, 2005. 50, 3942-3948.
46.MacCallum,J.R.; Vincent,C.A.,Polymer Electrolyte Reviews vol I, II (London: Elsevier Applied Sciences), 1989.
47.Das, S. ; Ghosh,A., “Ionic conductivity and dielectric permittivity of PEO-LiClO4 solid polymer electrolyte plasticized with propylene carbonate”, AIP Advances, 2015. 5,(027125-1)-(02175-9).
48.Michael, M.S.,Jacob,M.M.E.;Prabaharan,S.R.S.;Radhakrishna,S., “Enhanced lithium ion transport in PEO-based solid polymer electrolytes employing a novel class of plasticizers”,Solid State Ionics, 1997,98,167-174.
49.Sukeshini,A.M.;Kulkarni,A.R.; Sharma,A., “PEO based solid polymer electrolyte plasticized by dibutyl phthalate”,Solid State Ionics, 1998,113-115,179-186.
50.ITO, Y.;Kanehori,K.;Miyauchi,K.;Kudo,T., “Ionic conductivity of electrolytes formed from PEO-LiCF3SOa complex with low molecular weight poly(ethylene glycol) ’’,Journal of Materials Science, 1987,22,1845-1849.
51.Bandara, L.R.A.K.;Dissanayake,M.A.K.L.;Mellander,B., “Ionic conductivity of plasticized (PEO)-LiCF3SO3 electrolyte ’’,Electrochimica Acta, 1998,43,1447-1451.
52.Wang, H. ,et al., “A composite polymer electrolyte protect layer between lithium and water stable ceramics for aqueous lithium-air batteries’’, Journal of the Electrochemical Society, 2013,160,A728-A733.
53.Wang, H.; Imanishi,N.;Hirano,A.;Takeda,Y. ;Yamamoto,O., “Electrochemical properties of the polyethylene oxideeLi(CF3SO2)2N and ionic liquid composite electrolyte’’,Journal of Power Sources, 2012,219,2228.
54.Shin, J.-H.; Henderson,W.A; Passerini,S., “PEO-based polymer electrolytes with ionic liquids and their use in lithium metal-Polymer Electrolyte batteries ”,Journal of The Electrochemical Society, 2005,152,A978-A983.
55.Watanabe,M.;Kanba,M.;Nagaoka,K.,Shinohara,I., “Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application’’, Journal of Applied Polymer Science, 1982, 27,4191-4198.
56.Watanabe,M.;Kanba,M.;Nagaoka,K.,Shinohara,I., “Ionic conductivity of hybrid films composed of polyacrylonitrile, ethylene carbonate, and LiClO4’’ ,Journal of Polymer Science Polymer Physics Edition, 1983. 21,939.
57.Scrosati, B.;Appetecchi,G.B.;Croce,F.,“kinetic and stability of lithium electrode in poly(methylmethacrylate)-based gel electrolytes’’,Electrochimica Acta,1995,40,991-997.
58.Abraham, K.M.;Alamgir,M., “Room temperature rechargeable polymer electrolyte batteries’’, Journal of Power Sources,1995,54,40-45.
59.Mellander, B.-E.;Albinsson,I.;Jayathilaka,P.A.R.D.;Dissanayake,M.A.K.L., “Dielectric relaxation, ionic conductivity and thermal studies of the gel polymer electrolyte system PAN/EC/PC/LiTFSI’’,Solid State Ionics, 2003,156,179-195.
60.Sekhon, S.S.;Deepa;Agnihotry,S.A., “Solvent effect on gel electrolytes containing lithium salts’’, Solid State Ionics, 2000. 136-137,1189-1192.
61.Mustareli,P.;Quartarone,E.;Tomasi,C.;Appetecchi,G.B.;Croce,F., “Long-term structure stability of PMMA-based gel polymer electrolytes’’, Electrochimica Acta, 1998,43,1435-1439.
62.Croce, F., et al., “Lithium-7 NMR and Ionic Conductivity Studies of Gel Electrolytes Based on Poly(acrylonitri1e) ’’,Chemistry of Materials, 1993,5,1268-1272.
