跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 09:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃瓊嬅
研究生(外文):Chiung-Hua Huang
論文名稱:苯駢[1.3.2]-1,1-雙氧雙噻唑偶極體及喹啉-4-酮衍生物之分子及細胞機制研究
論文名稱(外文):Studies on Molecular and Cellular Mechanisms of Benzo[1.3.2]dithiazolium Ylide 1,1-Dioxide and Quinolin-4-one Derivatives
指導教授:陳基旺陳基旺引用關係
指導教授(外文):Ji-Wang Chern
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:藥學研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:151
中文關鍵詞:環氧酶-2抗發炎抑制增生細胞凋亡第一型拓樸異構酶
外文關鍵詞:cyclooxygenase-2anti-inflammationanti-proliferationapoptosistopoisomerase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
一般認為慢性發炎為癌症的傾向因子,但連結的精確機制則有待釐清。 CX9051為本實驗室確認之環氧酶-2(COX-2)及5-脂氧合酶(5-LOX)雙重抑制劑的苯駢[1.3.2]-1,1-雙氧雙噻唑偶極體衍生物,且顯示有抗發炎及抑制癌細胞增生的活性。本論文的結果證實,CX9051可以抑制脂多醣(LPS)引起的前列腺素E2 (PGE2)及腫瘤壞死因子α (TNF-α)生成,且可降低COX-2、iNOS、Akt及NF-κB蛋白質表現量及NF-κB核內外轉移。另外,CX9051可抑制前列腺癌細胞株的增生及誘發細胞凋亡,此效果被證實為是經由調控NF-κB腫瘤壞死因子及增加腫瘤相關細胞凋亡誘導配體(TRAIL)的過度表現,並活化可與粒線體引起的內在凋亡途徑有交互作用的外在凋亡訊息,進而造成癌細胞產生細胞凋亡反應。本研究中所證實CX9051具有抑制增生及抗發炎活性之結果,證明CX9051可作為抗發炎及化學預防抗癌的前導化合物。另外,此論文研究利用結構修飾原理設計一類新穎的第一型拓樸異構酶(Top I)抑制劑,其中最有效的Top I抑制劑,化合物26,為喹啉-4-酮衍生物,藉由降低Top I蛋白質表現及引起DNA單股斷裂,造成Top I毒性引起的細胞毒殺效果,進而對大腸腫瘤誘發老鼠模式也具有治療性的抗腫瘤活性效果。根據化合物26所表現的抑制Top I活性及在HT-29細胞株中誘發細胞凋亡及抑制腫瘤誘發活性等結果,提供另一前導化合物可用於發展新穎的Top I抑制劑來治療癌症。總之,本論文研究結果顯示苯駢[1.3.2]-1,1-雙氧雙噻唑偶極體及喹啉-4-酮衍生物可分別作為發展抗發炎及抗癌藥物發展的先導化合物。
While chronic inflammation is widely believed to be a predisposing factor for cancer, the exact mechanisms linking these conditions have remained elusive. CX9051, a benzo[1.3.2]dithiazolium ylide 1,1-dioxide derivative identified as a COX-2 and 5-LOX dual inhibitor in our laboratory, exhibited anti-inflammatory activity and anti-proliferation effects. Our results demonstrated that CX9051 suppressed the LPS-induced PGE2 production and TNF-α generation and attenuated the protein expression of COX-2, iNOS, Akt, and NF-κB as well as NF-κB translocation. Furthermore, CX9051 could inhibit the proliferation and induced apoptosis of prostate cancer cell lines. The effect has been shown to be mediated via the regulation of NF-κB, the induction of TRAIL and the activation of extrinsic apoptotic signaling, which cross-react the activation of mitochondria mediated intrinsic pathways, leading to the apoptosis of cancer cells. The anti-proliferation and anti-inflammatory activities of CX9051 revealed in this thesis provided a propelling evidence for CX9051 serving as a promising lead compound to provide anti- inflammatory and chemopreventive benefits. In addition, a scaffold modification approach has been employed to design a novel class of Top I inhibitor in this thesis. The most effective Top I inhibitor 26, a 3-substituted quinolin-4(1H)-one derivative, elicited its cytotoxic effects of Top I poison through Top I down-regulation, which paralleled the induction of DNA single-strand breaks and followed with curative anti-tumor activity against the colon carcinoma xenograft tumor model. According to the impressive Top I inhibitory activity, pro-apoptotic activity in HT-29 cells and in vivo xenograft inhibition activity exhibited by 26, this investigation has provided an alternative lead compound for the development of novel Top I inhibitor for the treatment of cancer. In conclusion, the results in this thesis suggested that benzo[1.3.2]dithiazolium ylide 1,1-dioxide and 3-substituted quinolin-4(1H)-one derivatives were promising leads for the development of anti-inflammatory drugs and anticancer agents, respectively.
Acknowledgement i
Abstract (Chinese) ii
Abstract (English) iii
Abbreviations iv
Contents viii
List of Tables x
List of Figures xi

Chapter I
Introduction
1. Epidemiology and pharmacoeconomics of cancer 1
2. Development of current chemotherapeutic agents 1
3. Cancer and inflammation 2
4. Rational design of this thesis 3
5. References 4

Chapter II
CX9051, a Dual Inhibitor Against Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX), as a Potential Anti-Inflammatory Agent in Human THP-1 Macrophages
1. Introduction 7
2. Aim 10
3. Materials and methods 10
4. Results 16
5. Discussion 22
6. Summary 25
7. Perspectives 26
8. References 28

Chapter III
Proapoptotic and Antiproliferative Potential of the Selective Cyclooxygenase-2 Inhibitor CX9051 in Human Prostate Cancer Cell Lines
1. Introduction 56
2. Aim 61
3. Materials and methods 61
4. Results 67
5. Discussion 73
6. Summary 77
7. Perspectives 78
8. References 79

Chapter IV
Molecular Mechanisms and Cellular Determinants of Response to a Topoisomerase I Inhibitor, a Quinolone Derivative, in Colon Cancer Cell Lines
1. Introduction 110
2. Aim 113
3. Materials and methods 113
4. Results 117
5. Discussion 120
6. Summary 122
7. Perspectives 122
8. References 124

Chapter V 147
Conclusion 147

Chapter VI 149
Future works 149
References 150

Appendix
3.1 Materials A1
Curriculum vitae A29

List of Tables

Chapter I
Introduction
Table I-1. Therapeutic mechanisms of action of anticancer drugs 6

Chapter II
CX9051, a Dual Inhibitor Against Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX), as a Potential Anti-Inflammatory Agent in Human THP-1 Macrophages
Table II-1. Screening for COX-2 inhibitors 38
Table II-2. TNF-α inhibitors currently FDA approved or in development 40

Chapter III
Proapoptotic and Antiproliferative Potential of the Selective Cyclooxygenase-2 Inhibitor CX9051 in Human Prostate Cancer Cell Lines
Table III-1. Comparison of CX9051 and celecoxib induced cell cytotoxicity in various cancer cell lines 88

Chapter IV
Molecular Mechanisms and Cellular Determinants of Response to a Topoisomerase I Inhibitor, a Quinolone Derivative, in Colon Cancer Cell Lines
Table IV-1. Chemival structures of 33 quinolone and naphthyridine derivatives 130
Table IV-2. In vitro SRB assay to test the effectiveness of 12 quinolone and naphthyridine derivatives against 12 cancer cell lines 131



