跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林倍如
研究生(外文):Pei-Ju Lin
論文名稱:被動式UHF-RFID定位感知雛型系統之實作
論文名稱(外文):Implementation of Passive UHF-RFID Location Aware Prototype System
指導教授:黃有榕
指導教授(外文):Yu-Jung Huang
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:71
中文關鍵詞:感知定位系統超寬頻無線射頻辨識系統CORDIC演算法
外文關鍵詞:UHF RFIDCORDIC AlgorithmLocation-Aware system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:850
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進化與演變,現代人們的生活與無線科技緊密地結合在一起。無線射頻辨識系統(Ratio Frequency Identification, RFID)能在數公分至數公尺之距離做非接觸式辨識,為無處不在計算領域中最受矚目的技術之一。於無所不在計算(Ubiquitous Computing)所提出的概念中,我們可以在任何時間,任何地點經由規劃的系統設備來取得計算資源,並配合精確定位及智慧物件的使用,使得無所不 在的系統更具有情境感知(context awareness)的特性。被動式超寬頻無線射頻辨識技術廣泛被採用在位置感知系統運用上。此乃因被動式超寬頻RFID標籤具有低成本、小面積、無電池附著之優點,且相較於高頻標籤,其亦擁有較佳的反應速率及較長的讀取範圍。本論文,提出將超寬頻無線射頻辨識系統技術運用於建構定位感知系統。UHF RFID系統上之天線,為傳送功率及訊號之主要元件。因此,在UHF RFID系統上,讀取天線便為關鍵技術之一。本論文設計及模擬一圓極化貼片天線,此天線可運用於位置感知系統以達到較大之效能。相較於以往根據每一個單獨的參考標籤計算出追蹤標籤位置的演算法,本論文提出群聚定位演算法來改善追蹤精 確度。在群聚定位演算法的基礎下,可讓系統在3D定位之估算能夠有更合理的精確度。此外,本論文亦提出利用CORDIC演算法計算餘弦定理,並將其以FPGA硬體實現,藉以研發提高位置感知系統之定位效能。
Radio Frequency Identification (RFID) has been considered as an attractive method for the ubiquitous computing. One area of ubiquitous computing is composed by the location-aware systems, systems where applications are designed to estimate the coordinates of tracking objects in qualified vicinity or in correlation to reference locations. The passive UHF RFID system is an attractive solution for location awareness applications. Passive UHF RFID tags have gained significant popularity due to their low cost, small footprint, ability to function without batteries, faster response rates and longer read ranges as compared to common HF RFID tags.
In this thesis, a location-aware systems based on passive UHF RFID technology is proposed. In UHF RFID system, the role of antennas is very important for transfer power and signal. Therefore, reader antenna is a key important component of RFID system. The design and simulation of a patch antenna with circular polarization is presented. A circularly-polarized antenna can help maximize performance of the location awareness system. In contrast to compute the position of the tracking tag based on each individual reference tag, a cluster localization algorithm is introduced to improve the tracking accuracy. Based on the proposed cluster localization algorithm, the performance of the system was within the reasonable accuracy for 3D location estimation. In addition, the FPGA implementation of law of cosines based on CORDIC algorithm is proposed in order to study the feasibility of enhancing the performance of a location awareness system.
