|
[1] S. F. B. Tett, P. A. Stott, M. R. Allen, W. J. Ingram and J. F. B. Mitchell,” Causes of twentieth-century temperature change near the Earth''s surface”, Nature, vol. 399 (1999) pp. 569-572. [2] N. P. Gillett, F. W. Zwiers, A. J. Weaver, and P. A. Stott, “Detection of human influence on sea-level pressure”, Nature, vol. 422 (2003) pp. 292-294. [3] Energy for the Future: Renewable sources of energy. White Paper for a Community Strategy and Action Plan, European Commission COM (97) 599 final (1997). [4] T. Tomita, “Toward giga-watt production of silicon photovoltaic cells, modules and systems”, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, USA, 2005, pp. 7-11. [5] A. Milner, “Towards larger and thinner wafers used in photovoltaic”, Proceedings of the 31st IEEE Photovoltaic Specialists Conference, Lake Buena Vista, Florida, USA, 2005, pp. 186-192. [6] Wissenschaftlicher Beirat der Bundesregierung, Welt im Wandel – Energiewende zur Nachhaltigkeit (Springer, Berlin, Germany, 2003). [7] H. F. Sterling and R. C. G. Swann, “Chemical Vapor deposition promoted by r.f. discharge”, Solid-State Electron, vol. 8 (1965) pp. 653-654. [8] R. C. Chittick, J. H. Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon”, J. Electrochem. Soc., vol. 116 (1969) pp. 77-81. [9] A. J. Lewis, J. G. A. N. Connel, W. Paul, J. R. Pawlik and R. J. Temkin, in Tetrahedrally Bonded Amorphous Semiconductors, eds. M. H. Brodsky, S. Kirkpatrck, and D. Weaire, AIP Conf. Proc., vol. 20 (1974) p. 27. [10] A. Triska, D. Dennison and H. Fritzsche, “Hydrogen content in amorphous Ge and Si prepared by r.f. decomposition of GeH4 and SiH4”, Phys. Soc., vol. 20 (1975) p. 392. [11] A. Matsuda, “Formation kinetics and control of microcrystalline in c-Si:H from glow discharge plasma”, J. Non-Cryst. Solids, vol. 59-60 (1983) pp. 767-774. [12] M. Faraji, S. Gokhale, S. M. Goudhari, M. G. Takwale and S. V. Ghaisas, “High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications”, Appl. Phys. Lett., vol. 60 (1992) pp. 3289-3291. [13] J. K. Rath, H. Meiling and R. E. I. Schropp, “Purely intrinsic poly-silicon films for n-i-p solar cells”, Jpn. J. Appl. Phys., vol. 36 (1997) pp. 5336-5443. [14] P. Müller, E. Conrad, T. R. Omstead and P. Kember, “Deposition of Poly-Si and Si-Based Dielectrics by ECRCVD and RTCVD”, Conference Proceedings of the 13th European Photovoltaic Solar Energy Conference, 1995, pp. 1742-1745. [15] S. Koynov, S. Grebner, P. Radojkovic, E. Hartmann, R. Schwarz, L. Vasilev, R. Krankenhagen, I. Sieber, W. Henrion and M. Schmidt, “Initial stages of microcrystalline silicon film growth”, J. Non-Cryst. Sol., vol. 198-200 (1996) pp. 1012-1016. [16] S. Hamma, P. R. Cabarrocas, “Low temperature growth of highly crystallized silicon thin films using hydrogen and argon dilution”, J. Non-Cryst. Sol., vol. 227-230 (1998) pp. 852-856. [17] H. Matsumura, A. Heya, R. Iizuka, A. Izumi, A. Q. He and N. Otsuka, “Low-temperature formation of device-quality polysilicon films by cat-CVD method”, Mat. Res. Soc. Symp. Proc., vol. 452 (1997) pp. 983-988. [18] D. Peiró, J. Bertomeu, C. Voz, J. M. Asensi, J. Puigdollers and J. Andreu, “Structure of microcrystalline silicon films deposited at very low temperatures by hot-wire CVD”, Conference Proceedings of the 14th European Photovoltaic Solar Energy Conference, 1997, pp. 1428-1432. [19] Q. Wang, E. Iwaniczko, A. H. Mahan and D. L. Williamson, “Microcrystalline Si and (Si,Ge) Solar Cells”, Mat. Res. Soc. Symp. Proc., vol. 507 (1998) pp. 903-908. [20] R. E. I. Schropp and M. Zeman, "Amorphous and microcrystalline silicon solar cells, Modeling, Materials and Device Technology", Kluwer Academic Publishers, 1998. [21] R. E. I Schropp, K. F. Feenstra, E. C. Molenbroek, H. Meiling and J. K. Rath, “Device-quality polycrystalline and amorphous silicon films by hot-wire chemical vapor deposition”, Phil. Mag. B, vol. 76-3 (1997) pp. 309-321. [22] V. Patrick, “Hot-Wire chemical vapor deposition of polycrystalline silicon from gas molecule to solar cell”, Ph.D thesis, Universiteit Utrecht, Nederlands, 2002. [23] H. Wiesmann, A. K. Ghosh, T. McMahon and M. J. Strongin, “a-Si : H produced by high-temperature thermal decomposition of silane”, J. Appl. Phys., vol. 50 (1979) pp. 3752-3754. [24] H. Matsumura and H. Tachibana, “Amorphous silicon produced by a new thermal chemical vapor deposition method using intermediate species SiF2”, Appl. Phys. Lett., vol. 47 (1985) pp. 833-835. [25] H. Matsumura, “Catalytic chemical vapor deposition (CAD–CVD) method producing high quality hydrogenated amorphous silicon”, Jpn. J. Appl. Phys., vol. 25 (1986) pp. L949-951. [26] M. Heintze, R. Zedlitz, H. N. Wanka and M. B. Schubert, “Amorphous and microcrystalline silicon by hot wire chemical vapor deposition”, J. Appl. Phys., vol. 