63.Wang, Z., et al., “Competition between the plasticizer and polymer on associating with Li+ ions in polyacrylonitrile-based electrolytes ’’,Journal of The Electrochemical Society, 1997, 144,778-786.
64.Benzinger, W.D., U.S. Patent. 1983. p. 4384047.
65.Pu, W.; He,X.;Jiang,C.;Wan,C., “Preparation of PVDF–HFP microporous membrane for Li-ion batteries by phase inversion’’, Journal of Membrane Science, 2006,272,11-14.
66.Shi, L.; et al., “ Fabrication of poly(vinylidene fluoride-co-hexafluropropylene)
(PVDF-HFP) asymmetric microporous hollow fiber membranes’’, Journal of Membrane Science, 2007,305,215-225.
67.Bro,P.;Selim,R., “Some observations on rechargeable lithium electrodes in a propylene carbonate electrolyte’’, Journal of The Electrochemical Society,1974,121,1457-1459.
68.Shu, Z.X.;McMillan,R.S.;Murray,J.J., “Electrochemical Intercalation of Lithium into Graphite’’ ,Journal of The Electrochemical Society, 1993,140,922-927.
69.Scrosati, B.;Pistoia,G.,Rossi,M.D., “Study of the Behavior of Ethylene Carbonate as a Nonaqueous Battery Solvent’’, Journal of The Electrochemical Society, 1970, 117,500-502.
70.Aurbach, D.;Zinigrad,E;Cohen,Y.;Teller,H., “A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions ’’,Solid State Ionics, 2002,148,405-416.
71.Guyomard, D.,Tarascon,J.M., “Li Metal-Free Rechargeable LiMn2O4/Carbon Cells: Their Understanding and Optimization ’’,Journal of The Electrochemical Society, 1992,139,937-948.
72.Ebner, D.;Fouchard,D.,Xie,L., “The LiNiO2/carbon lithium-ion battery’’, Solid State Ionies, 1994,69,238-256.
73.Geronov, Y. ; Puresheva, B.; Moshtev, R.V.; Zlatilova,P.; Kosev, T.; Stoynov,Z., “Rechargeable compact Li vells with LixCro.9Vo.lS2 andLil+xV3O8 vathodes and ether-based electrolytes ’’,Journal of The Electrochemical Society, 1990. 137, 3338-3344.
74.Tarascon, J.M.; Guyomard,D., “New electrolyte compositions stable over the 0 to 5 V voltage range and compatible with the Lil +xMn2O4/carbon Li-ion cells’’, Solid State Ionics,1994. 69,293-305.
75.Mori, S.;Ue,M., “Mobility and ionic association of lithium salts in a
propylene carbonate-ethyl methyl carbonate mixed solvent’’,Journal of The Electrochemical Society, 1995. 142,2577-2581.
76.Braithwaite, J.W., et al., “Corrosion of Lithium-Ion Battery Current Collectors’’, Journal of The Electrochemical Society, 1999. 146,448-456.
77.Krause, L.J., et al, “Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts
for lithium-ion cells’’,Journal of Power Sources,1997. 68,320-325.
78.Sloop, S. E. ; Pugh, J. K.; Wang, S.; Kerr, J. B.; Kinoshita, K., “Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions’’, Electrochemical and Solid-State Letters, 2001. 4,A42-A44.
79.Abraham, K. M.; Goldman, J. L.;Natwig , D. L., “Characterization of ether Electrolytes for Rechargeable Lithium Cells’’, Journal of The Electrochemical Society, 1982. 129,2404-2409.
80.Nanjundiah, C.; Goldman, J. L.; Dominey, L. A.; Koch, V. R., “Electrochemical Stability of LiMF6 (M = P, As, Sb) in Tetrahydrofuran and Sulfolane’’,Journal of The Electrochemical Society, 1988. 135, 2914-2917.
81.Carroll, S.;Jasinski,R., “Thermal Stability of a Propylene Carbonate Electrolyte’’, Journal of The Electrochemical Society, 1970. 117,218-219.
82.Newman, G. H.; Francis, R. W.; Gaines, L. H.; Rao, B. M. L., “Hazard Investigations of LiClO4 /Dioxolane Electrolyte’’, Journal of The Electrochemical Society, 1980. 127,2025-2027.
