|
Chapter I 1.Whang-Peng, J.; Liu, T.W. Development of Medical Oncology in Taiwan. J Chin Oncol Soc 2007, 23, 94-99. 2.Goodman, M. Market watch: sales trends by therapeutic area: 2008-2013E. Nat Rev Drug Discov 2009, 8, 689. 3.Walker, I.; Newell, H. Do molecularly targeted agents in oncology have reduced attrition rates? Nat Rev Drug Discov 2009, 8, 15-16. 4.Horner, M.J.; Ries, L.; Krapcho, M.; Neyman, N.; Aminou, R.; Howlader, N.; Altekruse, S.F.; Feuer, E.J.; Huang, L.; Mariotto, A.; Miller, B.A.; Lewis, D.R.; Eisner, M.P.; Stinchcomb, D.G.; Edwards, B.K. (eds). Surveillance, Epidemiology, and End Results (SEER) Cancer Statistics Review, 1975-2006, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2006/, based on November 2008 SEER data submission, posted to the SEER web site. (Accessed December 2009) 5.Kamb, A.; Wee, S.; Lengauer, C. Why is cancer drug discovery so difficult? Nat Rev Drug Discov 2007, 6, 115-120. 6.Zhou, B.B.; Zhang, H.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009, 8, 806-823. 7.Faivre, S.; Djelloul, S.; Raymond, E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol 2006, 33, 407-420. 8.William, W.N., Jr.; Heymach, J.V.; Kim, E.S.; Lippman, S.M. Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 2009, 8, 213-225. 9.Lawrence, T.; Willoughby, D.A.; Gilroy, D.W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2002, 2, 787-795. 10.Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005, 7, 211-217. 11.Balkwill, F.; Coussens, L.M. Cancer: an inflammatory link. Nature 2004, 431, 405-406. 12.Lawrence, T. Inflammation and cancer: a failure of resolution? Trends Pharmacol Sci 2007, 28, 162-165. 13.Karin, M.; Greten, F.R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005, 5, 749-759. 14.Lu, H.; Ouyang, W.; Huang, C. Inflammation, a key event in cancer development. Mol Cancer Res 2006, 4, 221-233. 15.Mazhar, D.; Gillmore, R.; Waxman, J. COX and cancer. QJM 2005, 98, 711-718. 16.Wang, D.; Dubois, R.N. Prostaglandins and cancer. Gut 2006, 55, 115-122. 17.Hopkins, A.L.; Groom, C.R. The druggable genome. Nat Rev Drug Discov 2002, 1, 727-730. 18.Plewczynski, D.; Rychlewski, L. Meta-basic estimates the size of druggable human genome. J Mol Model 2009, 15, 695-699. 19.Russ, A.P.; Lampel, S. The druggable genome: an update. Drug Discov Today 2005, 10, 1607-1610. 20.Copeland, R.A. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists (Methods of Biochemical Analysis), 2nd Ed.; John Wiley & Sons: Chichester, U.K., 2005; p2-4. 21.Flower, R.J. The development of COX2 inhibitors. Nat Rev Drug Discov 2003, 2, 179-191. 22.Brown, D.; Superti-Furga, G. Rediscovering the sweet spot in drug discovery. Drug Discov Today 2003, 8, 1067-1077. Chapter II 1.Herrington, C.; Hall, P. Molecular and cellular themes in inflammation and immunology. J Pathol 2008, 214, 123-125. 2.Heller, A.; Koch, T.; Schmeck, J.; van Ackern, K. Lipid mediators in inflammatory disorders. Drugs 1998, 55, 487-496. 3.Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004, 56, 387-437. 4.Ushiyama, S.; Yamada, T.; Murakami, Y.; Kumakura, S.; Inoue, S.; Suzuki, K.; Nakao, A.; Kawara, A.; Kimura, T. Preclinical pharmacology profile of CS-706, a novel cyclooxygenase-2 selective inhibitor, with potent antinociceptive and anti-inflammatory effects. Eur J Pharmacol 2008, 578, 76-86. 5.Goppelt-Struebe, M.; Schaefer, D.; Habenicht, A.J. Differential regulation of cyclo-oxygenase-2 and 5-lipoxygenase-activating protein (FLAP) expression by glucocorticoids in monocytic cells. Br J Pharmacol 1997, 122, 619-624. 6.Burnett, B.P.; Jia, Q.; Zhao, Y.; Levy, R.M. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food 2007, 10, 442-451. 7.Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J 1998, 12, 1063-1073. 8.Rimarachin, J.A.; Jacobson, J.A.; Szabo, P.; Maclouf, J.; Creminon, C.; Weksler, B.B. Regulation of cyclooxygenase-2 expression in aortic smooth muscle cells. Arterioscler Thromb 1994, 14, 1021-1031. 9.Huang, Y.; Liu, J.; Wang, L.Z.; Zhang, W.Y.; Zhu, X.Z. Neuroprotective effects of cyclooxygenase-2 inhibitor celecoxib against toxicity of LPS-stimulated macrophages toward motor neurons. Acta Pharmacol Sin 2005, 26, 952-958. 10.Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors--current status and future prospects. Eur J Med Chem 2001, 36, 109-126. 11.Gauthier, M.P.; Michaux, C.; Rolin, S.; Vastersaegher, C.; de Leval, X.; Julemont, F.; Pochet, L.; Masereel, B. Synthesis, molecular modelling and enzymatic evaluation of (+/-)3,5-diphenyl-2-thioxoimidazolidin-4-ones as new potential cyclooxygenase inhibitors. Bioorg Med Chem 2006, 14, 918-927. 12.Szabo, G.; Fischer, J.; Kis-Varga, A.; Gyires, K. New Celecoxib Derivatives as Anti-Inflammatory Agents. J Med Chem 2008, 51, 142-147. 13.Wey, S.J.; Augustyniak, M.E.; Cochran, E.D.; Ellis, J.L.; Fang, X.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Martino, A.M.; Melim, T.L.; Murty, M.G.; Richardson, S.K.; Schroeder, J.D.; Selig, W.M.; Trocha, A.M.; Wexler, R.S.; Young, D.V.; Zemtseva, I.S.; Zifcak, B.M. Structure-based design, synthesis, and biological evaluation of indomethacin derivatives as cyclooxygenase-2 inhibiting nitric oxide donors. J Med Chem 2007, 50, 6367-6382. 14.Belton, O.; Byrne, D.; Kearney, D.; Leahy, A.; Fitzgerald, D.J. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis. Circulation 2000, 102, 840-845. 15.Bing, R.J.; Lomnicka, M. Why do cyclo-oxygenase-2 inhibitors cause cardiovascular events? J Am Coll Cardiol 2002, 39, 521-522. 16.Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 2000, 284, 1247-1255. 17.Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; Kvien, T.K.; Schnitzer, T.J. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 2000, 343, 1520-1528, 1522 p following 1528. 18.Mukherjee, D.; Nissen, S.E.; Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001, 286, 954-959. 19.Capone, M.L.; Tacconelli, S.; Francesco, L.D.; Petrelli, M.; Patrignani, P. Cardiovascular effects of valdecoxib: transducing human pharmacology results into clinical read-outs. Expert Opin Drug Saf 2008, 7, 29-42. 20.Farooq, M.; Haq, I.; Qureshi, A.S. Cardiovascular risks of COX inhibition: current perspectives. Expert Opin Pharmacother 2008, 9, 1311-1319. 21.Bunimov, N.; Laneuville, O. Cyclooxygenase inhibitors: instrumental drugs to understand cardiovascular homeostasis and arterial thrombosis. Cardiovasc Hematol Disord Drug Targets 2008, 8, 268-277. 