79 (1996) pp. 2699-2706. [27] A. H. Mahan, J. Carapella, B. P. Nelson, R. S. Crandall, and I. Balberg, “Deposition of device quality, low H content amorphous silicon”, J. Appl. Phys., vol. 69 (1991) pp. 6728-6730. [28] J. Doyle, R. Robertson, G. H. Lin, M. Z. He and A. Gallagher, “Production of high-quality amorphous silicon films by evaporative silane surface decomposition”, J. Appl. Phys., vol. 64 (1988) pp. 3215-3223. [29] E. C. Molenbroek, A. H. Mahan, E. J. Johnson and A. C. Gallagher, “Film quality in relation to deposition conditions of a-SI:H films deposited by the hot wire'' method using highly diluted silane”, J. Appl. Phys., vol. 79 (1996) pp. 7278-7292. [31] S. Bauer, B. Schröder and H. Oechsner, “The effect of hydrogen dilution on the microstructure and stability of a-Si:H films prepared by different techniques”, J. Non-Cryst. Solids, vol. 227-230 (2003) pp. 34-38. [32] M. K. V. Veen and R. E. I. Schropp, “Beneficial effect of a low deposition temperature of hot-wire deposited intrinsic amorphous silicon for solar cells”, J. Appl. Phys., vol. 93 (2003) pp. 121-125. [33] S. Klein, F. Finger, R. Carius, B. Rech, L. Houben, M. Luysberg and M. Stutzmann, “High efficiency thin film solar cells with intrinsic microcrystalline silicon prepared by Hot Wire CVD”, Mat. Res. Soc. Symp. Proc., vol. 715 (2002) A26.2. [34] B. Stannowski, R. E. I Schropp, R. B. Wehrspohn and M. J. Powell, “Amorphous-silicon thin-film transistors deposited by VHF-PECVD and hot-wire CVD”, J. Non-Cryst. Solids, vol. 299-302 (2002) pp. 1340-1344. [35] H. Matsumura, H. Umemoto and A. Masuda, “Cat-CVD (hot-wire CVD): how different from PECVD in preparing amorphous silicon”, J. of Non-Crystalline Solids, vol. 338-340 (2004) pp. 19-26. [36] A. Masuda, A. Izumi, H. Umemoto and H. Matsumura, “What is the difference between catalytic CVD and plasma-enhanced CVD ? Gas-phase kinetics and film properties”, Vacuum, vol. 66 (2002) pp. 293–297. [37] N. Honda, A. Masuda and H. Matsumura, “Transport mechanism of deposition precursors in catalytic chemical vapor deposition studied using a reactor tube”, J. Non-Cryst. Solids, vol. 266-269 (2000) pp. 100-104. [38] C. Horbach, W. Beyer and H. Wagner, “Deposition of a-Si:H by high temperature thermal decomposition of silane”, J. Non-Cryst. Solids, vol. 114 (1989) pp. 187-189. [39] B. P. Nelson, Y. Xu, A. H. Mahan, D. L. Williamson and R. S. Crandall, “Amorphous silicon devices operate best in the near IR”, Mater. Res. Soc. Symp. Proc., vol. 609 (2000) A22.8.1. [40] A. E. Becquerel, “Mémoire sur les effets électriques produits sous l influence des rayons solaires”, Compt. Rendus de L’ Academic des Sciences, vol. 9 (1839) pp.561-567. [41] W. Adams and R. Day, Proc. Roy. Soc. vol. A25 (1877) p. 113. [42] W. shockley, “The Theory of p-n Junction in Semiconductors and p-n Junction Transistors”, Bell Syst. Tech. Jurn., vol. 28 (1949) pp. 435-441. [43] J. Bardeen and W. H. Brattain, “The Transistor, A Semi-Conductor Triode”, Phys. Rev., vol. 74 (1948) pp. 230-231. [44] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., vol. 25 (1954) pp. 676-677. [45] D. E. Carlson and C. R. Wronski, “Electroabsorption avalanche photodiodes”, Appl. Phys. Lett., vol. 28 (1976) pp. 671-673. [46] K. W. Mitchell and C. Eberspacher, “Assessment of MOCVD- and MBE-growth GaAs for high-efficiency solar cell applications”, Trans. Elec. Dev., vol. 37 (1990) pp. 469-477. [47] M. Wolf, “Historical development of solar cells”, in Solar Cells, Backus C. E., IEEE Press, Piscataway. [48] J. Zhao, A. Wang and M. A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Sol. Energy Mat. and Sol. Cells vol. 65 (2001) pp.429-435. [49] T. Sawada et al., “High-efficiency a-Si/c-Si heterojunction solar cell”, Conf. Record of the IEEE 1st World Conference on Photovoltaic Energy Conversion, Hawaii, USA, 1994, pp. 1219-1226. [50] M. Tucci, G. D. Cesare, “17 % efficiency heterostructure solar cell based on p-type crystalline silicon”, J. Non-Cryst. Solids, vol. 338-340 (2004) pp. 663-667. [51] E. Centurioni, D. Iencinella, R. Rizzoli and F. Zignani, “Silicon heterojunction solar cell: a new buffer Layer concept with low-temperature epitaxial silicon”, IEEE Transactions on Electron Devices, vol. 51 (2004) pp. 1818-1824. [52] H. M. Branz, C. W. Teplin, M. Page, E. Iwaniczko, L. Roybal, D. H. Levi, R. Bauer, Y. Xu, P. Stradins, T. Wang and Q. Wang, “Rcent advances in hot-wire R&D at NREL: From 18 % silicon heterojunction cells to silicon epitaxy low temperatures”, Conf. Record of the 4th International Conference on Hot-Wire CVD (Cat-CVD) process, Gifu, Japan, 2006, p. 327-330. [53] C. Voz, D. Munoz, M. Fonrodona, I. Martin, J. Puigdollers, R. Alcubilla, J. Escarre, J. Bertomeu and J. Andreu, “Bifacial heterojunction silicon solar cells by