List of Figures

Chapter II
CX9051, a Dual Inhibitor Against Cyclooxygenase-2 (COX-2) and 5-Lipooxygenase (5-LOX), as a Potential Anti-Inflammatory Agent in Human THP-1 Macrophages
Figure II-1. Schematic pathways of the arachidonic cascade 42
Figure II-2. Examples of COX-2 inhibitors 43
Figure II-3. General scheme representing the main metabolic pathways leading to arachidonic acid products involved in the inflammatory process 44
Figure II-4. Effect of COX inhibition on cholesterol efflux proteins and atheromatous foam cell transformation 45
Figure II-5. Chemical structures of rofecoxib and celecoxib 46
Figure II-6. Examples of small-molecule COX/LOX dual inhibitors 46
Figure II-7. Comparison of COX-1 and COX-2 47
Figure II-8. The benzo[1.3.2]dithiazolium ylide 1,1-dioxide derivative, CX9051 48
Figure II-9. Morphology and cytotoxicity of CX9051 and its derivatives in PMA derived THP-1 macrophages 50
Figure II-10. Effect of CX9051 on COX-1, COX-2, 5-LOX, FLAP, TNF-α, IL-1β, and iNOS mRNA levels in human macrophages 51
Figure II-11. Effect of CX9051 on LPS-induced COX-2 protein expression and PGE2 production 52
Figure II-12. Effects of CX9051 and its derivatives on TNF-α production 53
Figure II-13. Effects of CX9051 on COX-2, iNOS, Akt, ERK, JNK, and p38 protein expression associated with anti-inflammatory effects 54
Figure II-14. Effect of CX9051 on NF-κB pathways 55

Chapter III
Proapoptotic and Antiproliferative Potential of the Selective Cyclooxygenase-2 Inhibitor CX9051 in Human Prostate Cancer Cell Lines
Figure III-1. The timeline of apoptosis research 89
Figure III-2. Survival and apoptosis pathways in cancer cells 90
Figure III-3. Target NF-κB in anticancer chemotherapy 91
Figure III-4. Schematic of signalling through the PI3K/AKT pathway 94
Figure III-5. Molecular mechanisms of celecoxib and its anticarcinogenic effects 95
Figure III-6. CX9051 inhibited the proliferation of PC-3 cells 97
Figure III-7. CX9051 induced accumulation of SubG1 in prostate cancer cells 99
Figure III-8. CX9051 induced apoptosis in prostate cancer cells. 100
Figure III-9. Effect of CX9051 on apoptosis-related proteins expression in PC-3 cells 102
Figure III-10. CX9051 activated caspases pathways 104
Figure III-11. CX9051 down-regulated Akt via a sequential inhibition of GSK-3β and NF-κB 106
Figure III-12. Effect of CX9051 on NF-κB p65 in PC-3 cells 107
Figure III-13. A schematic representation of the proposed mechanisms of action of CX9051 on PC-3 cells 109