22.Howes, L.G. Selective COX-2 inhibitors, NSAIDs and cardiovascular events - is celecoxib the safest choice? Ther Clin Risk Manag 2007, 3, 831-845. 23.Nussmeier, N.A.; Whelton, A.A.; Brown, M.T.; Langford, R.M.; Hoeft, A.; Parlow, J.L.; Boyce, S.W.; Verburg, K.M. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 2005, 352, 1081-1091. 24.Coruzzi, G.; Venturi, N.; Spaggiari, S. Gastrointestinal safety of novel nonsteroidal antiinflammatory drugs: selective COX-2 inhibitors and beyond. Acta Biomed 2007, 78, 96-110. 25.Chan, E.S.; Zhang, H.; Fernandez, P.; Edelman, S.D.; Pillinger, M.H.; Ragolia, L.; Palaia, T.; Carsons, S.; Reiss, A.B. Effect of cyclooxygenase inhibition on cholesterol efflux proteins and atheromatous foam cell transformation in THP-1 human macrophages: a possible mechanism for increased cardiovascular risk. Arthritis Res Ther 2007, 9, R4. 26.Walter, M.F.; Jacob, R.F.; Day, C.A.; Dahlborg, R.; Weng, Y.; Mason, R.P. Sulfone COX-2 inhibitors increase susceptibility of human LDL and plasma to oxidative modification: comparison to sulfonamide COX-2 inhibitors and NSAIDs. Atherosclerosis 2004, 177, 235-243. 27.de Gaetano, G.; Donati, M.B.; Cerletti, C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol Sci 2003, 24, 245-252. 28.Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J.P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis 2003, 62, 501-509. 29.Brune, K. Safety of anti-inflammatory treatment--new ways of thinking. Rheumatology (Oxford) 2004, 43 Suppl 1, i16-20. 30.Rotondo, S.; Krauze-Brzosko, K.; Manarini, S.; Evangelista, V.; Cerletti, C. Licofelone, an inhibitor of cyclooxygenase and 5-lipoxygenase, specifically inhibits cyclooxygenase-1-dependent platelet activation. Eur J Pharmacol 2004, 488, 79-83. 31.Fiorucci, S.; Meli, R.; Bucci, M.; Cirino, G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochem Pharmacol 2001, 62, 1433-1438. 32.Bayes, M.; Rabasseda, X. Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2008, 30, 67-99. 33.Kulkarni, S.K.; Singh, V.P. Licofelone: the answer to unmet needs in osteoarthritis therapy? Curr Rheumatol Rep 2008, 10, 43-48. 34.Koeberle, A.; Siemoneit, U.; Buhring, U.; Northoff, H.; Laufer, S.; Albrecht, W.; Werz, O. Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther 2008, 326, 975-982. 35.Geronikaki, A.A.; Lagunin, A.A.; Hadjipavlou-Litina, D.I.; Eleftheriou, P.T.; Filimonov, D.A.; Poroikov, V.V.; Alam, I.; Saxena, A.K. Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J Med Chem 2008, 51, 1601-1609. 36.Sud''ina, G.F.; Pushkareva, M.A.; Shephard, P.; Klein, T. Cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) selectivity of COX inhibitors. Prostaglandins Leukot Essent Fatty Acids 2008, 78, 99-108. 37.Reddy, M.V.; Billa, V.K.; Pallela, V.R.; Mallireddigari, M.R.; Boominathan, R.; Gabriel, J.L.; Reddy, E.P. Design, synthesis, and biological evaluation of 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines as cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) inhibitors. Bioorg Med Chem 2008, 16, 3907-3916. 38.Kuo, C.L.; Ho, F.M.; Chang, M.Y.; Prakash, E.; Lin, W.W. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. J Cell Biochem 2008, 103, 931-940. 39.Gubitosi-Klug, R.A.; Talahalli, R.; Du, Y.; Nadler, J.L.; Kern, T.S. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes 2008, 57, 1387-1393. 40.Yoon, J.H.; Lim, H.J.; Lee, H.J.; Kim, H.D.; Jeon, R.; Ryu, J.H. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium. Bioorg Med Chem Lett 2008, 18, 2179-2182. 41.Kyung, T.W.; Lee, J.E.; Shin, H.H.; Choi, H.S. Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappaB. Exp Mol Med 2008, 40, 52-58. 42.Rábai, J.; Kapovits, I.; Jalsovszky, I.; Argay, G.; Fülöp, V.; Kálmán, A.; T., K. Molecular structures of cyclic sulfilimines without and with intramolecular sulfur-oxygen interaction: an X-ray study. J Mol Struct 1996, 382, 13-21. 43.Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644-648. 44.Gierse, J.K.; McDonald, J.J.; Hauser, S.D.; Rangwala, S.H.; Koboldt, C.M.; Seibert, K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem 1996, 271, 15810-15814. 45.Wong, E.; Bayly, C.; Waterman, H.L.; Riendeau, D.; Mancini, J.A. Conversion of prostaglandin G/H synthase-1 into an enzyme sensitive to PGHS-2-selective inhibitors by a double His513 --> Arg and Ile523 --> val mutation. J Biol Chem 1997, 272, 9280-9286. 46.Bayly, C.I.; Black, W.C.; Leger, S.; Ouimet, N.; Ouellet, M.; Percival, M.D. Structure-based design of COX-2 selectivity into flurbiprofen. Bioorg Med Chem Lett 1999, 9, 307-312. 47.Shoichet, B.K. Virtual screening of chemical libraries. Nature 2004, 432, 862-865. 48.Kuntz, I.D. Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082. 49.Frolich, J.C. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol Sci 1997, 18, 30-34. 50.51.Park, E.K.; Jung, H.S.; Yang, H.I.; Yoo, M.C.; Kim, C.; Kim, K.S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 2007, 56, 45-50. 52.Singh, G.; Fort, J.G.; Goldstein, J.L.; Levy, R.A.; Hanrahan, P.S.; Bello, A.E.; Andrade-Ortega, L.; Wallemark, C.; Agrawal, N.M.; Eisen, G.M.; Stenson, W.F.; Triadafilopoulos, G. Celecoxib versus naproxen and diclofenac in osteoarthritis patients: SUCCESS-I Study. Am J Med 2006, 119, 255-266. 53.Barrios-Rodiles, M.; Keller, K.; Belley, A.; Chadee, K. Nonsteroidal antiinflammatory drugs inhibit cyclooxygenase-2 enzyme activity but not mRNA expression in human macrophages. Biochem Biophys Res Commun 1996, 225, 896-900. 54.Yin, L.L.; Zhang, W.Y.; Li, M.H.; Shen, J.K.; Zhu, X.Z. CC 05, a novel anti-inflammatory compound, exerts its effect by inhibition of cyclooxygenase-2 activity. Eur J Pharmacol 2005, 520, 172-178. 55.Grkovich, A.; Johnson, C.A.; Buczynski, M.W.; Dennis, E.A. Lipopolysaccharide-induced cyclooxygenase-2 expression in human U937 macrophages is phosphatidic acid phosphohydrolase-1-dependent. J Biol Chem 2006, 281, 32978-32987. 56.Jiang, Y.J.; Lu, B.; Choy, P.C.; Hatch, G.M. Regulation of cytosolic phospholipase A2, cyclooxygenase-1 and -2 expression by PMA, TNFalpha, LPS and M-CSF in human monocytes and macrophages. Mol Cell Biochem 2003, 246, 31-38. 57.Sareila, O.; Korhonen, R.; Karpanniemi, O.; Nieminen, R.; Kankaanranta, H.; Moilanen, E. Janus kinase 3 inhibitor WHI-P154 in macrophages activated by bacterial endotoxin: differential effects on the expression of iNOS, COX-2 and TNF-alpha. Int Immunopharmacol 2008, 8, 100-108. 