hot-wire CVD with open-circuit voltages exceeding 600 mV”, Thin Solid films, vol.511-512 (2006) pp. 415-419. [54] Q. Wang, M. R. Page, Y. Xu, E. Iwaniczko, E. Whnams, T. H. Wang, “Development of a hot-wire chemical vapor deposition n-type emitter on p-type crystalline Si-based solar cells”, Thin Solid films, vol. 430 (2003) pp. 208-211. [55] Q. Zhang, M. Zhu, F. Liu and J. Li, “Influence of hydrogen treatment time on the performance of nc-Si:H/c-Si heterojunction solar cells in HWCVD process”, Conf. Record of the 15th International Photovoltaic Science & Engineering Conversion, Shanghai, China, 2005, p. 1170-1171. [56] K. Maknys, A. G. Ulyashin, H. Stiebig, A. Y. Kuznetsov and B. G. Svensson, “Analysis of ITO thin layers and interfaces in heterojunction solar cells structures by AFM, SCM and SSRM methods”, Thin Solid films, vol. 511-512 (2006) pp. 98-102. [57] M. Taguchi, K. Kawamoto, S. Tsuge, T. Baba, H. Sakata, M. Morizane, K. Uchihashi, N. Nakamura, S. Kiyama and O. Oota, “HITTM cells high-efficiency crystalline Si cells with novel structure”, Prog. Phototovolt. Res. Appl., vol. 8 (2000) pp. 503-513. [58] M. W. M. van Cleef, J. K. Rath, F. A. Rubinelli, C. H. M. van dert Werf, R. E. I. Schropp and W. F. van der Weg, “Performance of heterojunction p+ microcrystalline silicon n crystalline silicon solar cells”, J. Appl. Phys., vol. 82 (1997) pp. 6089-6095. [59] J. Pl, E. Centurioni, C. Summonte, R. Rizzoli, A. Migliori, A. Desalvo and F. Zignani, “Homojunction and heterojunction silicon solar cells deposited by low temperature-high frequency plasma enhanced chemical vapour deposition”, Thin Solid Films, vol. 405 (2002) pp. 248-255. [60] B. Jagannathan and W. A. Anderson, “Defect study in amorphous silicon/crystalline silicon solar cells by thermally stimulated capacitance”, J. Appl. Phys., vol. 82 (1997) pp. 1930-1935. [61] C. Voz, I. Martin, A. Orpella, J. Puigdollers, M. Vetter, R. Alcubilla, D. Soler, M. Fonrodona, J. Bertomeu and J. Andreu, “Surface passivation of crystalline silicon by Cat-CVD amorphous and nanocrystalline thin silicon films”, Thin Solid Films, vol. 430 (2003) pp. 270-273. [62] M. Kunst, S. V. Aichberger, G. Citarella and F. Wu, “Amorphous silicon/crystalline silicon heterojunctions for solar cells”, J. Non-Cryst. Solids, vol. 299–302 (2002) pp. 1198-1202. [63] P. Torres, J. Meier, R. Fluckiger, U. Kroll, J. A. A. Selvan, H. Keppner and A. Shah, “Device grade microcrystalline silicon owing to reduced oxygen contamination”, Appl. Phys. Lett., vol. 69 (1996) pp. 1373-1375. [64] V. P. A. T. T. Van, O. L. J. Gijzeman, J. K. Rath and R. E. I. Schropp, “The influence of different catalyzers in hot-wire CVD for the deposition of polycrystalline silicon thin films”, Thin Solid Films, vol. 395 (2001) pp. 194-197. [65] K. Ishibashi, “Development of the Cat-CVD apparatus and its feasibility for mass production”, Thin Solid Films, vol. 395 (2001) pp. 55-60 [66] A. H. Mahan, “Hot wire chemical vapor deposition of Si containing materials for solar cells”, Sol. Energy Mater. Sol. Cells, vol. 78 (2003) pp. 299-327. [67] M. Stöger, A. Breymesser, V. Schlosser, M. Ramadori, V. Plunger, D. Peiro, C. Voz, J. Bertomeu, M. Nelhiebel, P. Schattscheneider and J. Andreu, “Investigation on defect formation and electronic transport in microcrystalline silicon deposited by Hot Wire CVD”, Physica B, vol. 273-274 (1999) pp. 540-543. [68] V. Schlosser, A. Breymesser, D. Soler, M. Fonrodona, C. Voz and J. Bertomeu, “A Deep Level Transient Study of Impurity Centres in Microcrystalline Silicon Obtained by Hot-Wire Chemical Vapour Deposition”, Proceedings of the 16th ECPVSEC, Glasgow, 2000, pp. 510-513. [69] C. Voz, D. Peiro, J. Bertomeu, D. Soler, M. Fonrodona and J. Andreu, “Optimisation of doped microcrystalline silicon films deposited at very low temperatures by hot-wire CVD”, Materials Science and Engineering B, vol. 69-70 (2000) pp. 278-283. [70] H. Matsumura, “Formation of Silicon-Based Thin Films Prepared by Catalytic Chemical Vapor Deposition (Cat-CVD) Method”, Jpn. J. Appl. Phys., vol. 37, (1998) pp. 3175-3187. [71] F. Diehl, M. Scheib, B. Schröder and H. Oechsner, “Enhanced optical absorption in hydrogenated microcrystalline silicon: an absorption model”, J. Non-Cryst. Solids, vol. 227-230 (1998) pp. 973-976. [72] H. Matsumura, “Study on catalytic chemical vapor deposition method to prepare hydrogenated amorphous silicon”, J. Appl. Phys., vol. 65 (1989) pp. 4396-4402. [73] S. Morrison and A. Madan, “Deposition of amorphous and microcrystalline silicon using a graphite filament in the hot wire chemical vapor deposition technique”, J. Vac. Sci. Technol. A, vol. 19 (2001) pp. 2817-2819. [74] W. Ruihua, L. Zhiqiang and L. Li, L. Jahe, “Study of hot wire chemical vapor deposition technique for silicon thin