Chapter IV
Molecular Mechanisms and Cellular Determinants of Response to a Topoisomerase I Inhibitor, a Quinolone Derivative, in Colon Cancer Cell Lines
Figure IV-1. Introduction to DNA topoisomerases 132
Figure IV-2. Chemical structures of Top I inhibitors 135
Figure IV-3. Compound generation by scaffold modification 138
Figure IV-4. Anti-proliferation effect of 26 against HT-29 cells 139
Figure IV-5. Effect of CPT and 26 on the catalytic activity of human DNA Top I 140
Figure IV-6. Effect of quinolone and naphthyridine derivatives on Top I-mediated DNA relaxation activity 141
Figure IV-7. Stimulation of Top I mediated DNA cleavage by 26 142
Figure IV-8. Quantification of cell cycle distribution of HT-29 cells by flow cytometry 143
Figure IV-9. Compound 26 induced chromosomal DNA strand breaks as revealed by comet assay 144
Figure IV-10. Molecular pathways involved in cellular responses to Top I cleavage complexes 145
Chapter I
1.Whang-Peng, J.; Liu, T.W. Development of Medical Oncology in Taiwan. J Chin Oncol Soc 2007, 23, 94-99.
2.Goodman, M. Market watch: sales trends by therapeutic area: 2008-2013E. Nat Rev Drug Discov 2009, 8, 689.
3.Walker, I.; Newell, H. Do molecularly targeted agents in oncology have reduced attrition rates? Nat Rev Drug Discov 2009, 8, 15-16.
4.Horner, M.J.; Ries, L.; Krapcho, M.; Neyman, N.; Aminou, R.; Howlader, N.; Altekruse, S.F.; Feuer, E.J.; Huang, L.; Mariotto, A.; Miller, B.A.; Lewis, D.R.; Eisner, M.P.; Stinchcomb, D.G.; Edwards, B.K. (eds). Surveillance, Epidemiology, and End Results (SEER) Cancer Statistics Review, 1975-2006, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2006/, based on November 2008 SEER data submission, posted to the SEER web site. (Accessed December 2009)
5.Kamb, A.; Wee, S.; Lengauer, C. Why is cancer drug discovery so difficult? Nat Rev Drug Discov 2007, 6, 115-120.
6.Zhou, B.B.; Zhang, H.; Damelin, M.; Geles, K.G.; Grindley, J.C.; Dirks, P.B. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009, 8, 806-823.
7.Faivre, S.; Djelloul, S.; Raymond, E. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin Oncol 2006, 33, 407-420.
8.William, W.N., Jr.; Heymach, J.V.; Kim, E.S.; Lippman, S.M. Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 2009, 8, 213-225.
9.Lawrence, T.; Willoughby, D.A.; Gilroy, D.W. Anti-inflammatory lipid mediators and insights into the resolution of inflammation. Nat Rev Immunol 2002, 2, 787-795.
10.Balkwill, F.; Charles, K.A.; Mantovani, A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005, 7, 211-217.
11.Balkwill, F.; Coussens, L.M. Cancer: an inflammatory link. Nature 2004, 431, 405-406.
12.Lawrence, T. Inflammation and cancer: a failure of resolution? Trends Pharmacol Sci 2007, 28, 162-165.
13.Karin, M.; Greten, F.R. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005, 5, 749-759.
14.Lu, H.; Ouyang, W.; Huang, C. Inflammation, a key event in cancer development. Mol Cancer Res 2006, 4, 221-233.
15.Mazhar, D.; Gillmore, R.; Waxman, J. COX and cancer. QJM 2005, 98, 711-718.
16.Wang, D.; Dubois, R.N. Prostaglandins and cancer. Gut 2006, 55, 115-122.
17.Hopkins, A.L.; Groom, C.R. The druggable genome. Nat Rev Drug Discov 2002, 1, 727-730.
18.Plewczynski, D.; Rychlewski, L. Meta-basic estimates the size of druggable human genome. J Mol Model 2009, 15, 695-699.
19.Russ, A.P.; Lampel, S. The druggable genome: an update. Drug Discov Today 2005, 10, 1607-1610.
20.Copeland, R.A. Evaluation of enzyme inhibitors in drug discovery: a guide for medicinal chemists and pharmacologists (Methods of Biochemical Analysis), 2nd Ed.; John Wiley & Sons: Chichester, U.K., 2005; p2-4.
21.Flower, R.J. The development of COX2 inhibitors. Nat Rev Drug Discov 2003, 2, 179-191.
22.Brown, D.; Superti-Furga, G. Rediscovering the sweet spot in drug discovery. Drug Discov Today 2003, 8, 1067-1077.
Chapter II
1.Herrington, C.; Hall, P. Molecular and cellular themes in inflammation and immunology. J Pathol 2008, 214, 123-125.
2.Heller, A.; Koch, T.; Schmeck, J.; van Ackern, K. Lipid mediators in inflammatory disorders. Drugs 1998, 55, 487-496.
3.Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: the biology of prostaglandin synthesis and inhibition. Pharmacol Rev 2004, 56, 387-437.
4.Ushiyama, S.; Yamada, T.; Murakami, Y.; Kumakura, S.; Inoue, S.; Suzuki, K.; Nakao, A.; Kawara, A.; Kimura, T. Preclinical pharmacology profile of CS-706, a novel cyclooxygenase-2 selective inhibitor, with potent antinociceptive and anti-inflammatory effects. Eur J Pharmacol 2008, 578, 76-86.
5.Goppelt-Struebe, M.; Schaefer, D.; Habenicht, A.J. Differential regulation of cyclo-oxygenase-2 and 5-lipoxygenase-activating protein (FLAP) expression by glucocorticoids in monocytic cells. Br J Pharmacol 1997, 122, 619-624.
6.Burnett, B.P.; Jia, Q.; Zhao, Y.; Levy, R.M. A medicinal extract of Scutellaria baicalensis and Acacia catechu acts as a dual inhibitor of cyclooxygenase and 5-lipoxygenase to reduce inflammation. J Med Food 2007, 10, 442-451.
7.Dubois, R.N.; Abramson, S.B.; Crofford, L.; Gupta, R.A.; Simon, L.S.; Van De Putte, L.B.; Lipsky, P.E. Cyclooxygenase in biology and disease. FASEB J 1998, 12, 1063-1073.
8.Rimarachin, J.A.; Jacobson, J.A.; Szabo, P.; Maclouf, J.; Creminon, C.; Weksler, B.B. Regulation of cyclooxygenase-2 expression in aortic smooth muscle cells. Arterioscler Thromb 1994, 14, 1021-1031.
9.Huang, Y.; Liu, J.; Wang, L.Z.; Zhang, W.Y.; Zhu, X.Z. Neuroprotective effects of cyclooxygenase-2 inhibitor celecoxib against toxicity of LPS-stimulated macrophages toward motor neurons. Acta Pharmacol Sin 2005, 26, 952-958.
10.Dannhardt, G.; Kiefer, W. Cyclooxygenase inhibitors--current status and future prospects. Eur J Med Chem 2001, 36, 109-126.
11.Gauthier, M.P.; Michaux, C.; Rolin, S.; Vastersaegher, C.; de Leval, X.; Julemont, F.; Pochet, L.; Masereel, B. Synthesis, molecular modelling and enzymatic evaluation of (+/-)3,5-diphenyl-2-thioxoimidazolidin-4-ones as new potential cyclooxygenase inhibitors. Bioorg Med Chem 2006, 14, 918-927.
12.Szabo, G.; Fischer, J.; Kis-Varga, A.; Gyires, K. New Celecoxib Derivatives as Anti-Inflammatory Agents. J Med Chem 2008, 51, 142-147.
13.Wey, S.J.; Augustyniak, M.E.; Cochran, E.D.; Ellis, J.L.; Fang, X.; Garvey, D.S.; Janero, D.R.; Letts, L.G.; Martino, A.M.; Melim, T.L.; Murty, M.G.; Richardson, S.K.; Schroeder, J.D.; Selig, W.M.; Trocha, A.M.; Wexler, R.S.; Young, D.V.; Zemtseva, I.S.; Zifcak, B.M. Structure-based design, synthesis, and biological evaluation of indomethacin derivatives as cyclooxygenase-2 inhibiting nitric oxide donors. J Med Chem 2007, 50, 6367-6382.