58.Bogdan, C. Handbook of Experimental Pharmacology. Volume: Nitric Oxide (ed. Mayer, B.); Springer: Heidelberg, 2000; pp 443-492. 59.Zhang, X.; Laubach, V.E.; Alley, E.W.; Edwards, K.A.; Sherman, P.A.; Russell, S.W.; Murphy, W.J. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma. J Leukoc Biol 1996, 59, 575-585. 60.Sharara, A.I.; Perkins, D.J.; Misukonis, M.A.; Chan, S.U.; Dominitz, J.A.; Weinberg, J.B. Interferon (IFN)-alpha activation of human blood mononuclear cells in vitro and in vivo for nitric oxide synthase (NOS) type 2 mRNA and protein expression: possible relationship of induced NOS2 to the anti-hepatitis C effects of IFN-alpha in vivo. J Exp Med 1997, 186, 1495-1502. 61.Vouldoukis, I.; Riveros-Moreno, V.; Dugas, B.; Ouaaz, F.; Becherel, P.; Debre, P.; Moncada, S.; Mossalayi, M.D. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A 1995, 92, 7804-7808. 62.Vouldoukis, I.; Becherel, P.A.; Riveros-Moreno, V.; Arock, M.; da Silva, O.; Debre, P.; Mazier, D.; Mossalayi, M.D. Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. Eur J Immunol 1997, 27, 860-865. 63.Villalta, F.; Zhang, Y.; Bibb, K.E.; Kappes, J.C.; Lima, M.F. The cysteine-cysteine family of chemokines RANTES, MIP-1alpha, and MIP-1beta induce trypanocidal activity in human macrophages via nitric oxide. Infect Immun 1998, 66, 4690-4695. 64.Bogdan, C. Nitric oxide and the immune response. Nat Immunol 2001, 2, 907-916. 65.Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-alpha and IL-12 in activated macrophages. Biol Pharm Bull 2005, 28, 912-915. 66.Jung, C.H.; Kim, J.H.; Hong, M.H.; Seog, H.M.; Oh, S.H.; Lee, P.J.; Kim, G.J.; Kim, H.M.; Um, J.Y.; Ko, S.G. Phenolic-rich fraction from Rhus verniciflua Stokes (RVS) suppress inflammatory response via NF-kappaB and JNK pathway in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 2007, 110, 490-497. 67.Grey, S.T. Regulating inflammation: the ying and yang of NF-kappaB activation. Immunol Cell Biol 2008, 86, 299-300. 68.Simmonds, R.E.; Foxwell, B.M. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford) 2008, 47, 584-590. 69.Nabel, G.; Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987, 326, 711-713. 70.Lenardo, M.J.; Baltimore, D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989, 58, 227-229. 71.Ziegler-Heitbrock, H.W.; Sternsdorf, T.; Liese, J.; Belohradsky, B.; Weber, C.; Wedel, A.; Schreck, R.; Bauerle, P.; Strobel, M. Pyrrolidine dithiocarbamate inhibits NF-kappa B mobilization and TNF production in human monocytes. J Immunol 1993, 151, 6986-6993. 72.Yang, X.; Hou, F.; Taylor, L.; Polgar, P. Characterization of human cyclooxygenase 2 gene promoter localization of a TGF-beta response element. Biochim Biophys Acta 1997, 1350, 287-292. 73.Sinicrope, F.A.; Gill, S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev 2004, 23, 63-75. 74.McGeer, P.L.; McGeer, E.G. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 2001, 22, 799-809. 75.Harikumar, K.B.; Aggarwal, B.B. Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 2008, 7, 1020-1035. 76.Dreskin, S.C.; Thomas, G.W.; Dale, S.N.; Heasley, L.E. Isoforms of Jun kinase are differentially expressed and activated in human monocyte/macrophage (THP-1) cells. J Immunol 2001, 166, 5646-5653. 77.Brouckaert, P.; Fiers, W. Tumor necrosis factor and the systemic inflammatory response syndrome. Curr Top Microbiol Immunol 1996, 216, 167-187. 78.Mamuk, S.; Melli, M. Effect of aspirin, paracetamol and their nitric oxide donating derivatives on exudate cytokine and PGE2 production in zymosan-induced air pouch inflammation in rats. Eur J Pharmacol 2007, 561, 220-225. 79.Appleyard, C.B.; McCafferty, D.M.; Tigley, A.W.; Swain, M.G.; Wallace, J.L. Tumor necrosis factor mediation of NSAID-induced gastric damage: role of leukocyte adherence. Am J Physiol 1996, 270, G42-48. 80.Saud, B.; Nandi, J.; Ong, G.; Finocchiaro, S.; Levine, R.A. Inhibition of TNF-alpha improves indomethacin-induced enteropathy in rats by modulating iNOS expression. Dig Dis Sci 2005, 50, 1677-1683. 81.Guslandi, M. Pathogenesis of NSAID colitis. Dig Dis Sci 1996, 41, 1653. 82.Grau, G.E.; Maennel, D.N. TNF inhibition and sepsis -- sounding a cautionary note. Nat Med 1997, 3, 1193-1195. 83.Jackson, J.M. TNF- alpha inhibitors. Dermatol Ther 2007, 20, 251-264. 84.Sheridan, C. Small molecule challenges dominance of TNF-alpha inhibitors. Nat Biotechnol 2008, 26, 143-144. 85.Palladino, M.A.; Bahjat, F.R.; Theodorakis, E.A.; Moldawer, L.L. Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov 2003, 2, 736-746. 86.Kopp, E.; Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994, 265, 956-959. 87.Cronstein, B.N.; Montesinos, M.C.; Weissmann, G. Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proc Natl Acad Sci U S A 1999, 96, 6377-6381. 88.Tegeder, I.; Niederberger, E.; Israr, E.; Guhring, H.; Brune, K.; Euchenhofer, C.; Grosch, S.; Geisslinger, G. Inhibition of NF-kappaB and AP-1 activation by R- and S-flurbiprofen. FASEB J 2001, 15, 2-4. 89.Thomas, D.G. Title of subordinate document. In: Available via website: http://people.bu.edu/gilmore/nf-kb/index.html. (Accessed December 2009) 90.Niederberger, E.; Tegeder, I.; Vetter, G.; Schmidtko, A.; Schmidt, H.; Euchenhofer, C.; Brautigam, L.; Grosch, S.; Geisslinger, G. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. FASEB J 2001, 15, 1622-1624. 91.Di Lorenzo, A.; Fernandez-Hernando, C.; Cirino, G.; Sessa, W.C. Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proc Natl Acad Sci U S A 2009, 106, 14552-14557. 92.Choi, E.K.; Jang, H.C.; Kim, J.H.; Kim, H.J.; Kang, H.C.; Paek, Y.W.; Lee, H.C.; Lee, S.H.; Oh, W.M.; Kang, I.C. Enhancement of cytokine-mediated NF-kappaB activation by phosphatidylinositol 3-kinase inhibitors in monocytic cells. Int Immunopharmacol 2006, 6, 908-915. 93.Shao, D.Z.; Lin, M. Platonin inhibits LPS-induced NF-kappaB by preventing activation of Akt and IKKbeta in human PBMC. Inflamm Res 2008, 57, 601-606. 94.Yuan, C.; Sidhu, R.S.; Kuklev, D.V.; Kado, Y.; Wada, M.; Song, I.; Smith, W.L. Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers. J Biol Chem 2009, 284, 10046-10055. 95.Rome, L.H.; Lands, W.E. Structural requirements for time-dependent inhibition of prostaglandin biosynthesis by anti-inflammatory drugs. Proc Natl Acad Sci U S A 1975, 72, 4863-4865. 