LIST OF TABLES iii
LIST OF FIGURES iv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Overview of Position Techniques 1
1.3 Thesis Outline 3
Chapter 2 RFID Technology 4
2.1 Introduction to RFID 4
2.2 RFID Tags 4
2.3 RFID Readers 6
2.4 RFID Frequency Bands 6
2.5 Near-Field and Far-Field Propagation 7
2.6 A Review of RFID Localization Algorithms 9
2.6.1 Triangulation Algorithm 10
2.6.2 Scene Analysis 10
2.6.3 Proximity 10
Chapter 3 RFID Antenna Design 11
3.1 Introduction 11
3.2 Reader Antenna Design 12
3.2.1 Design Principles 12
3.2.2 Antenna Modeling 13
3.2.3 Antenna Configurations 15
3.3 Experimental Results 17
3.4 Discussion 20
Chapter 4 RFID Location Awareness System 21
4.1 Introduction 21
4.2 Localization Algorithm 22
4.2.1 Matching Phase 23
4.2.2 Estimation Phase 24
4.2.3 Optimal Custer Formation Phase 25
4.3 System Implementation 28
4.4 Experimental Work 29
4.5 Discussion 39
Chapter 5 CORDIC Technique For RFID Localization 40
5.1 Basic CORDIC Algorithm 40
5.2 Triangulation Location Estimation Method 43
5.3 Implementation 45
5.3.1 IEEE Floating Point 45
5.3.2 Law of Cosines Implementation Based on CORDIC Algorithm 47
5.4 Summary 56
Chapter 6 Conclusion 57
6.1 Conclusion 57
6.2 Future Work 58
References 59
Table I. RFID tags: Active vs. passive 5
Table II. RFID frequency bands and corresponding application areas 7
Table III. Reference tags data list for tracking tag T1 31
Table IV. Reference tags data list for tracking tag T2 32
Table V. Comparison of tracking results for tags T1 and T2 33
Table VI. Read counter strength of tracking tag T1 36
Table VII. Location estimation of tracking tag T1 36
Table VIII. Iterated results for the estimated location of the tracking tag 36
Table IX. Iterated results for the estimated location of the tracking tag 37
Table X. Final iteration results for the location estimation of tracking tag T1 37
Table XI. Database of statistical analysis on some results 38
Table XII. IEEE 754 45
Fig. 1.1 Current positioning systems according to their accuracy and coverage area 2
Fig. 2.1 Basic component of a RFID system 4
Fig. 2.2 RFID tags architecture 5
Fig. 2.3 Antenna near-field & far-field transition regions 8
Fig. 3.1 Patch antenna model 13
Fig. 3.2 Basic rectangular patch antenna 14
Fig. 3.3 Show the proposed geometry of truncated rectangular patch antenna. (a) schematic top view, (b) schematic side view, and (c) photo of proposed antenna 16
Fig. 3.4 Simulated return losses for patch antenna with and without L-shaped vertical ground feed line 17
Fig. 3.5 Measured and simulated return loss for the proposed patch antenna 18
Fig. 3.6 Measured 3D gain radiation patterns of the proposed antenna at 922 MHz. The pattern data as a function of theta (θ), phi (Φ) and total gain radiation pattern 19
Fig. 3.7 Measured peak antenna gain versus frequency for the proposed antenna 19
Fig. 3.8 Measured axial ratio of the proposed CP antenna at Taiwan/US bands 20
Fig. 4.1 The RFID location awareness system architecture 22
Fig. 4.2 RFID passive tags localization model 23
Fig. 4.3 The location estimation algorithm of finding the tracking tag 27
Fig. 4.4 The main modules in location awareness system 28
Fig. 4.5 RFID data acquisition system 29
Fig. 4.6 The measured counter intensity results for T1 in z (1.3) Plane 34
Fig. 4.7 The measured counter intensity results for T2 in z (1.3) Plane 34
Fig. 4.8 The measured counter intensity results for T1 in z (1.6) Plane 35
Fig. 4.9 The measured counter intensity results for T2 in z (1.6) Plane 35
Fig. 4.10 Standard Deviation of the analyzed data 38
Fig. 5.1 The reader location estimated by the angulation technique 44
Fig. 5.2 Simulation results of half precision floating-point format 46
Fig. 5.3 Simulation results of single precision floating-point format 46
Fig. 5.4 Simulation results of double precision floating-point format 47
Fig. 5.5 Law of cosines implementation based on CORDIC algorithm 47
Fig. 5.6 Architecture of the floating point adder 48
Fig. 5.7 Block diagram of the CORDIC-based arithmetic unit 48
Fig. 5.8 The results of the sine functional simulation 49
Fig. 5.9 CORDIC calculation results 50
Fig. 5.10 Verification waveform for X signal 50
Fig. 5.11 Verification waveform for Y signal 51
Fig. 5.12 Verification waveform for Y signal 51
Fig. 5.13 ASM chart for calculating the law of cosine based on CORDIC algorithm 52
Fig. 5.14 Verilog waveform verification of the law of cosine 53
Fig. 5.15 The measurement results of the logic analyzer for FPGA implementation 53
Fig. 5.16 ASM chart for calculating the law of cosine based on CORDIC algorithm 54
Fig. 5.17 Verilog waveform verification of the law of cosine 54
Fig. 5.18 Hardware verification results from the FPGA are displayed using HP16702A Logic Analysis System 55
[1]A. A. Eldek, A. Z. Elsherbeni, and C. E. Smith, “Characteristics of BOW-TIE slot antenna with tapered tuning stubs for wideband operation,” Progress In Electromagnetics Research, PIER 49, 53-69, 2004.