14.Belton, O.; Byrne, D.; Kearney, D.; Leahy, A.; Fitzgerald, D.J. Cyclooxygenase-1 and -2-dependent prostacyclin formation in patients with atherosclerosis. Circulation 2000, 102, 840-845.
15.Bing, R.J.; Lomnicka, M. Why do cyclo-oxygenase-2 inhibitors cause cardiovascular events? J Am Coll Cardiol 2002, 39, 521-522.
16.Silverstein, F.E.; Faich, G.; Goldstein, J.L.; Simon, L.S.; Pincus, T.; Whelton, A.; Makuch, R.; Eisen, G.; Agrawal, N.M.; Stenson, W.F.; Burr, A.M.; Zhao, W.W.; Kent, J.D.; Lefkowith, J.B.; Verburg, K.M.; Geis, G.S. Gastrointestinal toxicity with celecoxib vs nonsteroidal anti-inflammatory drugs for osteoarthritis and rheumatoid arthritis: the CLASS study: A randomized controlled trial. Celecoxib Long-term Arthritis Safety Study. JAMA 2000, 284, 1247-1255.
17.Bombardier, C.; Laine, L.; Reicin, A.; Shapiro, D.; Burgos-Vargas, R.; Davis, B.; Day, R.; Ferraz, M.B.; Hawkey, C.J.; Hochberg, M.C.; Kvien, T.K.; Schnitzer, T.J. Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med 2000, 343, 1520-1528, 1522 p following 1528.
18.Mukherjee, D.; Nissen, S.E.; Topol, E.J. Risk of cardiovascular events associated with selective COX-2 inhibitors. JAMA 2001, 286, 954-959.
19.Capone, M.L.; Tacconelli, S.; Francesco, L.D.; Petrelli, M.; Patrignani, P. Cardiovascular effects of valdecoxib: transducing human pharmacology results into clinical read-outs. Expert Opin Drug Saf 2008, 7, 29-42.
20.Farooq, M.; Haq, I.; Qureshi, A.S. Cardiovascular risks of COX inhibition: current perspectives. Expert Opin Pharmacother 2008, 9, 1311-1319.
21.Bunimov, N.; Laneuville, O. Cyclooxygenase inhibitors: instrumental drugs to understand cardiovascular homeostasis and arterial thrombosis. Cardiovasc Hematol Disord Drug Targets 2008, 8, 268-277.
22.Howes, L.G. Selective COX-2 inhibitors, NSAIDs and cardiovascular events - is celecoxib the safest choice? Ther Clin Risk Manag 2007, 3, 831-845.
23.Nussmeier, N.A.; Whelton, A.A.; Brown, M.T.; Langford, R.M.; Hoeft, A.; Parlow, J.L.; Boyce, S.W.; Verburg, K.M. Complications of the COX-2 inhibitors parecoxib and valdecoxib after cardiac surgery. N Engl J Med 2005, 352, 1081-1091.
24.Coruzzi, G.; Venturi, N.; Spaggiari, S. Gastrointestinal safety of novel nonsteroidal antiinflammatory drugs: selective COX-2 inhibitors and beyond. Acta Biomed 2007, 78, 96-110.
25.Chan, E.S.; Zhang, H.; Fernandez, P.; Edelman, S.D.; Pillinger, M.H.; Ragolia, L.; Palaia, T.; Carsons, S.; Reiss, A.B. Effect of cyclooxygenase inhibition on cholesterol efflux proteins and atheromatous foam cell transformation in THP-1 human macrophages: a possible mechanism for increased cardiovascular risk. Arthritis Res Ther 2007, 9, R4.
26.Walter, M.F.; Jacob, R.F.; Day, C.A.; Dahlborg, R.; Weng, Y.; Mason, R.P. Sulfone COX-2 inhibitors increase susceptibility of human LDL and plasma to oxidative modification: comparison to sulfonamide COX-2 inhibitors and NSAIDs. Atherosclerosis 2004, 177, 235-243.
27.de Gaetano, G.; Donati, M.B.; Cerletti, C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol Sci 2003, 24, 245-252.
28.Martel-Pelletier, J.; Lajeunesse, D.; Reboul, P.; Pelletier, J.P. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis 2003, 62, 501-509.
29.Brune, K. Safety of anti-inflammatory treatment--new ways of thinking. Rheumatology (Oxford) 2004, 43 Suppl 1, i16-20.
30.Rotondo, S.; Krauze-Brzosko, K.; Manarini, S.; Evangelista, V.; Cerletti, C. Licofelone, an inhibitor of cyclooxygenase and 5-lipoxygenase, specifically inhibits cyclooxygenase-1-dependent platelet activation. Eur J Pharmacol 2004, 488, 79-83.
31.Fiorucci, S.; Meli, R.; Bucci, M.; Cirino, G. Dual inhibitors of cyclooxygenase and 5-lipoxygenase. A new avenue in anti-inflammatory therapy? Biochem Pharmacol 2001, 62, 1433-1438.
32.Bayes, M.; Rabasseda, X. Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2008, 30, 67-99.
33.Kulkarni, S.K.; Singh, V.P. Licofelone: the answer to unmet needs in osteoarthritis therapy? Curr Rheumatol Rep 2008, 10, 43-48.
34.Koeberle, A.; Siemoneit, U.; Buhring, U.; Northoff, H.; Laufer, S.; Albrecht, W.; Werz, O. Licofelone suppresses prostaglandin E2 formation by interference with the inducible microsomal prostaglandin E2 synthase-1. J Pharmacol Exp Ther 2008, 326, 975-982.
35.Geronikaki, A.A.; Lagunin, A.A.; Hadjipavlou-Litina, D.I.; Eleftheriou, P.T.; Filimonov, D.A.; Poroikov, V.V.; Alam, I.; Saxena, A.K. Computer-aided discovery of anti-inflammatory thiazolidinones with dual cyclooxygenase/lipoxygenase inhibition. J Med Chem 2008, 51, 1601-1609.
36.Sud''ina, G.F.; Pushkareva, M.A.; Shephard, P.; Klein, T. Cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) selectivity of COX inhibitors. Prostaglandins Leukot Essent Fatty Acids 2008, 78, 99-108.
37.Reddy, M.V.; Billa, V.K.; Pallela, V.R.; Mallireddigari, M.R.; Boominathan, R.; Gabriel, J.L.; Reddy, E.P. Design, synthesis, and biological evaluation of 1-(4-sulfamylphenyl)-3-trifluoromethyl-5-indolyl pyrazolines as cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) inhibitors. Bioorg Med Chem 2008, 16, 3907-3916.
38.Kuo, C.L.; Ho, F.M.; Chang, M.Y.; Prakash, E.; Lin, W.W. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 gene expression by 5-aminoimidazole-4-carboxamide riboside is independent of AMP-activated protein kinase. J Cell Biochem 2008, 103, 931-940.
39.Gubitosi-Klug, R.A.; Talahalli, R.; Du, Y.; Nadler, J.L.; Kern, T.S. 5-Lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes 2008, 57, 1387-1393.
40.Yoon, J.H.; Lim, H.J.; Lee, H.J.; Kim, H.D.; Jeon, R.; Ryu, J.H. Inhibition of lipopolysaccharide-induced inducible nitric oxide synthase and cyclooxygenase-2 expression by xanthanolides isolated from Xanthium strumarium. Bioorg Med Chem Lett 2008, 18, 2179-2182.
41.Kyung, T.W.; Lee, J.E.; Shin, H.H.; Choi, H.S. Rutin inhibits osteoclast formation by decreasing reactive oxygen species and TNF-alpha by inhibiting activation of NF-kappaB. Exp Mol Med 2008, 40, 52-58.
42.Rábai, J.; Kapovits, I.; Jalsovszky, I.; Argay, G.; Fülöp, V.; Kálmán, A.; T., K. Molecular structures of cyclic sulfilimines without and with intramolecular sulfur-oxygen interaction: an X-ray study. J Mol Struct 1996, 382, 13-21.
43.Kurumbail, R.G.; Stevens, A.M.; Gierse, J.K.; McDonald, J.J.; Stegeman, R.A.; Pak, J.Y.; Gildehaus, D.; Miyashiro, J.M.; Penning, T.D.; Seibert, K.; Isakson, P.C.; Stallings, W.C. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature 1996, 384, 644-648.