96.Prusakiewicz, J.J.; Duggan, K.C.; Rouzer, C.A.; Marnett, L.J. Differential Sensitivity and Mechanism of Inhibition of COX-2 Oxygenation of Arachidonic Acid and 2-Arachidonoylglycerol by Ibuprofen and Mefenamic Acid. Biochemistry 2009, 48, 7353-7355. 97.Xie, Q.W.; Kashiwabara, Y.; Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 1994, 269, 4705-4708. 98.Pan, M.H.; Lai, C.S.; Wang, Y.J.; Ho, C.T. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem Pharmacol 2006, 72, 1293-1303. 99.Li, Q.; Verma, I.M. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002, 2, 725-734. 100.Christopher, J.M. Carrageenan-Induced Paw Edema in the Rat and Mouse Methods in Molecular Biology 2005, 225, 115-120. 101.Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 1962, 111, 544-547. 102.Amann, R.; Schuligoi, R.; Lanz, I.; Donnerer, J. Histamine-induced edema in the rat paw--effect of capsaicin denervation and a CGRP receptor antagonist. Eur J Pharmacol 1995, 279, 227-231. 103.Whittle, B.A. The Use of Changes in Capillary Permeability in Mice to Distinguish between Narcotic and Nonnarcotic Alalgesics. Br J Pharmacol Chemother 1964, 22, 246-253. 104.Kou, J.; Ni, Y.; Li, N.; Wang, J.; Liu, L.; Jiang, Z.H. Analgesic and anti-inflammatory activities of total extract and individual fractions of Chinese medicinal ants Polyrhachis lamellidens. Biol Pharm Bull 2005, 28, 176-180. 105.Romay, C.; Ledon, N.; Gonzalez, R. Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm Res 1998, 47, 334-338. 106.Griswold, D.E.; Martin, L.D.; Badger, A.M.; Breton, J.; Chabot-Fletcher, M. Evaluation of the cutaneous anti-inflammatory activity of azaspiranes. Inflamm Res 1998, 47, 56-61. 107.Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker. . J Invest Dermatol 1982, 78, 206-209. 108.Evans, D.P.; Hossack, M.; Thomson, D.S. Inhibition of contact sensitivity in the mouse by topical application of corticosteroids. Br J Pharmacol 1971, 43, 403-408. 109.Selye, H. On the mechanism through which hydrocortisone affects the resistance of tissues to injury; an experimental study with the granuloma pouch technique. J Am Med Assoc 1953, 152, 1207-1213. 110.Turner, R.A. Screening Methods in Pharmacology, Academic Press New York: Lodon, 1965; pp158. 111.Goldstein, S.A.; Shemano, I.; Daweo, R.; Betler, J.M. Cotton pellet granuloma pouch method for evaluation of anti-inflammatory activity. Arch Int Pharmacodyn Ther 1976, 165, 294-301. 112.Vogel, H.G. Drug Discovery and Evaluation: Pharmacological Assays, 3rd ed.; Springer-Verlag: New York, 2008; pp 1114. 113.Hegen, M.; Keith, J.C., Jr.; Collins, M.; Nickerson-Nutter, C.L. Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann Rheum Dis 2008, 67, 1505-1515. Chapter III
1.Vis, A.N.; Schroder, F.H. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways. BJU Int 2009, 104, 438-448. 2.Michael, A.; Syrigos, K.; Pandha, H. Prostate cancer chemotherapy in the era of targeted therapy. Prostate Cancer Prostatic Dis 2009, 12, 13-16. 3.Orvieto, M.; Eggener, S. Editorial comment on: Pharmacological approaches to reducing the risk of prostate cancer. Eur Urol 2009, 55, 1073-1074. 4.Okada, H.; Mak, T.W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 2004, 4, 592-603. 5.Cotter, T.G. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009, 9, 501-507. 6.Fulda, S.; Debatin, K.M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006, 25, 4798-4811. 7.Strasser, A.; O''Connor, L.; Dixit, V.M. Apoptosis signaling. Annu Rev Biochem 2000, 69, 217-245. 8.Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770-776. 9.Han, J.; Goldstein, L.A.; Gastman, B.R.; Rabinowich, H. Interrelated roles for Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis. J Biol Chem 2006, 281, 10153-10163. 10.Gupta, S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 2001, 69, 2957-2964. 11.Broker, L.E.; Kruyt, F.A.; Giaccone, G. Cell death independent of caspases: a review. Clin Cancer Res 2005, 11, 3155-3162. 12.McKenzie, S.; Kyprianou, N. Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 2006, 97, 18-32. 13.Hayden, M.S.; Ghosh, S. Signaling to NF-kappaB. Genes Dev 2004, 18, 2195-2224. 14.Chen, L.; Fischle, W.; Verdin, E.; Greene, W.C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001, 293, 1653-1657. 15.Kiernan, R.; Bres, V.; Ng, R.W.; Coudart, M.P.; El Messaoudi, S.; Sardet, C.; Jin, D.Y.; Emiliani, S.; Benkirane, M. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003, 278, 2758-2766. 16.Manna, S.K.; Manna, P.; Sarkar, A. Inhibition of RelA phosphorylation sensitizes apoptosis in constitutive NF-kappaB-expressing and chemoresistant cells. Cell Death Differ 2007, 14, 158-170. 17.Schmitz, M.L.; Mattioli, I.; Buss, H.; Kracht, M. NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem 2004, 5, 1348-1358. 18.Lawrence, T.; Bebien, M.; Liu, G.Y.; Nizet, V.; Karin, M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 2005, 434, 1138-1143. 19.Mattioli, I.; Sebald, A.; Bucher, C.; Charles, R.P.; Nakano, H.; Doi, T.; Kracht, M.; Schmitz, M.L. Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 2004, 172, 6336-6344. 20.Zhong, H.; May, M.J.; Jimi, E.; Ghosh, S. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 2002, 9, 625-636. 21.Kim, H.J.; Hawke, N.; Baldwin, A.S. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006, 13, 738-747. 22.Perkins, N.D.; Gilmore, T.D. Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ 2006, 13, 759-772. 23.Braun, T.; Carvalho, G.; Fabre, C.; Grosjean, J.; Fenaux, P.; Kroemer, G. Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 2006, 13, 748-758. 24.Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004, 3, 17-26. 25.Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004, 431, 461-466. 26.Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z.W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004, 118, 285-296. 27.Hanada, M.; Feng, J.; Hemmings, B.A. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta 2004, 1697, 3-16. 28.Mitsiades, C.S.; Mitsiades, N.; Koutsilieris, M. The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 2004, 4, 235-256. 29.Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005, 4, 988-1004. 30.Yang, L.; Dan, H.C.; Sun, M.; Liu, Q.; Sun, X.M.; Feldman, R.I.; Hamilton, A.D.; Polokoff, M.; Nicosia, S.V.; Herlyn, M.; Sebti, S.M.; Cheng, J.Q. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004, 64, 4394-4399. 