film”, Sol. Energy Mater. Sol. Cells, vol. 62 (2000) pp. 193-199. [75] P. A. T. T. V. Veenendaal, C. H. M. Werf and R. E. I. Schropp, “Influence of grain environment on open circuit voltage of hot-wire chemical vapour deposited Si:H solar cells”, J. Non-Cryst. Solids, vol. 299-302 (2002) pp. 1184-1188. [76] J. Guillet, C. Niikura, J. E. Bouree, J. P. Kleider, C. Longeaud and R. Brüggemann, “Microcrystalline silicon deposited by the hot-wire CVD technique”, Mat. Sci. Eng. B, vol. 69-70, (2000) pp. 284-288. [77] R. E. I.Schropp, “Advances in solar cells made with hot wire chemical vapor deposition (HWCVD): superior films and devices at low equipment cost”, Thin Solid Films, vol. 403-404, (2002) pp. 17-25. [78] J. B. Balaguero, “Progress in hot-wire deposition nanocrystalline silicon solar cellsS”, Ph.D thesis, Universital de Barcelona, Spain, 2003. [79] Source: Y. Akasaka, Osaka University, SEMI-KANC Nanotechnology Seminar, January 31, 2007. [80] J. Tauc, “Optical Properties of Solids”, North-Holland, Amsterdam, 1972. [81] P. J. Zanzucchi, C. R. Wronski and D. E. Carlson, “Optical and photoconductive properties of discharge-produced amorphous silicon”, J. Appl. Phys., vol. 48 (1977) pp. 5227-5236. [82] E. Bustarret, M. A. Hachia, and M. Brunel, “Experimental determination of the nanocrystalline volume fraction in silicon thin films from Raman spectroscopy”, Appl. Phys. Lett., vol. 52 (1988) pp. 1675-1677. [83] M. Vanecek, A. Poruba, Z. Remes. N. Beck, M. Nesladek, “Optical Properties of Microcrystalline Materials”, J. Non-Cryst. Sol., vol. 227-230 (1998) pp. 967-972. [84] Z. Iqbal, S. Veprek, A. P. Webb and P. Capezzuto, “Raman scattering from small particle size polycrystalline silicon”, Solid State Commum., vol. 37 (1981) pp. 993-996. [85] T. Okada, T. Iwaki, K. Yamamoto, H. Kasahara and K. Abe, “Raman scattering from gas-evaporated silicon small particles”, Solid State Commum., vol. 49 (1984) pp. 809-812. [86] M. H. Brodsky, M. Cardona, and J. J. Cuomo, “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B, vol. 16556 (1977) pp. 3556-3571. [87] N. Maley, “Critical investigation of the infrared-transmission-data analysis of hydrogenated amorphous silicon alloys”, Phys. Rev. B, vol. 46, (1992) pp. 2078-2085. [88] J. K. Rath, R. E. I. Schropp and W. Beyer, “Hydrogen at compact sites in hot-wire chemical vapour deposited polycrystalline silicon films”, J. Non-Cryst. Sol., vol. 266-269 (2000) pp. 190-194. [89] J. Meier, P. Torres, R. Platz, S. Dubail, U. Kroll, J. A. Anna Selvan, N. P. Vaucher, C. Hoh, D. Fischer, H. Keppner, A. Shah, K. D. Ufert, P. Giannoules and J. Koeler, Amorphous Silicon Technology, vol. 420 (1996) pp. 879-885. [90] D. T. Britton, A. Hempel, M. Harting, G. Kogel, P. Sperr, W. Triftshauser, C. Arendse and D. Knoesen, “Annealing and recrystallization of hydrogenated amorphous silicon”, Phy. Rev. B, vol. 64 (2001) pp. 75403-1-75403-8. [91] J. Wallinga, “III-V Solar Cells and the Metal Organic Vapour Phase Epitaxy Process”, Ph.D. thesis, Universiteit Utrecht, 1998. [92] G. Moddel, D. A. Anderson and W. Paul, “Derivation of the low-energy optical-absorption spectra of a-Si:H from photoconductivity”, Phys. Rev. B, vol. 22 (1980) pp. 1918-1925. [93] M. Zhu and H. Fritzsche, “Density of states and mobility-lifetime product in hydrogenated amorphous silicon, from thermostimulated conductivity and photoconductivity measurements”, Phil. Mag. B, vol. 53 (1986) pp. 41-54. [94] W. B. Jackson, N. M. Amer, A. C. Boccara and D. Fournier, “Photothermal Deflection Spectroscopy and detection”, Appl. Optics, vol. 20 (1981) pp. 1333-1334. [95] M. Kumeda and T. Shimizu, “ESR in hydrogenated amorphous silicon”, Jap. J. Appl. Phys., vol. 19 (1980) pp. L197-L200. [96] S. R. Wenham, M. A. Green and M. E. Watt, “Applied Photovoltaics”, Centre for Photovoltaic Devices and Systems, 1996. [97] B. P. Nelson, Y. Xu, A. H. Mahan, D. L. Williamson and R. S. Crandall, “Hydrogenated Amorphous Silicon Grown by Hot-Wire CVD at Deposition Rates up to 1 µm/minute”, Mater. Res. Soc. Symp. Proc., vol. 609 (2000) p. A22.8.1. [98] A. G. Sault and D.W. Goodman, “Reactions of silane with the W(110) surface”, Surf. Sci., vol. 235 (1990) pp. 28-46. [99] S. Bauer, W. Herbst, B. Schroeder, H. Oechsner, W. Frammelsberger and H. Schade, “An Approach towards. High Efficiency Hot-wire CVD based a-Si:H PIN Solar. Cells”, Proc. 14th European Photovoltaic Solar Energy Conf., Barcelona, 1997, p. 617. [100] K. K. S. Lau, H. G. P. Lewis, S. J. Limb, M. C. Kwan and K. K. Gleason, “Hot-wire chemical vapor deposition (HWCVD) of fluorocarbon and organosilicon thin films”, Thin Solid Films, vol. 395 (2001) pp. 288-291. [101] Y. Nozaki, K. Kongo, T. Miyazaki, M. Kitazoe, K. Horii, H. Umemoto, A. Masuda and H. Matsumura, “Identification of Si and