44.Gierse, J.K.; McDonald, J.J.; Hauser, S.D.; Rangwala, S.H.; Koboldt, C.M.; Seibert, K. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2 (COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem 1996, 271, 15810-15814.
45.Wong, E.; Bayly, C.; Waterman, H.L.; Riendeau, D.; Mancini, J.A. Conversion of prostaglandin G/H synthase-1 into an enzyme sensitive to PGHS-2-selective inhibitors by a double His513 --> Arg and Ile523 --> val mutation. J Biol Chem 1997, 272, 9280-9286.
46.Bayly, C.I.; Black, W.C.; Leger, S.; Ouimet, N.; Ouellet, M.; Percival, M.D. Structure-based design of COX-2 selectivity into flurbiprofen. Bioorg Med Chem Lett 1999, 9, 307-312.
47.Shoichet, B.K. Virtual screening of chemical libraries. Nature 2004, 432, 862-865.
48.Kuntz, I.D. Structure-based strategies for drug design and discovery. Science 1992, 257, 1078-1082.
49.Frolich, J.C. A classification of NSAIDs according to the relative inhibition of cyclooxygenase isoenzymes. Trends Pharmacol Sci 1997, 18, 30-34.
50.51.Park, E.K.; Jung, H.S.; Yang, H.I.; Yoo, M.C.; Kim, C.; Kim, K.S. Optimized THP-1 differentiation is required for the detection of responses to weak stimuli. Inflamm Res 2007, 56, 45-50.
52.Singh, G.; Fort, J.G.; Goldstein, J.L.; Levy, R.A.; Hanrahan, P.S.; Bello, A.E.; Andrade-Ortega, L.; Wallemark, C.; Agrawal, N.M.; Eisen, G.M.; Stenson, W.F.; Triadafilopoulos, G. Celecoxib versus naproxen and diclofenac in osteoarthritis patients: SUCCESS-I Study. Am J Med 2006, 119, 255-266.
53.Barrios-Rodiles, M.; Keller, K.; Belley, A.; Chadee, K. Nonsteroidal antiinflammatory drugs inhibit cyclooxygenase-2 enzyme activity but not mRNA expression in human macrophages. Biochem Biophys Res Commun 1996, 225, 896-900.
54.Yin, L.L.; Zhang, W.Y.; Li, M.H.; Shen, J.K.; Zhu, X.Z. CC 05, a novel anti-inflammatory compound, exerts its effect by inhibition of cyclooxygenase-2 activity. Eur J Pharmacol 2005, 520, 172-178.
55.Grkovich, A.; Johnson, C.A.; Buczynski, M.W.; Dennis, E.A. Lipopolysaccharide-induced cyclooxygenase-2 expression in human U937 macrophages is phosphatidic acid phosphohydrolase-1-dependent. J Biol Chem 2006, 281, 32978-32987.
56.Jiang, Y.J.; Lu, B.; Choy, P.C.; Hatch, G.M. Regulation of cytosolic phospholipase A2, cyclooxygenase-1 and -2 expression by PMA, TNFalpha, LPS and M-CSF in human monocytes and macrophages. Mol Cell Biochem 2003, 246, 31-38.
57.Sareila, O.; Korhonen, R.; Karpanniemi, O.; Nieminen, R.; Kankaanranta, H.; Moilanen, E. Janus kinase 3 inhibitor WHI-P154 in macrophages activated by bacterial endotoxin: differential effects on the expression of iNOS, COX-2 and TNF-alpha. Int Immunopharmacol 2008, 8, 100-108.
58.Bogdan, C. Handbook of Experimental Pharmacology. Volume: Nitric Oxide (ed. Mayer, B.); Springer: Heidelberg, 2000; pp 443-492.
59.Zhang, X.; Laubach, V.E.; Alley, E.W.; Edwards, K.A.; Sherman, P.A.; Russell, S.W.; Murphy, W.J. Transcriptional basis for hyporesponsiveness of the human inducible nitric oxide synthase gene to lipopolysaccharide/interferon-gamma. J Leukoc Biol 1996, 59, 575-585.
60.Sharara, A.I.; Perkins, D.J.; Misukonis, M.A.; Chan, S.U.; Dominitz, J.A.; Weinberg, J.B. Interferon (IFN)-alpha activation of human blood mononuclear cells in vitro and in vivo for nitric oxide synthase (NOS) type 2 mRNA and protein expression: possible relationship of induced NOS2 to the anti-hepatitis C effects of IFN-alpha in vivo. J Exp Med 1997, 186, 1495-1502.
61.Vouldoukis, I.; Riveros-Moreno, V.; Dugas, B.; Ouaaz, F.; Becherel, P.; Debre, P.; Moncada, S.; Mossalayi, M.D. The killing of Leishmania major by human macrophages is mediated by nitric oxide induced after ligation of the Fc epsilon RII/CD23 surface antigen. Proc Natl Acad Sci U S A 1995, 92, 7804-7808.
62.Vouldoukis, I.; Becherel, P.A.; Riveros-Moreno, V.; Arock, M.; da Silva, O.; Debre, P.; Mazier, D.; Mossalayi, M.D. Interleukin-10 and interleukin-4 inhibit intracellular killing of Leishmania infantum and Leishmania major by human macrophages by decreasing nitric oxide generation. Eur J Immunol 1997, 27, 860-865.
63.Villalta, F.; Zhang, Y.; Bibb, K.E.; Kappes, J.C.; Lima, M.F. The cysteine-cysteine family of chemokines RANTES, MIP-1alpha, and MIP-1beta induce trypanocidal activity in human macrophages via nitric oxide. Infect Immun 1998, 66, 4690-4695.
64.Bogdan, C. Nitric oxide and the immune response. Nat Immunol 2001, 2, 907-916.
65.Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Inhibitory effects of the flavonoids isolated from Waltheria indica on the production of NO, TNF-alpha and IL-12 in activated macrophages. Biol Pharm Bull 2005, 28, 912-915.
66.Jung, C.H.; Kim, J.H.; Hong, M.H.; Seog, H.M.; Oh, S.H.; Lee, P.J.; Kim, G.J.; Kim, H.M.; Um, J.Y.; Ko, S.G. Phenolic-rich fraction from Rhus verniciflua Stokes (RVS) suppress inflammatory response via NF-kappaB and JNK pathway in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 2007, 110, 490-497.
67.Grey, S.T. Regulating inflammation: the ying and yang of NF-kappaB activation. Immunol Cell Biol 2008, 86, 299-300.
68.Simmonds, R.E.; Foxwell, B.M. Signalling, inflammation and arthritis: NF-kappaB and its relevance to arthritis and inflammation. Rheumatology (Oxford) 2008, 47, 584-590.
69.Nabel, G.; Baltimore, D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 1987, 326, 711-713.
70.Lenardo, M.J.; Baltimore, D. NF-kappa B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 1989, 58, 227-229.
71.Ziegler-Heitbrock, H.W.; Sternsdorf, T.; Liese, J.; Belohradsky, B.; Weber, C.; Wedel, A.; Schreck, R.; Bauerle, P.; Strobel, M. Pyrrolidine dithiocarbamate inhibits NF-kappa B mobilization and TNF production in human monocytes. J Immunol 1993, 151, 6986-6993.
72.Yang, X.; Hou, F.; Taylor, L.; Polgar, P. Characterization of human cyclooxygenase 2 gene promoter localization of a TGF-beta response element. Biochim Biophys Acta 1997, 1350, 287-292.
73.Sinicrope, F.A.; Gill, S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev 2004, 23, 63-75.
74.McGeer, P.L.; McGeer, E.G. Inflammation, autotoxicity and Alzheimer disease. Neurobiol Aging 2001, 22, 799-809.
75.Harikumar, K.B.; Aggarwal, B.B. Resveratrol: a multitargeted agent for age-associated chronic diseases. Cell Cycle 2008, 7, 1020-1035.