31.Zhang, M.; Fang, X.; Liu, H.; Wang, S.; Yang, D. Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP). Biochem Pharmacol 2007, 73, 15-24. 32.Diaz, R.; Nguewa, P.A.; Diaz-Gonzalez, J.A.; Hamel, E.; Gonzalez-Moreno, O.; Catena, R.; Serrano, D.; Redrado, M.; Sherris, D.; Calvo, A. The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. Br J Cancer 2009, 100, 932-940. 33.Song, X.; Lin, H.P.; Johnson, A.J.; Tseng, P.H.; Yang, Y.T.; Kulp, S.K.; Chen, C.S. Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst 2002, 94, 585-591. 34.Sargeant, A.M.; Klein, R.D.; Rengel, R.C.; Clinton, S.K.; Kulp, S.K.; Kashida, Y.; Yamaguchi, M.; Wang, X.; Chen, C.S. Chemopreventive and bioenergetic signaling effects of PDK1/Akt pathway inhibition in a transgenic mouse model of prostate cancer. Toxicol Pathol 2007, 35, 549-561. 35.Hsu, A.L.; Ching, T.T.; Wang, D.S.; Song, X.; Rangnekar, V.M.; Chen, C.S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000, 275, 11397-11403. 36.Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860-867. 37.Ravenna, L.; Sale, P.; Di Vito, M.; Russo, A.; Salvatori, L.; Tafani, M.; Mari, E.; Sentinelli, S.; Petrangeli, E.; Gallucci, M.; Di Silverio, F.; Russo, M.A. Up-regulation of the inflammatory-reparative phenotype in human prostate carcinoma. Prostate 2009, 69, 1245-1255. 38.Aparicio Gallego, G.; Diaz Prado, S.; Jimenez Fonseca, P.; Garcia Campelo, R.; Cassinello Espinosa, J.; Anton Aparicio, L.M. Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clin Transl Oncol 2007, 9, 694-702. 39.Harris, R.E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 2009, 17, 55-67. 40.Sciarra, A.; Di Silverio, F.; Salciccia, S.; Autran Gomez, A.M.; Gentilucci, A.; Gentile, V. Inflammation and chronic prostatic diseases: evidence for a link? Eur Urol 2007, 52, 964-972. 41.Lee, K.S.; Lee, H.J.; Ahn, K.S.; Kim, S.H.; Nam, D.; Kim, D.K.; Choi, D.Y.; Lu, J. Cyclooxygenase-2/prostaglandin E2 pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett 2009, 280, 93-100. 42.Sahin, M.; Sahin, E.; Gumuslu, S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009, 60, 242-253. 43.Ohno, S.; Ohno, Y.; Nakada, H.; Suzuki, N.; Soma, G.; Inoue, M. Expression of Tn and sialyl-Tn antigens in endometrial cancer: its relationship with tumor-produced cyclooxygenase-2, tumor-infiltrated lymphocytes and patient prognosis. Anticancer Res 2006, 26, 4047-4053. 44.Sarkar, F.H.; Adsule, S.; Li, Y.; Padhye, S. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 2007, 7, 599-608. 45.Chun, K.S.; Surh, Y.J. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 2004, 68, 1089-1100. 46.Grosch, S.; Maier, T.J.; Schiffmann, S.; Geisslinger, G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 2006, 98, 736-747. 47.Sooriakumaran, P.; Macanas-Pirard, P.; Bucca, G.; Henderson, A.; Langley, S.E.; Laing, R.W.; Smith, C.P.; Laing, E.E.; Coley, H.M. A gene expression profiling approach assessing celecoxib in a randomized controlled trial in prostate cancer. Cancer Genomics Proteomics 2009, 6, 93-99. 48.Mahal, K.; Hernandez, J.; Basler, J.W.; Thompson, I.M. What''s new in the field of prostate cancer chemoprevention? Curr Urol Rep 2005, 6, 177-182. 49.Sooriakumaran, P.; Coley, H.M.; Fox, S.B.; Macanas-Pirard, P.; Lovell, D.P.; Henderson, A.; Eden, C.G.; Miller, P.D.; Langley, S.E.; Laing, R.W. A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 2009, 29, 1483-1488. 50.Morgan, G. Non-steroidal anti-inflammatory drugs and the chemoprevention of colorectal and oesophageal cancers. Gut 1996, 38, 646-648. 51.Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006, 1, 1112-1116. 52.Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987, 47, 936-942. 53.Courtenay, V.D.; Mills, J. An in vitro colony assay for human tumours grown in immune-suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer 1978, 37, 261-268. 54.Salgame, P.; Varadhachary, A.S.; Primiano, L.L.; Fincke, J.E.; Muller, S.; Monestier, M. An ELISA for detection of apoptosis. Nucleic Acids Res 1997, 25, 680-681. 55.Frenzel, A.; Grespi, F.; Chmelewskij, W.; Villunger, A. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 2009, 14, 584-596. 56.Fulda, S. Inhibitor of apoptosis (IAP) proteins: novel insights into the cancer-relevant targets for cell death induction. ACS Chem Biol 2009, 4, 499-501. 57.Coffey, R.N.; Watson, R.W.; Hegarty, P.K.; Watson, C.L.; Wolohan, L.; Brady, H.R.; O''Keane, C.; Fitzpatrick, J.M. Priming prostate carcinoma cells for increased apoptosis is associated with up-regulation of the caspases. Cancer 2001, 92, 2297-2308. 58.Hampton, M.B.; Orrenius, S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 1997, 414, 552-556. 59.Ueda, S.; Nakamura, H.; Masutani, H.; Sasada, T.; Yonehara, S.; Takabayashi, A.; Yamaoka, Y.; Yodoi, J. Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. J Immunol 1998, 161, 6689-6695. 60.Song, G.; Ouyang, G.; Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005, 9, 59-71. 61.Brazil, D.P.; Hemmings, B.A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001, 26, 657-664. 62.Bharti, A.C.; Aggarwal, B.B. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 2002, 64, 883-888. 63.Luciani, M.G.; Campregher, C.; Gasche, C. Aspirin blocks proliferation in colon cells by inducing a G1 arrest and apoptosis through activation of the checkpoint kinase ATM. Carcinogenesis 2007, 28, 2207-2217. 64.Li, J.; Chen, X.; Dong, X.; Xu, Z.; Jiang, H.; Sun, X. Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J Gastroenterol Hepatol 2006, 21, 1814-1820. 65.Cheng, A.S.; Chan, H.L.; Leung, W.K.; Wong, N.; Johnson, P.J.; Sung, J.J. Specific COX-2 inhibitor, NS-398, suppresses cellular proliferation and induces apoptosis in human hepatocellular carcinoma cells. Int J Oncol 2003, 23, 113-119. 66.Yamazaki, R.; Kusunoki, N.; Matsuzaki, T.; Hashimoto, S.; Kawai, S. Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells. FEBS Lett 2002, 531, 278-284. 67.Lieberman, R. Chemoprevention of prostate cancer: current status and future directions. Cancer Metastasis Rev 2002, 21, 297-309. 68.Narayanan, B.A.; Narayanan, N.K.; Davis, L.; Nargi, D. RNA interference-mediated cyclooxygenase-2 inhibition prevents prostate cancer cell growth and induces differentiation: modulation of neuronal protein synaptophysin, cyclin D1, and androgen receptor. Mol Cancer Ther 2006, 5, 1117-1125. 