83.Yang, H,; Kwon,K.; M. Devine,T ; W. Evans,J., “Aluminum Corrosion in Lithium Batteries An Investigation Using the Electrochemical Quartz Crystal Microbalance’’, Journal of The Electrochemical Society, 2000. 147,4399-4407.
84.Foropoulos,J.;Desmarteau,D.D., “Synthesis, Properties, and Reactions of Bis( (trifluoromethy1)sulfonyl) Imide,(CF3O2)2NH’’, Inorganic Chemistry , 1984,23,3720-3723.
85.Weston,J.E.,Steele,B.C.H., “Effects on inert fillers on the electrochemical properties of lithium salt-Poly(ethylene oxide) polymer electrolytes’’, Solid State lonics,1982, 7,75-79.
86.Wieczorek, W.; Stevens, J.R.;Florjahczykb, Z., “Composite polyether based solid electrolytes. The Lewis acid-base approach’’, Solid State tonics,1996. 85,67-72.
87.Wieczorek,W.;Florjanczyk,Z.;Stevens,J.R., “composite polyether based solid electrolytes”, Electrochimica Acta, 1995. 40,2251-2258.
88.Scrosati, B.,et al, “Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes”, Electrochimica Acta,2001,46,2457-2461.
89.Croce, F.; Appetecchi, G.B.; Persi L.; Scrosati, B., “nanocomposite polymer electrolytes for lithium batteries”, Nature, 1998,456-458.
90.Scrosati, B., The Journal of Physical Chemistry B ,1999. 103,10632-10638.
91.Scrosati, B.,et al., “Physical and Chemical Properties of Nanocomposite Polymer Electrolytes”, Solid State Ionics 2000. 135: p. 47.
92.Wang, L.;Yang,W.;Wang,J.;Evans,D., “New nanocomposite polymer electrolyte comprising nanosized ZnAl2O4 with a mesopore network and PEO-LiClO4” ,Solid State Ionics, 2009. 180,392-397.
93.Capiglia,C. ,et al., “Effects of nanoscale SiO2 on the thermal and transport properties of solvent-free, poly(ethylene oxide) (PEO)-based polymer electrolytes”, Solid State Ionics,1999,118,73-79.
94.Gao, S.;Zhong,J.;Xue,G.;Wang,B., “Ion conductivity improved polyethylene oxide/lithium perchlorate electrolyte membranes modified by graphene oxide”, Journal of Membrane Science, 2014,470,316-322.
95.Sun, H.Y.; Sohn,H.J.;Yamamoto,O.;Takeda,Y.;Imanishi,N., “Enhanced Lithium-Ion Transport in PEO-Based Composite Polymer Electrolytes with Ferroelectric BaTiO3”, Journal of The Electrochemical Society, 1999. 146,1672-1676.
96.Zhao, Y.,et al, “A new solid polymer electrolyte incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries”, Journal of Power Sources, 2016,301, 47-53.
97.Wang, C.; Zhang, X.-W.; Appleby, A.J., “Solvent-Free Composite PEO-Ceramic Fiber/Mat Electrolytes for Lithium Secondary Cells”, Journal of The Electrochemical Society, 2005,152,p. A205-A209.
98.Zhang, X.-W.;Wang,C.; Appleby, A.J.;Little,F.E., “Characteristics of lithium-ion-conducting composite polymer-glass secondary cell electrolytes”, Journal of Power Sources ,2002. 112,209-215.
99.Angulakshmi, N.;Kumar,R.;Kulandinathan,A.; Stephan, A.M., “Composite Polymer Electrolytes Encompassing Metal Organic Frame Works: A New Strategy for All-Solid-State Lithium Batteries”, The Journal of Physical Chemistry C, 2014. 118,24240-24247.
100.Zhang, J.,et al., “Novel PEO-based composite solid polymer electrolytes incorporated with active inorganic–organic hybrid polyphosphazene microspheres”, Materials Chemistry and Physics, 2010. 121,511-518.
101.Zewde, B.W., et al., “Polyethylene oxide electrolyte added by silane-functionalized TiO2 filler for lithium battery”, Solid State Ionics, 2014. 268,174-178.