[2]A. G. Derneryd, “Linearly polarized microstrip antennas,” IEEE Trans. Antennas and Propagat., vol. 24, pp. 846-851, 1976.
[3]A. H. Sayed, A. Tarighat, and N. Khajehnouri, “Network-based wireless location: challenges faced in developing techniques for accurate wireless location information,” IEEE Signal Processing Magazine, pp. 24-40, Jul. 2005.
[4]A. M. Despain, “Fourier transform computer using CORDIC iterations,” IEEE Transactions on Computers, vo1. 23, pp. 993-1001, 1974.
[5]B. Jiang, J. R. Smith, M. Philipose, S. Roy, K. Sundara-Rajan, and A. V. Mamishev, “Energy scavenging for inductively coupled passive RFID systems,” IMTC Instrumentation and Measurement Technology Conference, Ottawa, Canada, May. 2005.
[6]B.-K. Ang and B.-K. Chung, “A wideband e-shaped microstrip patch antenna for 5-6GHZ wireless communication,” Progress In Electromagnetics Research, PIER 75, 397-407, 2007.
[7]E. Deprettere, P. Dewilde, and R. Udo, “Pipelined CORDIC architectures for fast VLSI filtering and array processing,” in Proceedings of the 1984 IEEE ICASSP, vol. 9, pp. 250-253, 1984.
[8]E. Hammerstad and F.A. Bekkadal, “Microstrip handbook,” ELAB Report, STF 44 A74169, University of Trondheim, Norway, 1975.
[9]EPCglobal, [Online].Available: http://www.epcglobalinc.org/
[10]EPCGlobal. Regulatory status for using RFID in the UHF spectrum 20. [Online].Available:http://www.epcglobalcanada.org/docs/RFIDatUHFRegulations20 050 720.pdf, (2006).
[11]ETS-Lindgren, Software EMQuest. [Online]. Available for download: www.ets-lindgren.com/
[12]F.-L. Chen and X.-Y. Fan, “Survey of location-aware system,” Application Research of Computers, vol. 24, no. 4, pp. 16-21, 2007.
[13]H. Lehpamer, RFID Design Principles, Artech House, 2008.
[14]H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE Trans. on System, Man, and Cybernetics-Part C: Applications and Reviews, vol. 37, no. 6, pp. 1067-1080, Nov. 2007.
[15]H. M. Ahmed, J.-M. Delosme, and M. Morf, “Highly concurrent computing structure for matrix arithmetic and signal processing,” IEEE Computer. Mag., vol. 15, pp. 65-82, 1982.
[16]J. Duprat and J.-M. Muller, “The CORDIC algorithm: New results for fast VLSI implementation,” IEEE Transactions on Computers, vol. 42, pp. 168-178, 1993.
[17]J. E. Volder, “The CORDIC trigonometric computing technique,” IEEE Trans. Electron. Computers, vol. 8 no. 3, pp. 330-334, Sep. 1959.
[18]J. Hightower, C. Vakili, C. Borriello, and R. Want, “Design and calibration of the spoton ad-hoc location sensing system,” unpublished, Aug. 2001.
[19]J. R. James and P. S. Hall, Handbook of Microstrip Antennas, vol. 1 of IEE Electromagnetic Waves, Peter Peregrinus Ltd., London, 1989.