69.Zha, S.; Gage, W.R.; Sauvageot, J.; Saria, E.A.; Putzi, M.J.; Ewing, C.M.; Faith, D.A.; Nelson, W.G.; De Marzo, A.M.; Isaacs, W.B. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001, 61, 8617-8623. 70.Jana, S.; Paliwal, J. Apoptosis: potential therapeutic targets for new drug discovery. Curr Med Chem 2007, 14, 2369-2379. 71.Ou, Y.C.; Yang, C.R.; Cheng, C.L.; Li, J.R.; Raung, S.L.; Hung, Y.Y.; Chen, C.J. Indomethacin causes renal epithelial cell injury involving Mcl-1 down-regulation. Biochem Biophys Res Commun 2009, 380, 531-536. 72.Amantana, A.; London, C.A.; Iversen, P.L.; Devi, G.R. X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 2004, 3, 699-707. 73.Gill, C.; Dowling, C.; O''Neill, A.J.; Watson, R.W. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation. Mol Cancer 2009, 8, 39. 74.Van Themsche, C.; Leblanc, V.; Parent, S.; Asselin, E. X-linked Inhibitor of Apoptosis Protein (XIAP) Regulates PTEN Ubiquitination, Content, and Compartmentalization. J Biol Chem 2009, 284, 20462-20466. 75.Winsauer, G.; Resch, U.; Hofer-Warbinek, R.; Schichl, Y.M.; de Martin, R. XIAP regulates bi-phasic NF-kappaB induction involving physical interaction and ubiquitination of MEKK2. Cell Signal 2008, 20, 2107-2112. 76.Gao, S.; Lee, P.; Wang, H.; Gerald, W.; Adler, M.; Zhang, L.; Wang, Y.F.; Wang, Z. The androgen receptor directly targets the cellular Fas/FasL-associated death domain protein-like inhibitory protein gene to promote the androgen-independent growth of prostate cancer cells. Mol Endocrinol 2005, 19, 1792-1802. 77.Manzo, F.; Nebbioso, A.; Miceli, M.; Conte, M.; De Bellis, F.; Carafa, V.; Franci, G.; Tambaro, F.P.; Altucci, L. TNF-related apoptosis-inducing ligand: signalling of a ''smart'' molecule. Int J Biochem Cell Biol 2009, 41, 460-466. 78.VanOosten, R.L.; Earel, J.K., Jr.; Griffith, T.S. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis 2007, 12, 561-571. 79.Kirshner, J.R.; Karpova, A.Y.; Kops, M.; Howley, P.M. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target. J Virol 2005, 79, 9320-9324. 80.Milani, D.; Zauli, G.; Rimondi, E.; Celeghini, C.; Marmiroli, S.; Narducci, P.; Capitani, S.; Secchiero, P. Tumour necrosis factor-related apoptosis-inducing ligand sequentially activates pro-survival and pro-apoptotic pathways in SK-N-MC neuronal cells. J Neurochem 2003, 86, 126-135. 81.Tang, X.; Sun, Y.J.; Half, E.; Kuo, M.T.; Sinicrope, F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res 2002, 62, 4903-4908. 82.He, Q.; Luo, X.; Huang, Y.; Sheikh, M.S. Apo2L/TRAIL differentially modulates the apoptotic effects of sulindac and a COX-2 selective non-steroidal anti-inflammatory agent in Bax-deficient cells. Oncogene 2002, 21, 6032-6040. 83.Burz, C.; Berindan-Neagoe, I.; Balacescu, O.; Irimie, A. Apoptosis in cancer: Key molecular signaling pathways and therapy targets. Acta Oncol 2009, 1-11. 84.Zhang, X.; Jin, B.; Huang, C. The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr Cancer Drug Targets 2007, 7, 305-316. 85.Grant, S. Cotargeting survival signaling pathways in cancer. J Clin Invest 2008, 118, 3003-3006. 86.Bader, A.G.; Kang, S.; Zhao, L.; Vogt, P.K. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 2005, 5, 921-929. 87.Corcoran, N.M.; Costello, A.J.; Hovens, C.M. Interfering with cell-survival signalling as a treatment strategy for prostate cancer. BJU Int 2006, 97, 1149-1153. 88.Pang, R.P.; Zhou, J.G.; Zeng, Z.R.; Li, X.Y.; Chen, W.; Chen, M.H.; Hu, P.J. Celecoxib induces apoptosis in COX-2 deficient human gastric cancer cells through Akt/GSK3beta/NAG-1 pathway. Cancer Lett 2007, 251, 268-277. 89.Zhu, J.; Huang, J.W.; Tseng, P.H.; Yang, Y.T.; Fowble, J.; Shiau, C.W.; Shaw, Y.J.; Kulp, S.K.; Chen, C.S. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 2004, 64, 4309-4318. 90.Kim, C.H.; Kim, M.Y.; Moon, J.Y.; Hwang, J.W.; Lee, S.Y.; Joo, Y.M.; Han, S.I.; Park, H.G.; Kang, H.S. Implication of NAG-1 in synergistic induction of apoptosis by combined treatment of sodium salicylate and PI3K/MEK1/2 inhibitors in A549 human lung adenocarcinoma cells. Biochem Pharmacol 2008, 75, 1751-1760. 91.Liao, Y.; Grobholz, R.; Abel, U.; Trojan, L.; Michel, M.S.; Angel, P.; Mayer, D. Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer. Int J Cancer 2003, 107, 676-680. 92.Madrid, L.V.; Mayo, M.W.; Reuther, J.Y.; Baldwin, A.S., Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 2001, 276, 18934-18940. 93.Liu, J.; Yoshida, Y.; Yamashita, U. DNA-binding activity of NF-kappaB and phosphorylation of p65 are induced by N-acetylcysteine through phosphatidylinositol (PI) 3-kinase. Mol Immunol 2008, 45, 3984-3989. 94.Kaltschmidt, B.; Kaltschmidt, C.; Hofmann, T.G.; Hehner, S.P.; Droge, W.; Schmitz, M.L. The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem 2000, 267, 3828-3835. 95.Ladner, K.J.; Caligiuri, M.A.; Guttridge, D.C. Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 2003, 278, 2294-2303. 96.Nelson, D.E.; Ihekwaba, A.E.; Elliott, M.; Johnson, J.R.; Gibney, C.A.; Foreman, B.E.; Nelson, G.; See, V.; Horton, C.A.; Spiller, D.G.; Edwards, S.W.; McDowell, H.P.; Unitt, J.F.; Sullivan, E.; Grimley, R.; Benson, N.; Broomhead, D.; Kell, D.B.; White, M.R. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004, 306, 704-708. 97.Kaufman, P.A.; Weinberg, J.B.; Greene, W.C. Nuclear expression of the 50- and 65-kD Rel-related subunits of nuclear factor-kappa B is differentially regulated in human monocytic cells. J Clin Invest 1992, 90, 121-129. 98.Epinat, J.C.; Gilmore, T.D. Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway. Oncogene 1999, 18, 6896-6909. 99.Stark, L.A.; Din, F.V.; Zwacka, R.M.; Dunlop, M.G. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J 2001, 15, 1273-1275. 100.Niederberger, E.; Tegeder, I.; Vetter, G.; Schmidtko, A.; Schmidt, H.; Euchenhofer, C.; Brautigam, L.; Grosch, S.; Geisslinger, G. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. FASEB J 2001, 15, 1622-1624. 101.Lou, J.; Fatima, N.; Xiao, Z.; Stauffer, S.; Smythers, G.; Greenwald, P.; Ali, I.U. Proteomic profiling identifies cyclooxygenase-2-independent global proteomic changes by celecoxib in colorectal cancer cells. Cancer Epidemiol Biomarkers Prev 2006, 15, 1598-1606. 102.Glebov, O.K.; Rodriguez, L.M.; Lynch, P.; Patterson, S.; Lynch, H.; Nakahara, K.; Jenkins, J.; Cliatt, J.; Humbyrd, C.J.; Denobile, J.; Soballe, P.; Gallinger, S.; Buchbinder, A.; Gordon, G.; Hawk, E.; Kirsch, I.R. Celecoxib treatment alters the gene expression profile of normal colonic mucosa. Cancer Epidemiol Biomarkers Prev 2006, 15, 1382-1391. 