102.Croce, F.; Settimi, L. ; Scrosati, B., “Superacid ZrO2-added composite polymer electrolytes with improved transport properties”, Electrochemistry Communications, 2006. 8,364-368.
103.Fauteux, D., “Lithium Electrode/PEO-Based Polymer Electrolyte Interface
Behavior Between 60oCand 120oC”, Journal of The Electrochemical Society ,1988. 135,2231-2237.
104.Passerini,S.; Scrosati, B.; Maslmgostino,M.; Borghin,M.C., “Electrochemical Properties of Polyethylene Oxide-Li[(CF3SO2)2N]-Gamma-LiAlO2 Composite
Polymer Electrolytes”, Journal of The Electrochemical Society, 1995,142,2118-2121.
105.Croce,F.; Scrosati, B., “ Interfacial phenomena in polymer-electrolyte cells:
lithium passivation and cycleability ’’,Journal of Power Sources, 1993,43-44, 9-19.
106.Kumar, B.;Scanlon,G., “Polymer-ceramic composite electrolytes”, Journal of Power Sources, 1994. 52,261-26..
107.Pitawala, H.M.J.C.; Dissanayake, M.A.K.L.; Seneviratne, V.A., “Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf ”’, Solid State Ionics, 2007. 178,885-888.
108.Chaudhari, A.;Kumar,C.V., “Enhanced Energy Transfer between Aromatic
Chromophores Bound to Hydrophobically Modified Layered Zirconium Phosphate Suspensions”, Journal of The Electrochemical Society, 1994,116,403-404.
109.Cao, G.,et al., “Chiral Molecular Recognition in Intercalated Zirconium
Phosphate”, Journal of The Electrochemical Society, 1992,114,7574.
110.Alberti, G.,et al., “Preparation of a composite r-zirconium phosphate-silica with large specific surface and its first characterisation as acid catalyst”, Applied Catalysis A: General, 2001,218,219-228.
111.Truffier-Boutry, D. ; Guetaz, L.; Diat,O.; Gebel, G., “Structural Study of Zirconium Phosphate-Nafion Hybrid Membranes for High-Temperature Proton Exchange Membrane Fuel Cell Applications”, Macromolecules, 2007. 40,8259-8264.
112. Kim,H-N.; Keller S.W.; Mallouk,T.E., “Characterization of Zirconium Phosphate/ Polycation Thin Films Grown by Sequential Adsorption Reactions”, Chemistry of Materials, 1997. 9,1414-1421.
113.Costantino, U.;Alberti,G., “Crystalline Zr(R-PO3)2 and Zr(R-OPO3)2 compounds (R= organic radical) a new class of materials having layered structure of the zirconium phosphate type”, Journal of Inorganic and Nuclear Chemistry, 1978,40,1113-1117.
114.Gallazzi, M.C.;MOntoneri,E., “Organosulphur Phosphorus Acid Compounds. Part 1. m-Sulphophenyl-phosphonic Acid”, Journal of the Chemical Society, Dalton Transactions, 1989,9,1819-1823.
115.Alberti, G., et al., “Preparation and characterisation of a-layered zirconium phosphate sulfophenylenphosphonates with variable concentration of sulfonic groups”, Solid State Ionics, 2005. 176,2893-2898.
116.Bouchet,R.,et al., “Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries”, Nature Materials, 2013. 12,452-457.
117.Kim,S.H.,et al., “Composite gel polymer electrolytes containing core-shell structured SiO2(Li+) particles for lithium-ion polymer batteries”,Electrochemistry Communications, 2012,17,18-21.
118.Zhu, Y.S.; Gao, X.W.; Wang, X.J.; Hou, Y.Y.; Liu, L.L.; Wu Y.P. , “A single-ion polymer electrolyte based on boronate for lithium ion batteries”,Electrochemistry Communications, 2012,22,29-32.
119.Li,X.,et al., “Preparation of core–shell structural single ionic conductor SiO2@Li+ and its application in PVDF–HFP-based composite polymer electrolyte”, Electrochimica Acta , 2012. 85,612-621.
120.Lee,J.A.,et al., “Nanocomposite single ion conductor based on organic–inorganic hybrid”, Solid State Ionics, 2004. 167, 293-299.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top