76.Dreskin, S.C.; Thomas, G.W.; Dale, S.N.; Heasley, L.E. Isoforms of Jun kinase are differentially expressed and activated in human monocyte/macrophage (THP-1) cells. J Immunol 2001, 166, 5646-5653.
77.Brouckaert, P.; Fiers, W. Tumor necrosis factor and the systemic inflammatory response syndrome. Curr Top Microbiol Immunol 1996, 216, 167-187.
78.Mamuk, S.; Melli, M. Effect of aspirin, paracetamol and their nitric oxide donating derivatives on exudate cytokine and PGE2 production in zymosan-induced air pouch inflammation in rats. Eur J Pharmacol 2007, 561, 220-225.
79.Appleyard, C.B.; McCafferty, D.M.; Tigley, A.W.; Swain, M.G.; Wallace, J.L. Tumor necrosis factor mediation of NSAID-induced gastric damage: role of leukocyte adherence. Am J Physiol 1996, 270, G42-48.
80.Saud, B.; Nandi, J.; Ong, G.; Finocchiaro, S.; Levine, R.A. Inhibition of TNF-alpha improves indomethacin-induced enteropathy in rats by modulating iNOS expression. Dig Dis Sci 2005, 50, 1677-1683.
81.Guslandi, M. Pathogenesis of NSAID colitis. Dig Dis Sci 1996, 41, 1653.
82.Grau, G.E.; Maennel, D.N. TNF inhibition and sepsis -- sounding a cautionary note. Nat Med 1997, 3, 1193-1195.
83.Jackson, J.M. TNF- alpha inhibitors. Dermatol Ther 2007, 20, 251-264.
84.Sheridan, C. Small molecule challenges dominance of TNF-alpha inhibitors. Nat Biotechnol 2008, 26, 143-144.
85.Palladino, M.A.; Bahjat, F.R.; Theodorakis, E.A.; Moldawer, L.L. Anti-TNF-alpha therapies: the next generation. Nat Rev Drug Discov 2003, 2, 736-746.
86.Kopp, E.; Ghosh, S. Inhibition of NF-kappa B by sodium salicylate and aspirin. Science 1994, 265, 956-959.
87.Cronstein, B.N.; Montesinos, M.C.; Weissmann, G. Salicylates and sulfasalazine, but not glucocorticoids, inhibit leukocyte accumulation by an adenosine-dependent mechanism that is independent of inhibition of prostaglandin synthesis and p105 of NFkappaB. Proc Natl Acad Sci U S A 1999, 96, 6377-6381.
88.Tegeder, I.; Niederberger, E.; Israr, E.; Guhring, H.; Brune, K.; Euchenhofer, C.; Grosch, S.; Geisslinger, G. Inhibition of NF-kappaB and AP-1 activation by R- and S-flurbiprofen. FASEB J 2001, 15, 2-4.
89.Thomas, D.G. Title of subordinate document. In: Available via website: http://people.bu.edu/gilmore/nf-kb/index.html. (Accessed December 2009)
90.Niederberger, E.; Tegeder, I.; Vetter, G.; Schmidtko, A.; Schmidt, H.; Euchenhofer, C.; Brautigam, L.; Grosch, S.; Geisslinger, G. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. FASEB J 2001, 15, 1622-1624.
91.Di Lorenzo, A.; Fernandez-Hernando, C.; Cirino, G.; Sessa, W.C. Akt1 is critical for acute inflammation and histamine-mediated vascular leakage. Proc Natl Acad Sci U S A 2009, 106, 14552-14557.
92.Choi, E.K.; Jang, H.C.; Kim, J.H.; Kim, H.J.; Kang, H.C.; Paek, Y.W.; Lee, H.C.; Lee, S.H.; Oh, W.M.; Kang, I.C. Enhancement of cytokine-mediated NF-kappaB activation by phosphatidylinositol 3-kinase inhibitors in monocytic cells. Int Immunopharmacol 2006, 6, 908-915.
93.Shao, D.Z.; Lin, M. Platonin inhibits LPS-induced NF-kappaB by preventing activation of Akt and IKKbeta in human PBMC. Inflamm Res 2008, 57, 601-606.
94.Yuan, C.; Sidhu, R.S.; Kuklev, D.V.; Kado, Y.; Wada, M.; Song, I.; Smith, W.L. Cyclooxygenase Allosterism, Fatty Acid-mediated Cross-talk between Monomers of Cyclooxygenase Homodimers. J Biol Chem 2009, 284, 10046-10055.
95.Rome, L.H.; Lands, W.E. Structural requirements for time-dependent inhibition of prostaglandin biosynthesis by anti-inflammatory drugs. Proc Natl Acad Sci U S A 1975, 72, 4863-4865.
96.Prusakiewicz, J.J.; Duggan, K.C.; Rouzer, C.A.; Marnett, L.J. Differential Sensitivity and Mechanism of Inhibition of COX-2 Oxygenation of Arachidonic Acid and 2-Arachidonoylglycerol by Ibuprofen and Mefenamic Acid. Biochemistry 2009, 48, 7353-7355.
97.Xie, Q.W.; Kashiwabara, Y.; Nathan, C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem 1994, 269, 4705-4708.
98.Pan, M.H.; Lai, C.S.; Wang, Y.J.; Ho, C.T. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem Pharmacol 2006, 72, 1293-1303.
99.Li, Q.; Verma, I.M. NF-kappaB regulation in the immune system. Nat Rev Immunol 2002, 2, 725-734.
100.Christopher, J.M. Carrageenan-Induced Paw Edema in the Rat and Mouse Methods in Molecular Biology 2005, 225, 115-120.
101.Winter, C.A.; Risley, E.A.; Nuss, G.W. Carrageenin-induced edema in hind paw of the rat as an assay for antiiflammatory drugs. Proc Soc Exp Biol Med 1962, 111, 544-547.
102.Amann, R.; Schuligoi, R.; Lanz, I.; Donnerer, J. Histamine-induced edema in the rat paw--effect of capsaicin denervation and a CGRP receptor antagonist. Eur J Pharmacol 1995, 279, 227-231.
103.Whittle, B.A. The Use of Changes in Capillary Permeability in Mice to Distinguish between Narcotic and Nonnarcotic Alalgesics. Br J Pharmacol Chemother 1964, 22, 246-253.
104.Kou, J.; Ni, Y.; Li, N.; Wang, J.; Liu, L.; Jiang, Z.H. Analgesic and anti-inflammatory activities of total extract and individual fractions of Chinese medicinal ants Polyrhachis lamellidens. Biol Pharm Bull 2005, 28, 176-180.
105.Romay, C.; Ledon, N.; Gonzalez, R. Further studies on anti-inflammatory activity of phycocyanin in some animal models of inflammation. Inflamm Res 1998, 47, 334-338.
106.Griswold, D.E.; Martin, L.D.; Badger, A.M.; Breton, J.; Chabot-Fletcher, M. Evaluation of the cutaneous anti-inflammatory activity of azaspiranes. Inflamm Res 1998, 47, 56-61.
107.Bradley, P.P.; Priebat, D.A.; Christensen, R.D.; Rothstein, G. Measurement of Cutaneous Inflammation: Estimation of Neutrophil Content with an Enzyme Marker. . J Invest Dermatol 1982, 78, 206-209.
108.Evans, D.P.; Hossack, M.; Thomson, D.S. Inhibition of contact sensitivity in the mouse by topical application of corticosteroids. Br J Pharmacol 1971, 43, 403-408.
109.Selye, H. On the mechanism through which hydrocortisone affects the resistance of tissues to injury; an experimental study with the granuloma pouch technique. J Am Med Assoc 1953, 152, 1207-1213.
110.Turner, R.A. Screening Methods in Pharmacology, Academic Press New York: Lodon, 1965; pp158.
111.Goldstein, S.A.; Shemano, I.; Daweo, R.; Betler, J.M. Cotton pellet granuloma pouch method for evaluation of anti-inflammatory activity. Arch Int Pharmacodyn Ther 1976, 165, 294-301.
112.Vogel, H.G. Drug Discovery and Evaluation: Pharmacological Assays, 3rd ed.; Springer-Verlag: New York, 2008; pp 1114.
113.Hegen, M.; Keith, J.C., Jr.; Collins, M.; Nickerson-Nutter, C.L. Utility of animal models for identification of potential therapeutics for rheumatoid arthritis. Ann Rheum Dis 2008, 67, 1505-1515.
Chapter III