103.Lissbrant, I.F.; Stattin, P.; Wikstrom, P.; Damber, J.E.; Egevad, L.; Bergh, A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 2000, 17, 445-451. 104.Luo, Y.; Zhou, H.; Krueger, J.; Kaplan, C.; Lee, S.H.; Dolman, C.; Markowitz, D.; Wu, W.; Liu, C.; Reisfeld, R.A.; Xiang, R. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 2006, 116, 2132-2141. Chapter IV 1.Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 2009, 9, 327-337. 2.Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009, 9, 338-350. 3.Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 2006, 6, 789-802. 4.Pommier, Y. DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition. Chem Rev 2009. 5.Pommier, Y.; Pourquier, P.; Fan, Y.; Strumberg, D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1998, 1400, 83-105. 6.Lue, N.; Sharma, A.; Mondragon, A.; Wang, J.C. A 26 kDa yeast DNA topoisomerase I fragment: crystallographic structure and mechanistic implications. Structure 1995, 3, 1315-1322. 7.Lima, C.D.; Wang, J.C.; Mondragon, A. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature 1994, 367, 138-146. 8.Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 2002, 99, 15387-15392. 9.Koster, D.A.; Croquette, V.; Dekker, C.; Shuman, S.; Dekker, N.H. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 2005, 434, 671-674. 10.Redinbo, M.R.; Stewart, L.; Kuhn, P.; Champoux, J.J.; Hol, W.G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 1998, 279, 1504-1513. 11.Stewart, L.; Redinbo, M.R.; Qiu, X.; Hol, W.G.; Champoux, J.J. A model for the mechanism of human topoisomerase I. Science 1998, 279, 1534-1541. 12.Zhang, H.; Barcelo, J.M.; Lee, B.; Kohlhagen, G.; Zimonjic, D.B.; Popescu, N.C.; Pommier, Y. Human mitochondrial topoisomerase I. Proc Natl Acad Sci U S A 2001, 98, 10608-10613. 13.Zhang, H.; Meng, L.H.; Pommier, Y. Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene. Biochimie 2007, 89, 474-481. 14.Pfister, T.D.; Reinhold, W.C.; Agama, K.; Gupta, S.; Khin, S.A.; Kinders, R.J.; Parchment, R.E.; Tomaszewski, J.E.; Doroshow, J.H.; Pommier, Y. Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther 2009, 8, 1878-1884. 15.Pommier, Y.; Barcelo, J.M.; Rao, V.A.; Sordet, O.; Jobson, A.G.; Thibaut, L.; Miao, Z.H.; Seiler, J.A.; Zhang, H.; Marchand, C.; Agama, K.; Nitiss, J.L.; Redon, C. Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 2006, 81, 179-229. 16.Sun, Q.; Gatto, B.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Synthesis and evaluation of terbenzimidazoles as topoisomerase I inhibitors. J Med Chem 1995, 38, 3638-3644. 17.Kim, J.S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Substituted 2,5''-Bi-1H-benzimidazoles: topoisomerase I inhibition and cytotoxicity. J Med Chem 1996, 39, 992-998. 18.Xu, Z.; Li, T.K.; Kim, J.S.; LaVoie, E.J.; Breslauer, K.J.; Liu, L.F.; Pilch, D.S. DNA minor groove binding-directed poisoning of human DNA topoisomerase I by terbenzimidazoles. Biochemistry 1998, 37, 3558-3566. 19.Makhey, D.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Substituted benz[a]acridines and benz[c]acridines as mammalian topoisomerase poisons. Bioorg Med Chem 2000, 8, 1171-1182. 20.Janin, Y.L.; Croisy, A.; Riou, J.F.; Bisagni, E. Synthesis and evaluation of new 6-amino-substituted benzo[c]phenanthridine derivatives. J Med Chem 1993, 36, 3686-3692. 21.Qin, Y.; Pang, J.Y.; Chen, W.H.; Zhao, Z.Z.; Liu, L.; Jiang, Z.H. Inhibition of DNA topoisomerase I by natural and synthetic mono- and dimeric protoberberine alkaloids. Chem Biodivers 2007, 4, 481-487. 22.Fujii, N.; Yamashita, Y.; Saitoh, Y.; Nakano, H. Induction of mammalian DNA topoisomerase I-mediated DNA cleavage and DNA winding by bulgarein. J Biol Chem 1993, 268, 13160-13165. 23.Fujii, N.; Yamashita, Y.; Mizukami, T.; Nakano, H. Correlation between the formation of cleavable complex with topoisomerase I and growth-inhibitory activity for saintopin-type antibiotics. Mol Pharmacol 1997, 51, 269-276. 24.Vicker, N.; Burgess, L.; Chuckowree, I.S.; Dodd, R.; Folkes, A.J.; Hardick, D.J.; Hancox, T.C.; Miller, W.; Milton, J.; Sohal, S.; Wang, S.; Wren, S.P.; Charlton, P.A.; Dangerfield, W.; Liddle, C.; Mistry, P.; Stewart, A.J.; Denny, W.A. Novel angular benzophenazines: dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J Med Chem 2002, 45, 721-739. 25.Morrell, A.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. A systematic study of nitrated indenoisoquinolines reveals a potent topoisomerase I inhibitor. J Med Chem 2006, 49, 7740-7753. 26.Yamashita, Y.; Fujii, N.; Murakata, C.; Ashizawa, T.; Okabe, M.; Nakano, H. Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives. Biochemistry 1992, 31, 12069-12075. 27.Li, T.K.; Houghton, P.J.; Desai, S.D.; Daroui, P.; Liu, A.A.; Hars, E.S.; Ruchelman, A.L.; LaVoie, E.J.; Liu, L.F. Characterization of ARC-111 as a novel topoisomerase I-targeting anticancer drug. Cancer Res 2003, 63, 8400-8407. 28.Antony, S.; Kohlhagen, G.; Agama, K.; Jayaraman, M.; Cao, S.; Durrani, F.A.; Rustum, Y.M.; Cushman, M.; Pommier, Y. Cellular topoisomerase I inhibition and antiproliferative activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I poison. Mol Pharmacol 2005, 67, 523-530. 29.Antony, S.; Agama, K.K.; Miao, Z.H.; Takagi, K.; Wright, M.H.; Robles, A.I.; Varticovski, L.; Nagarajan, M.; Morrell, A.; Cushman, M.; Pommier, Y. Novel indenoisoquinolines NSC 725776 and NSC 724998 produce persistent topoisomerase I cleavage complexes and overcome multidrug resistance. Cancer Res 2007, 67, 10397-10405. 30.Beijnen, J.H.; Rosing, H.; ten Bokkel Huinink, W.W.; Pinedo, H.M. High-performance liquid chromatographic analysis of the antitumour drug camptothecin and its lactone ring-opened form in rat plasma. J Chromatogr 1993, 617, 111-117. 31.Mauser, H.; Guba, W. Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 2008, 11, 365-374. 32.Kim, J.Y.; Su, T.L.; Chou, T.C.; Koehler, B.; Scarborough, A.; Ouerfelli, O.; Watanabe, K.A. Cyclopent[a]anthraquinones as DNA intercalating agents with covalent bond formation potential: synthesis and biological activity. J Med Chem 1996, 39, 2812-2818. 33.Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987, 47, 936-942. 34.Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006, 1, 1112-1116. 