SiH in catalytic chemical vapor deposition of SiH4 by laser induced fluorescence spectroscopy”, J. Appl. Phys., Vol. 88 (2000) pp. 5437-5443. [102] Y. Nozaki, M. Kitazoe, K. Horii, H. Umemoto, A. Masuda and H. Matsumura, “Identification and gas phase kinetics of radical species in Cat-CVD processes of SiH4”, Thin Solid Films, vol. 395 (2001) pp. 47-50. [103] H. Umemoto, K. Ohara, D. Morita, Y. Nozaki, A. Masuda and H. Matsumura, “Direct detection of H atoms in the catalytic chemical vapor deposition of the SiH4/H2 system”, J. Appl. Phys., vol. 91 (2002) pp. 1650-1656. [104] H. Umemoto, Y. Nozaki, M. Kitazoe, K. Horii, K. Ohara, D. Morita, K. Uchida, Y. Ishibashi, M. Komoda, K. Kamesaki, A. Izumi, A. Masuda and H. Matsumura, “Effects of atomic hydrogen in gas phase on a-Si:H and poly-Si growth by catalytic CVD”, J. Non-Cryst. Solids, vol. 299–302 (2002) pp. 9-13. [105] M. Karasawa, A. Masuda, K. Ishibashi and H. Matsumura, “Development of Cat-CVD apparatus - a method to control wafer temperatures under thermal influence of heated catalyzer”, Thin Solid Films, vol. 395 (2001) pp. 71-74. [106] A. Heya, A. Masuda and H. Matsumura, “Low-temperature crystallization of morphous silicon using atomic hydrogen generated by catalytic reaction on heated tungsten”, Appl. Phys. Lett., vol. 74 (1999) pp. 2143–2145. [107] Shui-Yang Lien, Hsin-Yuan Mao and Dong-Sing Wuu, “Incubation effected upon of polycrystalline silicon films on glass deposited by hot-wire CVD”, Will be published in Chemical Vapor Deposition. [108] D. S. Wuu, S. Y. Lien, H. Y. Mao, B. R. Wu, I. C. Hsieh, P. C. Yao, J. H. Wang and W. C. Chen, “Growth and characterization of polycrystalline Si films prepared by hot-wire chemical vapor deposition”, Thin Solid Films, vol. 498 (2006) pp. 9-13. [109] R. W. Collins, A. S. Ferlauto, and C. R. Wronski, “Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry”, Sol. Energ. Mat. Sol. C., vol. 78 (2003) pp. 143-180. [110] G. M. Ferreira, A. S. Ferlauto, C. Chen, R. J. Koval, J. M. Pearce, C. Ross, C. R. Wronski and R. W. Collins, “Kinetics of silicon film growth and the deposition phase diagram”, J. Non-Cryst. Solids, vol. 338-340 (2004) pp. 13-18. [111] E. V. Sauvain, U. Kroll, and A. Shah, “Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution”, J. Appl. Phys., vol. 87 (2000) pp. 3137-3142. [112] E. C. Molenbroek, A. H. Mahan and A. C. Gallagher, “Mechanisms influencing "hot-wire" deposition of hydrogenated amorphous silicon”, J. Appl. Phys., vol. 82 (1997) pp. 1909-1917 [113] A. H. Mahan, Y. Xu, B. P. Nelson, R. S. Crandall, J. D. Cohen, K. C. Palinginis and A. C. Gallagher, “Saturated defect densities of hydrogenated amorphous silicon grown by hot-wire chemical vapor deposition at rates up to 150 Å/s”, Appl. Phys. Lett., vol. 78 (2001) pp. 3788-3790. [114] V. M. K. Van and R. E. I. Schropp, “Amorphous silicon deposited by hot-wire CVD for application in dual junction solar cells”, Thin Solid Films, vol. 403-404 (2002) pp. 135-138. [115] J. K. Rath, M. Galetto, C. H. M. Werf, K. F. Feenstra, H. Meiling, M. W. M. Cleef and R. E. I. Schropp, “Hot Wire CVD: A one step process to obtain thin film polycrystalline silicon at a low temperature on cheap substrate”, Technical Digest Int. PVSC-9 Conf., Miyazaki, Japan, 1996, p.227. [116] J. K. Rath, K. F. Feenstra, D. Ruff, H. Meiling and R. E. I. Schropp, “Purely intrinsic poly-silicon films by hot wire chemical vapor deposition”, Mat. Res. Soc. Symp. Proc., vol. 452 (1996) pp. 977-981. [117] K. F. Feenstra, “Deposition of amorphous silicon films by hot-wire chemical vapor deposition”, Ph.D. thesis, Utrecht University, 1998. [118] K. H. Jun, , J. D. Ouwens, R. E. I. Schropp, J. Y. Lee, J. H. Choi, H. S. Lee, K. S. Lim, “Low degradation and fast annealing effects of amorphous silicon multilayer processed through alternate hydrogen dilution”, Journal of Applied Physics, vol. 88(8) (2000) pp. 4881-4888. [119] R. E. I. Schropp, B. Stannowski, A. M. Brockhoff, P. A. T. T. van Veenendaal, J. K. Rath, “Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells”, Mater. Phys. Mech., vol. 1 (2000) pp. 73-82. [120] P. Müller, E. Conrad, T. R. Omstead and P. Kember, “Deposition of Poly-Si and Si-Based Dielectrics by ECRCVD. and RTCVD”, Conference Proceedings of the 13th European Photovoltaic Solar Energy Conference, 1995, p.1742. [121] C. Horbach, W. Beyer and H. Wagner, “Investigation of the precursors of a-Si:H films produced by decomposition of silane on hot tungsten surfaces”, J. Non-Cryst. Solids, vol. 137-138 (1991) pp. 661-664. [122] R. Zedlitz, F. Kessler and M Heintze, “Deposition of a-Si:H with the hot-wire technique”, J. Non-Cryst. Solids, vol. 164-166 (1993) pp. 83-86. [123] S. Bauer, B. Schröder, W. Herbst and M. Lill, “A significant step towards fabrication