[20]J. S. Walther, “A unified algorithm for elementary functions,” in Proceedings of the 38th Spring Joint Computer Conference, Atlantic City, NJ, 1971, pp. 379-385.
[21]J.-D. Tseng, R.-J. Ko, and W.-D. Wang, “Switched beam antenna array for UHF band RFID system,” IEEE International Workshop on Anti-counterfeiting, Security, Identification, Apr. 2007, pp. 92-95.
[22]J.-S. Kim, K.-H. Shin, S.-M. Park, W.-K. Choi, and N.-S. Seong, “Polarization and space diversity antenna using inverted-F antennas for RFID reader applications,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp.265-268, Dec. 2006.
[23]J.-S. Kuo and K.-L.Wong, “A compact microstrip antenna with meandering slots in the ground plane,” Microwave & Opt. Tech. Letter, vol.29, no.2, pp. 95-97, Apr. 20, 2001.
[24]K. Chen, X. Chen, and K. Huang, “A novel microstrip dipole antenna with wideband and end-fire properties,” Journal of Electromagnetic. Waves and Applications, vol.21, no.12, pp. 1679-1688, 2007.
[25]K. Finkenzeller, Fundamentals and Applications in Contactless smart cards and Identification, 2nd ed.: Wiley, 2003.
[26]K. Kaemarungsi and P. Krishnamurthy, “Modeling of indoor positioning systems based on location fingerprinting,” in Proceedings of the IEEE INFOCOM, Nov. 2004.
[27]K. Penttila, M. Keskilammi, L. Sydanheimo, and M. Kivikoski, “Radio frequency technology for automated manufacturing and logistics control. Part 2: RFID antenna utilization in industrial applications,” The International Journal of Advanced Manufacturing Technology, vol. 31, no. 1-2, pp. 116-124, Nov. 2006.
[28]K. S. Leong, M. L. Ng, A. R. Grasso, and P. H. Cole, “Synchronization of RFID readers for dense RFID reader environments,” in Proceedings of the 2006 International Symposium on Applications and the Internet Workshops (SAINT’06), 2006, pp. 48-51.
[29]K. S. Leong, M. L. Ng, and P. H. Cole, “The reader collision problem in RFID systems,” in Proceedings of the IEEE Int’l Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, 2005, pp.658-661.
[30]K.-L. Wong and Y.-F. Lin, “Microstrip-line-fed compact broadband circular microstrip antenna with chip-resistor loading,” Microwave & Opt. Tech. Letter, vol.17, no.1, pp. 53-55, Jan. 1998.
[31]K.-L. Wong, Design of Nonplanar Microstrip Antennas and Transmission Lines, Wiley, New York, 1999.
[32]L. H. Sibul and A. L. Fogelsanger, “Application of coordinate rotation algorithm to singular value decomposition,” in Proceedings of the IEEE Int. Symp. Circuits and Systems, 1984, pp. 821-824.
[33]L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “LANDMARC: Indoor location sensing using active RFID,” in Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003, pp. 407-415.
[34]L. Ukkonen, L. Sydanheimo, and M. Kivikoski, “Read range performance comparison of compact reader antennas for a handheld UHF RFID reader,” in Proceedings of the IEEE RFID Conference, 2007, pp. 63-70.
[35]M. Bhuptani, S. Moradpour, RFID field guide: deploying radio frequency identification systems, Prentice Hall PTR, 2005.
[36]M. Hazas, J. Scott, and J. Krumm, “Location-aware computing comes of age,” Computer, vol. 37, no. 2, pp. 95-97, 2004.
[37]M. Keskilammi, L. Sydanheimo, and M. Kivikoski, “Radio frequency technology for automated manufacturing and logistics control. Part 1: passive RFID systems and the effects of antenna parameters on operational Distance,” The International Journal of Advanced Manufacturing Technology, vol. 21, no. 10-11, pp. 769-774, Jul. 2003.
[38]M. V. Schneider, “Microstrip lines for microwave integrated circuits," Bell Syst. Tech. J., vol. 48, pp. 1421-1444, 1969.