35.Voigt, W. Sulforhodamine B assay and chemosensitivity. Methods Mol Med 2005, 110, 39-48. 36.Jinno, H.; Steiner, M.G.; Mehta, R.G.; Osborne, M.P.; Telang, N.T. Inhibition of aberrant proliferation and induction of apoptosis in HER-2/neu oncogene transformed human mammary epithelial cells by N-(4-hydroxyphenyl)retinamide. Carcinogenesis 1999, 20, 229-236. 37.Topcu, Z.; Castora, F.J. Mammalian mitochondrial DNA topoisomerase I preferentially relaxes supercoils in plasmids containing specific mitochondrial DNA sequences. Biochim Biophys Acta 1995, 1264, 377-387. 38.Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988, 175, 184-191. 39.Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y.F. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000, 35, 206-221. 40.Holm, C.; Covey, J.M.; Kerrigan, D.; Pommier, Y. Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res 1989, 49, 6365-6368. 41.Blumenthal, R.D.; Goldenberg, D.M. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol Biotechnol 2007, 35, 185-197. 42.Giovanella, B.C.; Stehlin, J.S.; Wall, M.E.; Wani, M.C.; Nicholas, A.W.; Liu, L.F.; Silber, R.; Potmesil, M. DNA topoisomerase I--targeted chemotherapy of human colon cancer in xenografts. Science 1989, 246, 1046-1048. 43.Champoux, J.J. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 2001, 70, 369-413. 44.Godard, T.; Deslandes, E.; Sichel, F.; Poul, J.M.; Gauduchon, P. Detection of topoisomerase inhibitor-induced DNA strand breaks and apoptosis by the alkaline comet assay. Mutat Res 2002, 520, 47-56. 45.Daza, P.; Torreblanca, J.; Moreno, F.J. The comet assay differentiates efficiently and rapidly between genotoxins and cytotoxins in quiescent cells. Cell Biol Int 2004, 28, 497-502. 46.Capranico, G.; Zunino, F.; Kohn, K.W.; Pommier, Y. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: relationship with DNA binding affinity and cytotoxicity. Biochemistry 1990, 29, 562-569. 47.Fosse, P.; Rene, B.; Saucier, J.M.; Nguyen, C.H.; Bisagni, E.; Paoletti, C. Stimulation by gamma-carboline derivatives (simplified analogues of antitumor ellipticines) of site specific DNA cleavage by calf DNA topoisomerase II. Biochem Pharmacol 1990, 39, 669-676. 48.Antony, S.; Agama, K.K.; Miao, Z.H.; Hollingshead, M.; Holbeck, S.L.; Wright, M.H.; Varticovski, L.; Nagarajan, M.; Morrell, A.; Cushman, M.; Pommier, Y. Bisindenoisoquinoline bis-1,3-{(5,6-dihydro-5,11-diketo-11H-indeno[1,2-c]isoquinoline)-6-propyla mino}propane bis(trifluoroacetate) (NSC 727357), a DNA intercalator and topoisomerase inhibitor with antitumor activity. Mol Pharmacol 2006, 70, 1109-1120. 49.Dubrez, L.; Goldwasser, F.; Genne, P.; Pommier, Y.; Solary, E. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia 1995, 9, 1013-1024. 50.Gong, Y.; Firestone, G.L.; Bjeldanes, L.F. 3,3''-diindolylmethane is a novel topoisomerase IIalpha catalytic inhibitor that induces S-phase retardation and mitotic delay in human hepatoma HepG2 cells. Mol Pharmacol 2006, 69, 1320-1327. 51.Tan, C.; Cai, L.Q.; Wu, W.; Qiao, Y.; Imperato-McGinley, J.; Chen, G.Q.; Zhu, Y.S. NSC606985, a novel camptothecin analog, induces apoptosis and growth arrest in prostate tumor cells. Cancer Chemother Pharmacol 2009, 63, 303-312. 52.Kim, Y.Y.; Park, C.K.; Kim, S.K.; Phi, J.H.; Kim, J.H.; Kim, C.Y.; Wang, K.C.; Cho, B.K. CKD-602, a camptothecin derivative, inhibits proliferation and induces apoptosis in glioma cell lines. Oncol Rep 2009, 21, 1413-1419. 53.Han, M.; He, C.X.; Fang, Q.L.; Yang, X.C.; Diao, Y.Y.; Xu, D.H.; He, Q.J.; Hu, Y.Z.; Liang, W.Q.; Yang, B.; Gao, J.Q. A novel camptothecin derivative incorporated in nano-carrier induced distinguished improvement in solubility, stability and anti-tumor activity both in vitro and in vivo. Pharm Res 2009, 26, 926-935. 54.D''Arpa, P.; Beardmore, C.; Liu, L.F. Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 1990, 50, 6919-6924. 55.Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 1989, 49, 5077-5082. 56.Pommier, Y.; Cherfils, J. Interfacial inhibition of macromolecular interactions: nature''s paradigm for drug discovery. Trends Pharmacol Sci 2005, 26, 138-145. 57.Jaxel, C.; Kohn, K.W.; Pommier, Y. Topoisomerase I interaction with SV40 DNA in the presence and absence of camptothecin. Nucleic Acids Res 1988, 16, 11157-11170. 58.Spitzner, J.R.; Muller, M.T. A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res 1988, 16, 5533-5556. 59.Bonven, B.J.; Gocke, E.; Westergaard, O. A high affinity topoisomerase I binding sequence is clustered at DNAase I hypersensitive sites in Tetrahymena R-chromatin. Cell 1985, 41, 541-551. 60.Gilmour, D.S.; Elgin, S.C. Localization of specific topoisomerase I interactions within the transcribed region of active heat shock genes by using the inhibitor camptothecin. Mol Cell Biol 1987, 7, 141-148. 61.Zhang, H.; Wang, J.C.; Liu, L.F. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes. Proc Natl Acad Sci U S A 1988, 85, 1060-1064. 62.Li, T.K.; Liu, L.F. Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 2001, 41, 53-77. 63.Kohn, K.W.; Aladjem, M.I.; Weinstein, J.N.; Pommier, Y. Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol Biol Cell 2006, 17, 1-13. 64.Yang, J.; Yu, Y.; Hamrick, H.E.; Duerksen-Hughes, P.J. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 2003, 24, 1571-1580. 65.Sordet, O.; Khan, Q.A.; Kohn, K.W.; Pommier, Y. Apoptosis induced by topoisomerase inhibitors. Curr Med Chem Anticancer Agents 2003, 3, 271-290. 66.Matsuoka, S.; Ballif, B.A.; Smogorzewska, A.; McDonald, E.R., 3rd; Hurov, K.E.; Luo, J.; Bakalarski, C.E.; Zhao, Z.; Solimini, N.; Lerenthal, Y.; Shiloh, Y.; Gygi, S.P.; Elledge, S.J. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316, 1160-1166. Chapter VI 1.Dunstan, H.M.; Ludlow, C.; Goehle, S.; Cronk, M.; Szankasi, P.; Evans, D.R.; Simon, J.A.; Lamb, J.R. Cell-based assays for identification of novel double-strand break-inducing agents. J Natl Cancer Inst 2002, 94, 88-94. 2.Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960-1964. 3.Fishman, M.C.; Porter, J.A. Pharmaceuticals: a new grammar for drug discovery. Nature 2005, 437, 491-493. 4.Hefti, F.F. Requirements for a lead compound to become a clinical candidate. BMC Neurosci 2008, 9 Suppl 3, S7. 5.Leeson, P.D.; Davis, A.M. Time-related differences in the physical property profiles of oral drugs. J Med Chem 2004, 47, 6338-6348. 6.Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007, 6, 881-890.
|