of high efficient, more stable a-Si:H solar cells by thermo-catalytic CVD”, Proc. of the 2nd Word Conference and Exhibition on Photovoltaic Solar Energy Conversion, Vienna, 1998, p. 363. [124] R. O. Dusane, R. Suvarna, S. R. Dusane, V. G. Bhide and S. T. Kshirsagar, “Hydrogenated microcrystalline silicon films produced at low temperature by the hot wire deposition method”, Appl. Phys. Lett., vol. 63 (1993) pp. 2201-2203. [125] D. Han, K. Wang, J. M. Owens, L. Gedvilas, B. Nelson, H. Habuchi and M. Tanaka, “Hydrogen structures and the optoelectronic properties in transition films from amorphous to microcrystalline silicon prepared by hot-wire chemical vapor deposition”, J. Appl. Phys., vol. 93 (2003) pp. 3776-3783. [126] P. Brogueira, J. P. Conde, S. Arekat, V. Chu, “Amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition at filament temperatures between 1500 and 1900°C”, J. Appl. Phys., vol. 79 (1996) pp. 8748-8760. [127] M. Heintze, R. Zedlitz, H. N. Wanka, M. B. Schubert, “Amorphous and microcrystalline silicon by hot wire chemical vapor deposition”, J. Appl. Phys., vol. 79 (1996) pp. 2699-2706. [128] P. Alpuim, V. Chu, J. P. Conde, “Amorphous and microcrystalline silicon films grown at low temperatures by radio-frequency and hot-wire chemical vapor deposition”, J. Appl. Phys., vol. 86 (1999) pp. 3812-3821. [129] D. Peiró, “Microcrystalline silicon obtained by Hot-. Wire Chemical Vapour Deposition for photovoltaic applications”, PhD Thesis, Universitat de Barcelona, 1999. [130] R. Brüggermann, J. P. Kleider, C. Longeaud, D. Mencaraglia, J. Guillet, and C. Niikura, “Electronic properties of silicon thin films prepared by hot-wire chemical vapour deposition”, J. Non-Cryst. Solids, vol. 266-269 (2000) pp. 258-262. [131] D. Han, G. Yue, J. D. Lorentzen, J. Lin, H. Habuchi and Q. Wang, “Optical and electronic properties of microcrystalline silicon as a function of microcrystallinity”, J. Appl. Phys., vol. 87 (2000) pp. 1882-1888. [132] A. H. Mahan, J. Yang, S. Guha and D. L. Williamson, “Structural changes in a-Si:H film crystallinity with high H dilution” Phys. Rev. B, vol. 61 (2000) pp. 1677-1680. [133] J. E. Bourée, “Correlated structural and electronic properties of microcrystalline silicon films deposited at low temperature by catalytic CVD”, Thin Solid Films, vol. 395 (2001) pp. 157-162. [134] D. H. Levi, B. P. Nelson, J. D. Perkins and H. R. Moutinho, “In situ studies of the amorphous to microcrystalline transition of hot-wire chemical vapor deposition Si:H films using real-time spectroscopic ellipsometry”, J. Vac. Sci. Technol. A, vol. 21 (2003) pp. 1545-1549. [135] S. Kumar, B. Drevillon and C. Godet, “In situ spectroscopic ellipsometry study of the growth of microcrystalline silicon”, J. Appl. Phys. vol. 60 (1986) pp.1542-1544. [136] H. Matsumura, H. Umemoto, A. Izumi and A. Masuda, “Recent progress of Cat-CVD research in Japan-bridging between the first and second Cat-CVD conferences”, Thin Solid Films, vol. 430 (2003) pp. 7-14. [137] M. Zhu, X. Guo, G. Chen, H. Han, M. He and K. Sun, “Microstructures of microcrystalline silicon thin films prepared by hot wire chemical vapor deposition”, Thin Solid Films, vol. 360 (2000) pp. 205-212. [138] F. Finger, J. Muller, C. Malten, R. Carious and H. Wagner, “Electronic properties of microcrystalline silicon investigated by electron spin resonance and transport measurements”, J. Non. Cryst. Solids, vol. 266-269 (2000) pp. 511-518. [139] J. K. Rath, A. Barbon and R. E. I. Schropp, “Clustered defects in hot wire chemical vapor deposited poly-silicon films”, J. Non. Cryst. Solids, vol. 266-269 (1999) pp. 548-552. [140] J. K. Rath, “Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications”, Sol. Energy Mater. Sol. Cells, vol. 76 (2003) pp. 431-487. [141] J. Muller, F. Finger, C. Malten and H. Wagner, “Photocarrier recombination in microcrystalline silicon studied by light induced electron spin resonance transients, in: Advances in microcrystalline and Nanocrystalline Semiconductors”, Materials Research Society Symp. Proc., vol. 452 (1997) pp. 827-832. [142 J. K. Rath, M. Meiling and R. E. I. Schropp, “Purely intrinsic poly-Si films for n-i-p solar cells”, Jpn. J. Appl. Phys., vol. 36 (1997) pp. 5436-5443. [143] C. H. Seager, D. J. Sharp and J. K. G. Panitz, “Passivation of grain boundaries in silicon”, J. Vac. Sci. Technol., vol. 20 (3) (1982) pp. 430-435. [144] L. L. Kazmerski and J. R. Dick, “Determination of grain boundary impurity effects in polycrystalline silicon”, J. Vac. Sci. Technol. A, vol. 2 (1984) pp. 1120-1122. [145] L. L. Kazmerski, A. J. Nelson, R. G. Dhere, A. Yahia and F. Abou-Elfotouh, “Neutralization and bonding mechanisms of shallow acceptors at grain boundaries in polycrystalline silicon”, J. Vac. Sci. Technol. A, vol. 6 (1988) pp. 1007-1011. [146] F. Liu, M. Zhu, Y. Feng, Y. Han and J. Liu, “Electrical transport properties of microcrystalline silicon thin films prepared by Cat-CVD”, Thin Solid Films vol. 395 (2001) pp. 97-100. [147] M. Komoda, K. Kamesaki, A. Masuda and H. Matsumura, “Formation of silicon films for solar cells by the Cat-CVD method”, Thin Solid Films, vol. 395 (2001) pp. 198-201. [148] M. Konagai, T. Tsushima, M. Kim, K. Asakusa, A. Yamada, Y. Kudriavtsev, A. Villegas and R. Asomoza, “High-rate deposition of silicon thin-film solar cells by the hot-wire cell method”, Thin Solid Films, 395 (2001) pp. 152-156. [149] H. Matsumura, “Summary of research in NEDO Cat-CVD project in Japan”, Thin Solid Films, vol. 395 (2001) pp. 1-11. [150] R. E. I. Schropp, P. F. A. Alkemade, J. K. Rath, “Poly-silicon films with low impurity concentration made by hot wire chemical vapour deposition”, Sol. Energy Mater. Sol. Cells, vol. 65 (2001) pp. 541–547. [151] W. E. Spear and P. G. L. Comber, Solid State Communications, vol. 17 (1975) p. 1193. [152] R. A. Street, “Hydrogenated Amorphous Silicon”, Cambridge University Press, Cambridge, 1991. [153] P. Brogueira, V. Chu, A. C. Ferro and J. P. Conde, “Doping of amorphous and microcrystalline silicon films deposited by hot-wire chemical vapor deposition using phosphine and trimethylboron”, J. Vac. Sci. Technol. A, vol. 15 (1997) pp. 2968-2982. [154] P. Alpuim, V. Chu and J. P. Conde, “Doping of amorphous and microcrystalline silicon films deposited at low substrate temperatures by hot-wire chemical vapor deposition”, J. Vac. Sci. Technol., vol. 19 (2001) pp. 2328-2334. [155] J. P. Conde, P. Alpuimx, M. Boucinha, J. Gaspar And V. Chu, “Amorphous and microcrystalline silicon deposited by hot-wire chemical vapor deposition at low substrate temperatures: application to devices and thin-film microelectromechanical systems”, Thin Solid Films, vol. 395 (2001) pp. 105-111. [156] M. Fonrodona, D. Soler, J. Bertomeu and J. Andreu, “Investigations on doping of amorphous and nanocrystalline silicon films deposited by catalytic chemical vapour deposition”, Thin Solid Films, vol. 395 (2001) pp. 125-129. [157] Q. Wang, E. Iwaniczko, Y. Xu, W. Gao, B. P. Nelson, A. H. Mahan, R. S. Crandall and H. M. Branz, “Amorphous and Heterogeneous Silicon Thin Films”, Mat. Res. Soc. Symp. Proc., vol. 609 (2000) p. A4.3.1. [158] U. Weber, M. Koob, R. O. Dusane, C. Mukherjee, H. Seitz and B. Schröder, “a-Si:H based solar cells entirely deposited by hot-wire CVD”, Proc. of the 16th European Photovoltaic Solar Energy Conference, Glasgow, 2000, pp. 286-291. [159] C. Mukherjee, U. Weber, H. Seitz and B. Schroder, “Growth of device quality p-type μc-Si:H films by hot-wire CVD for a-Si pin and c-Si heterojunction solar cells”, Thin Solid Films, vol. 395 (2001) pp. 310-314. [160] B. P. Nelson, E. Iwaniczko, A. H. Mahan, Q. Wang, Y. Xu, R. S.Crandall and H. M. Branz, “High-deposition rate a-Si:H n–i–p solar cells grown by HWCVD”, Thin Solid Films, vol. 395 (2001) pp. 292-297. [161] A. H. Mahan, Y. Xu, E. Iwaniczko, D. L. Williamson, B. P. Nelson and Q. Wang, “Amorphous silicon films and solar cells deposited by HWCVD at ultra-high deposition rates”, J. Non-Cry. Solids, vol. 299-303 (2002) pp. 2-8. [162] M. Kupich, P. Kumar and B. Schröder, “Preparation of n-i-p solar cells entirely by HWCVD with microcrystalline p-layer”, Thin Solid Films, vol. 430 (2003) pp. 236-239 [163] S. Guha, J. Yang, P. Nath and M. Hack, “Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells”, Appl. Phys. Lett. Vol. 49 (1986) pp. 218-210. [164] E. D. Palik, O. J. Glembocki, I. Heard, P. S. Burno and L. Tenerz, “Etching roughness for (100) silicon surfaces in aqueous KOH,” J. Appl. Phys., vol. 70, (1991) pp. 3291-3300. [165] Q. B. Vu, D. A. Stricker and P. M. Zavracky, “Surface Characteristics of (100) Silicon Anisotropically Etched in Aqueous KOH” J. Electrochem. Soc., vol. 143, (1996) pp. 1372-1375. [166] M. A. Green, J. Zai, A. Wang and R. Wenham, “45 % efficient silicon photovoltaic cell under monochromatic light,” IEEE Electron Dev. Lett., vol. 13 (1992) pp. 317-318. [167] U. Gangopadhyay, K. Kim, A. Kandol and J. Yi, H. Saha, “Role of hydrazine monohydrate during texturization of large-area crystalline silicon solar cell fabrication,” Sol. Energy Mater. Sol. Cells, vol. 90, (2006) pp. 3094-3103. [168] S. R. Chitre, “A high volume cost efficient production microstructuring process,” in 13th IEEE International Photovoltaic Specialist Conference, 1978, pp. 152-154. [169] J. S. You, D. Kim, J. Y. Huh, H. J. Park, J. J. Pak and C. S. Kang, “Experiments on anisotropic etching of Si in TMAH”, Sol. Energy Mater. Sol. Cells, vol. 66 (2006) pp. 37-43. [170] R. Chaoui, M. Lachab, F. Chiheub and N. Seddiki, “Comparison of texturing methods for