1.Vis, A.N.; Schroder, F.H. Key targets of hormonal treatment of prostate cancer. Part 1: the androgen receptor and steroidogenic pathways. BJU Int 2009, 104, 438-448.
2.Michael, A.; Syrigos, K.; Pandha, H. Prostate cancer chemotherapy in the era of targeted therapy. Prostate Cancer Prostatic Dis 2009, 12, 13-16.
3.Orvieto, M.; Eggener, S. Editorial comment on: Pharmacological approaches to reducing the risk of prostate cancer. Eur Urol 2009, 55, 1073-1074.
4.Okada, H.; Mak, T.W. Pathways of apoptotic and non-apoptotic death in tumour cells. Nat Rev Cancer 2004, 4, 592-603.
5.Cotter, T.G. Apoptosis and cancer: the genesis of a research field. Nat Rev Cancer 2009, 9, 501-507.
6.Fulda, S.; Debatin, K.M. Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 2006, 25, 4798-4811.
7.Strasser, A.; O''Connor, L.; Dixit, V.M. Apoptosis signaling. Annu Rev Biochem 2000, 69, 217-245.
8.Hengartner, M.O. The biochemistry of apoptosis. Nature 2000, 407, 770-776.
9.Han, J.; Goldstein, L.A.; Gastman, B.R.; Rabinowich, H. Interrelated roles for Mcl-1 and BIM in regulation of TRAIL-mediated mitochondrial apoptosis. J Biol Chem 2006, 281, 10153-10163.
10.Gupta, S. Molecular steps of death receptor and mitochondrial pathways of apoptosis. Life Sci 2001, 69, 2957-2964.
11.Broker, L.E.; Kruyt, F.A.; Giaccone, G. Cell death independent of caspases: a review. Clin Cancer Res 2005, 11, 3155-3162.
12.McKenzie, S.; Kyprianou, N. Apoptosis evasion: the role of survival pathways in prostate cancer progression and therapeutic resistance. J Cell Biochem 2006, 97, 18-32.
13.Hayden, M.S.; Ghosh, S. Signaling to NF-kappaB. Genes Dev 2004, 18, 2195-2224.
14.Chen, L.; Fischle, W.; Verdin, E.; Greene, W.C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 2001, 293, 1653-1657.
15.Kiernan, R.; Bres, V.; Ng, R.W.; Coudart, M.P.; El Messaoudi, S.; Sardet, C.; Jin, D.Y.; Emiliani, S.; Benkirane, M. Post-activation turn-off of NF-kappa B-dependent transcription is regulated by acetylation of p65. J Biol Chem 2003, 278, 2758-2766.
16.Manna, S.K.; Manna, P.; Sarkar, A. Inhibition of RelA phosphorylation sensitizes apoptosis in constitutive NF-kappaB-expressing and chemoresistant cells. Cell Death Differ 2007, 14, 158-170.
17.Schmitz, M.L.; Mattioli, I.; Buss, H.; Kracht, M. NF-kappaB: a multifaceted transcription factor regulated at several levels. Chembiochem 2004, 5, 1348-1358.
18.Lawrence, T.; Bebien, M.; Liu, G.Y.; Nizet, V.; Karin, M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature 2005, 434, 1138-1143.
19.Mattioli, I.; Sebald, A.; Bucher, C.; Charles, R.P.; Nakano, H.; Doi, T.; Kracht, M.; Schmitz, M.L. Transient and selective NF-kappa B p65 serine 536 phosphorylation induced by T cell costimulation is mediated by I kappa B kinase beta and controls the kinetics of p65 nuclear import. J Immunol 2004, 172, 6336-6344.
20.Zhong, H.; May, M.J.; Jimi, E.; Ghosh, S. The phosphorylation status of nuclear NF-kappa B determines its association with CBP/p300 or HDAC-1. Mol Cell 2002, 9, 625-636.
21.Kim, H.J.; Hawke, N.; Baldwin, A.S. NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 2006, 13, 738-747.
22.Perkins, N.D.; Gilmore, T.D. Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ 2006, 13, 759-772.
23.Braun, T.; Carvalho, G.; Fabre, C.; Grosjean, J.; Fenaux, P.; Kroemer, G. Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 2006, 13, 748-758.
24.Karin, M.; Yamamoto, Y.; Wang, Q.M. The IKK NF-kappa B system: a treasure trove for drug development. Nat Rev Drug Discov 2004, 3, 17-26.
25.Pikarsky, E.; Porat, R.M.; Stein, I.; Abramovitch, R.; Amit, S.; Kasem, S.; Gutkovich-Pyest, E.; Urieli-Shoval, S.; Galun, E.; Ben-Neriah, Y. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 2004, 431, 461-466.
26.Greten, F.R.; Eckmann, L.; Greten, T.F.; Park, J.M.; Li, Z.W.; Egan, L.J.; Kagnoff, M.F.; Karin, M. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 2004, 118, 285-296.
27.Hanada, M.; Feng, J.; Hemmings, B.A. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta 2004, 1697, 3-16.
28.Mitsiades, C.S.; Mitsiades, N.; Koutsilieris, M. The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 2004, 4, 235-256.
29.Hennessy, B.T.; Smith, D.L.; Ram, P.T.; Lu, Y.; Mills, G.B. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 2005, 4, 988-1004.
30.Yang, L.; Dan, H.C.; Sun, M.; Liu, Q.; Sun, X.M.; Feldman, R.I.; Hamilton, A.D.; Polokoff, M.; Nicosia, S.V.; Herlyn, M.; Sebti, S.M.; Cheng, J.Q. Akt/protein kinase B signaling inhibitor-2, a selective small molecule inhibitor of Akt signaling with antitumor activity in cancer cells overexpressing Akt. Cancer Res 2004, 64, 4394-4399.
31.Zhang, M.; Fang, X.; Liu, H.; Wang, S.; Yang, D. Blockade of AKT activation in prostate cancer cells with a small molecule inhibitor, 9-chloro-2-methylellipticinium acetate (CMEP). Biochem Pharmacol 2007, 73, 15-24.
32.Diaz, R.; Nguewa, P.A.; Diaz-Gonzalez, J.A.; Hamel, E.; Gonzalez-Moreno, O.; Catena, R.; Serrano, D.; Redrado, M.; Sherris, D.; Calvo, A. The novel Akt inhibitor Palomid 529 (P529) enhances the effect of radiotherapy in prostate cancer. Br J Cancer 2009, 100, 932-940.
33.Song, X.; Lin, H.P.; Johnson, A.J.; Tseng, P.H.; Yang, Y.T.; Kulp, S.K.; Chen, C.S. Cyclooxygenase-2, player or spectator in cyclooxygenase-2 inhibitor-induced apoptosis in prostate cancer cells. J Natl Cancer Inst 2002, 94, 585-591.
34.Sargeant, A.M.; Klein, R.D.; Rengel, R.C.; Clinton, S.K.; Kulp, S.K.; Kashida, Y.; Yamaguchi, M.; Wang, X.; Chen, C.S. Chemopreventive and bioenergetic signaling effects of PDK1/Akt pathway inhibition in a transgenic mouse model of prostate cancer. Toxicol Pathol 2007, 35, 549-561.
35.Hsu, A.L.; Ching, T.T.; Wang, D.S.; Song, X.; Rangnekar, V.M.; Chen, C.S. The cyclooxygenase-2 inhibitor celecoxib induces apoptosis by blocking Akt activation in human prostate cancer cells independently of Bcl-2. J Biol Chem 2000, 275, 11397-11403.
36.Coussens, L.M.; Werb, Z. Inflammation and cancer. Nature 2002, 420, 860-867.
37.Ravenna, L.; Sale, P.; Di Vito, M.; Russo, A.; Salvatori, L.; Tafani, M.; Mari, E.; Sentinelli, S.; Petrangeli, E.; Gallucci, M.; Di Silverio, F.; Russo, M.A. Up-regulation of the inflammatory-reparative phenotype in human prostate carcinoma. Prostate 2009, 69, 1245-1255.
38.Aparicio Gallego, G.; Diaz Prado, S.; Jimenez Fonseca, P.; Garcia Campelo, R.; Cassinello Espinosa, J.; Anton Aparicio, L.M. Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clin Transl Oncol 2007, 9, 694-702.
39.Harris, R.E. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology 2009, 17, 55-67.
40.Sciarra, A.; Di Silverio, F.; Salciccia, S.; Autran Gomez, A.M.; Gentilucci, A.; Gentile, V. Inflammation and chronic prostatic diseases: evidence for a link? Eur Urol 2007, 52, 964-972.
41.Lee, K.S.; Lee, H.J.; Ahn, K.S.; Kim, S.H.; Nam, D.; Kim, D.K.; Choi, D.Y.; Lu, J. Cyclooxygenase-2/prostaglandin E2 pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett 2009, 280, 93-100.
42.Sahin, M.; Sahin, E.; Gumuslu, S. Cyclooxygenase-2 in cancer and angiogenesis. Angiology 2009, 60, 242-253.
43.Ohno, S.; Ohno, Y.; Nakada, H.; Suzuki, N.; Soma, G.; Inoue, M. Expression of Tn and sialyl-Tn antigens in endometrial cancer: its relationship with tumor-produced cyclooxygenase-2, tumor-infiltrated lymphocytes and patient prognosis. Anticancer Res 2006, 26, 4047-4053.
44.Sarkar, F.H.; Adsule, S.; Li, Y.; Padhye, S. Back to the future: COX-2 inhibitors for chemoprevention and cancer therapy. Mini Rev Med Chem 2007, 7, 599-608.
45.Chun, K.S.; Surh, Y.J. Signal transduction pathways regulating cyclooxygenase-2 expression: potential molecular targets for chemoprevention. Biochem Pharmacol 2004, 68, 1089-1100.
46.Grosch, S.; Maier, T.J.; Schiffmann, S.; Geisslinger, G. Cyclooxygenase-2 (COX-2)-independent anticarcinogenic effects of selective COX-2 inhibitors. J Natl Cancer Inst 2006, 98, 736-747.
47.Sooriakumaran, P.; Macanas-Pirard, P.; Bucca, G.; Henderson, A.; Langley, S.E.; Laing, R.W.; Smith, C.P.; Laing, E.E.; Coley, H.M. A gene expression profiling approach assessing celecoxib in a randomized controlled trial in prostate cancer. Cancer Genomics Proteomics 2009, 6, 93-99.
48.Mahal, K.; Hernandez, J.; Basler, J.W.; Thompson, I.M. What''s new in the field of prostate cancer chemoprevention? Curr Urol Rep 2005, 6, 177-182.
49.Sooriakumaran, P.; Coley, H.M.; Fox, S.B.; Macanas-Pirard, P.; Lovell, D.P.; Henderson, A.; Eden, C.G.; Miller, P.D.; Langley, S.E.; Laing, R.W. A randomized controlled trial investigating the effects of celecoxib in patients with localized prostate cancer. Anticancer Res 2009, 29, 1483-1488.