[39]M.O. Ozyalcin, “Modeling and simulation of electromagnetic problems via transmission line matrix method,” Ph.D. Dissertation, Istanbul Technical University, Institute of Science, Oct. 2002.
[40][Online].Available: http://www.epcglobalinc.org/
[41][Online].Available: https://holadayinc.com/
[42]P. K. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of CORDIC: algorithms, architectures, and applications,” IEEE Trans. Circuits Syst. I, vol. 56, no. 9, pp. 1893-1907, Sep. 2009.
[43]R. B. Waterhouse, “Broadband stacked shorted patch,” Electronic Letters, vol. 35, no.2, pp. 98-100, Jan. 21, 1990.
[44]R. Grag, P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, Norwell, MA, 2000.
[45]R. J. Andraka, “Building a high performance bit-erial processor in an FPGA,” in Proceedings of the Design Super Conference, Jan. 1996, pp. 5.1-5.21.
[46]R. Mautz, “Overview of current indoor positioning systems,” Journal Geodesy and Carthography, volume 35 no. 1, pp. 18‐22, 2009.
[47]S. Garfinkel, Applications, Security, and Privacy, Addison-Wesley, 2006.
[48]S. Sarma, S. Weis, and D. Engels. Security risks and challenges, RSA Laboratories Cryptobytes, 6(1), 2003.
[49]S. Weigand, A. Crook, and D. Dobkin, “Antennas for handheld and portable RFID readers,” WJ application note, [Online].Available: www.wj.com.
[50]S. Zlatanova and E. Verbree, “User tracking as an alternative positioning technique for LBS,” in Proceedings of the Symposium on Location Based Services & Telecartography, Vienna, Austria, Jan. 28-29, 2004, pp. 109-115.
[51]Steven Shepard, Radio Frequency Identification, McGraw-Hill, 2005.
[52]T. Amemiya, J. Yamashita, K. Hirota, and M. Hirose, “Virtual leading blocks for the deaf-blind: a real-time way-finder by verbal-nonverbal hybrid interface and high-density RFID tag space,” in Proceedings of the 2004 IEEE Virtual Reality Conference, Chicago, IL, Mar. 2004, pp. 165-172.
[53]T. B. Hansen, M. L. Oristaglio, “Method for controlling the angular extent of interrogation zones in RFID,” IEEE Antennas and Wireless Propagation Letters, vol. 5, no. 1, pp.134-137, Dec. 2006.
[54]T. S. Rappaport, J. H. Reed, and B. D. Woerner, “Position location using wireless communications on highways of the future,” IEEE Communication Magazine, pp. 33-41, Oct. 1996.
[55]T. S. Rappaport, Wireless Communications Principles and Practice, IEEE Press/Prentice Hall PTR, Upper Saddle River, New Jersey, 1996.
[56]W. L. Stutzman and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, Inc., New York, 1998.
[57]Y. Ge, K. P .Esselle, and T. S. Bird, “A broadband E-shaped patch antenna with a microstrip compatible feed,” Microwave & Opt. Tech. Letter, vol. 42, no.2, pp. 111-112, Jul. 20, 2004.
[58]Y. H. Hu and S. Naganathan, “A novel implementation of chirp Z-transform using a CORDIC processor,” IEEE Transactions on ASSP, vol. 38, pp. 352-354, 1990.
[59]Y. H. Hu and S. Naganathan, “An angle recording method for CORDIC algorithm implementation,” IEEE Transactions on Computers, vol. 42, no. 1, pp. 99-102, Jan. 1993.
[60]Y.-C. Chen, J.-R. Chiang, H.-H. Chu, P. Huang, and A. W. Tsui, “Sensor assisted Wi-Fi indoor location system for adapting to environment dynamics,” International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems, Montreal, Canada, Oct. 2005, pp. 118-125.
[61]Z. Xiang, S. Song, J. Chen, H. Wang, J. Huang, and X. Gao, “A wireless LAN-based indoor positioning technology,” IBM Journal Res. Develop., vol. 48, pp. 617-626, Sep. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top