monocrystalline silicon solar cells using KOH and Na2CO3”, in 14th European Photovoltaic Solar Energy Conference, 1997, pp. 812-815. [171] Y. Nishimoto and K. Namba, “Investigation of texturization for crystalline silicon solar cells with sodium carbonate solutions”, Sol. Energy Mater. Sol. Cells, vol. 61 (2000) pp. 393-402. [172] Z. Xi, D. Yang and D. Que, “Texturization of monocrystalline silicon with tribasic sodium phosphate”, Sol. Energy Mater. Sol. Cells, vol. 77 (2003) pp. 255-263. [173] P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces”, J. Appl. Phys., vol. 62 (1987) pp. 243-249. [174] P. Campbell and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells”, Sol. Energy Mater. Sol. Cells, vol. 65 (2001) pp. 369-275. [175] T. Yagi, Y. Uraoka, and T. Fuyuki, “Ray-trace simulation of light trapping in silicon solar cell with texture structures”, Sol. Energy Mater. Sol. Cells, vol. 90 (2006) pp. 2647-2656. [176] S. Y. Lien, B. R. Wu, D. S. Wuu and J. C. Liu, “Fabrication and characteristics of n-Si/c-Si/p-Si heterojunction solar cells using Hot-Wire CVD”, in 4th International Hot-Wire CVD Conference, 2006, pp. 331-333. [177] P. K. Singh, R. Kumar, M. Lal, S. N. Singh and B. K. Das, “Effectiveness of anisotropic etching of silicon in aqueous alkaline solutions”, Sol. Energy Mater. Sol. Cells, vol. 70 (2001) pp. 103-113. [178] K. B. Sundaram, A. Vijayakumar, and G. Subramanian, “TMAH texturisation and etching of interdigitated back contact solar cells”, Micro. Eng., vol. 77 (2005) pp. 230-237. [179] H. Seidel, L. Csepregi, A. Heuberger and H. Baumgartel, “Anisotropic Etching of Crystalline Silicon in Alkaline Solutions”, J. Electrochem. Soc., vol. 137, (1990) pp. 3626-36332. [180] A. Ulyashin, M. Scherff, R. Hussein, M. Gao, R.Job and W. Fahrner, “Comparison of multicrystalline silicon surfaces after wet chemical etching and hydrogen plasma treatment : application to heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, vol. 74, (2002) pp.195-201. [181] D. Clugston and P. Basore, “Pc1D Version 5: 32-bit Solar Cell Modeling on Personal Computers. Conference Record”, 26th IEEE Photovoltaic Specialists Conference, Anaheim CA, September, 1997, pp. 207–210. Also, see http://www.pv.unsw. edu.au/pc1d/ [182] Analysis of Microelectronic and Photonic Structures (AMPS) software was developed at Pennsylvania State University under the direction of S. J. Fonash with funding from the Electric Power Research Institute. Also, see http:// www.psu.edu/dept/AMPS/ [183] M, Burgelman, P. Nollet and S. Degrave, “Modeling polycrystalline semiconductor solar cells”, Thin Solid Films, vol. 361– 362 (2000) pp. 527–532. Also, see http://www.elis.ugent.be/ELISgroups/solar/projects/scaps.html [184] A. Niemegeers and M. Burgelman, “Numerical modeling of ac-characteristics of CdTe and CIS solar cells”, Conference Record, 25th IEEE Photovoltaic Specialists Conference, Washington DC, April, 1996, pp. 901–904. [185] M. Burgelman, J. Verschraegen, S. Degrave and P. Nollet, “Modeling Thin-film PV Devices” Prog. Photovolt: Res. Appl., vol. 11 (2003) pp. 1-11. [186] P. Basore, “Numerical modeling of textured silicon solar cells using Pc1D”, IEEE Transactions on Electron Devices, vol. 37(2) (1990) pp. 337-345. [187] G. A. M. Hurkx, D. B. M. Klaassen and M. P. G. Knuvers, “A new recombination model for device simulation including tunneling”, IEEE Transactions on Electron Devices, vol. 39(2) (1992) pp. 331-338. [188] M. Rinio, E. Zippel and D. Borchert, “Spatial redistribution of recombination centers by the solar cell process”, Presented at the 20th European Photovoltaic Solar Energy Conference and Exhibition, 6-10, June, 2005, Barcelona, p. 76. [189] R. Stangl, A. Froitzheim, M. Schmidt and W. Fuhs, “Design Criteria for Amorphous/Crystalline Silicon Heterojunction Solar Cells, a Simulation Study”, Proc. WCPEC-3, 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, May, 2003, 4P-A8-45 [190] H. Stiebig and F. Siebke, “Improved analysis of the constant. photocurrent method Philos”, Mag. B (UK), vol. 72 (1995) pp. 489-504. [191] N. Jensen, R. M. Hausner, R. B. Bergmann, J. H. Werner, and U. Rau, “Optimization and characterization of amorphous/crystalline silicon heterojunction solar cells“, Prog. Photovolt: Res. Appl., vol. 10 (2001) pp. 1-13. [192] E. Centurioni, D. Iencinella, R. Rizzoli, and F. Zignani, “Silicon heterojunction solar cell: a new buffer layer concept with low-temperature epitaxial silicon”, IEEE Transactions on Electron Devices, vol. 51 (2004) pp. 1818-1824. [193] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, “Development of new a-Si/c-Si heterojunction solar cells: ACJ-HIT (artificially constructed junction heterojunction with intrinsic thin layer)”, Jpn. J. Appl. Phys., vol. 31 (1992) pp. 3518-3522.
|