50.Morgan, G. Non-steroidal anti-inflammatory drugs and the chemoprevention of colorectal and oesophageal cancers. Gut 1996, 38, 646-648.
51.Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006, 1, 1112-1116.
52.Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987, 47, 936-942.
53.Courtenay, V.D.; Mills, J. An in vitro colony assay for human tumours grown in immune-suppressed mice and treated in vivo with cytotoxic agents. Br J Cancer 1978, 37, 261-268.
54.Salgame, P.; Varadhachary, A.S.; Primiano, L.L.; Fincke, J.E.; Muller, S.; Monestier, M. An ELISA for detection of apoptosis. Nucleic Acids Res 1997, 25, 680-681.
55.Frenzel, A.; Grespi, F.; Chmelewskij, W.; Villunger, A. Bcl2 family proteins in carcinogenesis and the treatment of cancer. Apoptosis 2009, 14, 584-596.
56.Fulda, S. Inhibitor of apoptosis (IAP) proteins: novel insights into the cancer-relevant targets for cell death induction. ACS Chem Biol 2009, 4, 499-501.
57.Coffey, R.N.; Watson, R.W.; Hegarty, P.K.; Watson, C.L.; Wolohan, L.; Brady, H.R.; O''Keane, C.; Fitzpatrick, J.M. Priming prostate carcinoma cells for increased apoptosis is associated with up-regulation of the caspases. Cancer 2001, 92, 2297-2308.
58.Hampton, M.B.; Orrenius, S. Dual regulation of caspase activity by hydrogen peroxide: implications for apoptosis. FEBS Lett 1997, 414, 552-556.
59.Ueda, S.; Nakamura, H.; Masutani, H.; Sasada, T.; Yonehara, S.; Takabayashi, A.; Yamaoka, Y.; Yodoi, J. Redox regulation of caspase-3(-like) protease activity: regulatory roles of thioredoxin and cytochrome c. J Immunol 1998, 161, 6689-6695.
60.Song, G.; Ouyang, G.; Bao, S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005, 9, 59-71.
61.Brazil, D.P.; Hemmings, B.A. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001, 26, 657-664.
62.Bharti, A.C.; Aggarwal, B.B. Nuclear factor-kappa B and cancer: its role in prevention and therapy. Biochem Pharmacol 2002, 64, 883-888.
63.Luciani, M.G.; Campregher, C.; Gasche, C. Aspirin blocks proliferation in colon cells by inducing a G1 arrest and apoptosis through activation of the checkpoint kinase ATM. Carcinogenesis 2007, 28, 2207-2217.
64.Li, J.; Chen, X.; Dong, X.; Xu, Z.; Jiang, H.; Sun, X. Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J Gastroenterol Hepatol 2006, 21, 1814-1820.
65.Cheng, A.S.; Chan, H.L.; Leung, W.K.; Wong, N.; Johnson, P.J.; Sung, J.J. Specific COX-2 inhibitor, NS-398, suppresses cellular proliferation and induces apoptosis in human hepatocellular carcinoma cells. Int J Oncol 2003, 23, 113-119.
66.Yamazaki, R.; Kusunoki, N.; Matsuzaki, T.; Hashimoto, S.; Kawai, S. Selective cyclooxygenase-2 inhibitors show a differential ability to inhibit proliferation and induce apoptosis of colon adenocarcinoma cells. FEBS Lett 2002, 531, 278-284.
67.Lieberman, R. Chemoprevention of prostate cancer: current status and future directions. Cancer Metastasis Rev 2002, 21, 297-309.
68.Narayanan, B.A.; Narayanan, N.K.; Davis, L.; Nargi, D. RNA interference-mediated cyclooxygenase-2 inhibition prevents prostate cancer cell growth and induces differentiation: modulation of neuronal protein synaptophysin, cyclin D1, and androgen receptor. Mol Cancer Ther 2006, 5, 1117-1125.
69.Zha, S.; Gage, W.R.; Sauvageot, J.; Saria, E.A.; Putzi, M.J.; Ewing, C.M.; Faith, D.A.; Nelson, W.G.; De Marzo, A.M.; Isaacs, W.B. Cyclooxygenase-2 is up-regulated in proliferative inflammatory atrophy of the prostate, but not in prostate carcinoma. Cancer Res 2001, 61, 8617-8623.
70.Jana, S.; Paliwal, J. Apoptosis: potential therapeutic targets for new drug discovery. Curr Med Chem 2007, 14, 2369-2379.
71.Ou, Y.C.; Yang, C.R.; Cheng, C.L.; Li, J.R.; Raung, S.L.; Hung, Y.Y.; Chen, C.J. Indomethacin causes renal epithelial cell injury involving Mcl-1 down-regulation. Biochem Biophys Res Commun 2009, 380, 531-536.
72.Amantana, A.; London, C.A.; Iversen, P.L.; Devi, G.R. X-linked inhibitor of apoptosis protein inhibition induces apoptosis and enhances chemotherapy sensitivity in human prostate cancer cells. Mol Cancer Ther 2004, 3, 699-707.
73.Gill, C.; Dowling, C.; O''Neill, A.J.; Watson, R.W. Effects of cIAP-1, cIAP-2 and XIAP triple knockdown on prostate cancer cell susceptibility to apoptosis, cell survival and proliferation. Mol Cancer 2009, 8, 39.
74.Van Themsche, C.; Leblanc, V.; Parent, S.; Asselin, E. X-linked Inhibitor of Apoptosis Protein (XIAP) Regulates PTEN Ubiquitination, Content, and Compartmentalization. J Biol Chem 2009, 284, 20462-20466.
75.Winsauer, G.; Resch, U.; Hofer-Warbinek, R.; Schichl, Y.M.; de Martin, R. XIAP regulates bi-phasic NF-kappaB induction involving physical interaction and ubiquitination of MEKK2. Cell Signal 2008, 20, 2107-2112.
76.Gao, S.; Lee, P.; Wang, H.; Gerald, W.; Adler, M.; Zhang, L.; Wang, Y.F.; Wang, Z. The androgen receptor directly targets the cellular Fas/FasL-associated death domain protein-like inhibitory protein gene to promote the androgen-independent growth of prostate cancer cells. Mol Endocrinol 2005, 19, 1792-1802.
77.Manzo, F.; Nebbioso, A.; Miceli, M.; Conte, M.; De Bellis, F.; Carafa, V.; Franci, G.; Tambaro, F.P.; Altucci, L. TNF-related apoptosis-inducing ligand: signalling of a ''smart'' molecule. Int J Biochem Cell Biol 2009, 41, 460-466.
78.VanOosten, R.L.; Earel, J.K., Jr.; Griffith, T.S. Histone deacetylase inhibitors enhance Ad5-TRAIL killing of TRAIL-resistant prostate tumor cells through increased caspase-2 activity. Apoptosis 2007, 12, 561-571.
79.Kirshner, J.R.; Karpova, A.Y.; Kops, M.; Howley, P.M. Identification of TRAIL as an interferon regulatory factor 3 transcriptional target. J Virol 2005, 79, 9320-9324.
80.Milani, D.; Zauli, G.; Rimondi, E.; Celeghini, C.; Marmiroli, S.; Narducci, P.; Capitani, S.; Secchiero, P. Tumour necrosis factor-related apoptosis-inducing ligand sequentially activates pro-survival and pro-apoptotic pathways in SK-N-MC neuronal cells. J Neurochem 2003, 86, 126-135.
81.Tang, X.; Sun, Y.J.; Half, E.; Kuo, M.T.; Sinicrope, F. Cyclooxygenase-2 overexpression inhibits death receptor 5 expression and confers resistance to tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human colon cancer cells. Cancer Res 2002, 62, 4903-4908.
82.He, Q.; Luo, X.; Huang, Y.; Sheikh, M.S. Apo2L/TRAIL differentially modulates the apoptotic effects of sulindac and a COX-2 selective non-steroidal anti-inflammatory agent in Bax-deficient cells. Oncogene 2002, 21, 6032-6040.
83.Burz, C.; Berindan-Neagoe, I.; Balacescu, O.; Irimie, A. Apoptosis in cancer: Key molecular signaling pathways and therapy targets. Acta Oncol 2009, 1-11.
84.Zhang, X.; Jin, B.; Huang, C. The PI3K/Akt pathway and its downstream transcriptional factors as targets for chemoprevention. Curr Cancer Drug Targets 2007, 7, 305-316.
85.Grant, S. Cotargeting survival signaling pathways in cancer. J Clin Invest 2008, 118, 3003-3006.
86.Bader, A.G.; Kang, S.; Zhao, L.; Vogt, P.K. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 2005, 5, 921-929.
87.Corcoran, N.M.; Costello, A.J.; Hovens, C.M. Interfering with cell-survival signalling as a treatment strategy for prostate cancer. BJU Int 2006, 97, 1149-1153.
88.Pang, R.P.; Zhou, J.G.; Zeng, Z.R.; Li, X.Y.; Chen, W.; Chen, M.H.; Hu, P.J. Celecoxib induces apoptosis in COX-2 deficient human gastric cancer cells through Akt/GSK3beta/NAG-1 pathway. Cancer Lett 2007, 251, 268-277.
89.Zhu, J.; Huang, J.W.; Tseng, P.H.; Yang, Y.T.; Fowble, J.; Shiau, C.W.; Shaw, Y.J.; Kulp, S.K.; Chen, C.S. From the cyclooxygenase-2 inhibitor celecoxib to a novel class of 3-phosphoinositide-dependent protein kinase-1 inhibitors. Cancer Res 2004, 64, 4309-4318.
90.Kim, C.H.; Kim, M.Y.; Moon, J.Y.; Hwang, J.W.; Lee, S.Y.; Joo, Y.M.; Han, S.I.; Park, H.G.; Kang, H.S. Implication of NAG-1 in synergistic induction of apoptosis by combined treatment of sodium salicylate and PI3K/MEK1/2 inhibitors in A549 human lung adenocarcinoma cells. Biochem Pharmacol 2008, 75, 1751-1760.
91.Liao, Y.; Grobholz, R.; Abel, U.; Trojan, L.; Michel, M.S.; Angel, P.; Mayer, D. Increase of AKT/PKB expression correlates with gleason pattern in human prostate cancer. Int J Cancer 2003, 107, 676-680.
92.Madrid, L.V.; Mayo, M.W.; Reuther, J.Y.; Baldwin, A.S., Jr. Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 2001, 276, 18934-18940.
93.Liu, J.; Yoshida, Y.; Yamashita, U. DNA-binding activity of NF-kappaB and phosphorylation of p65 are induced by N-acetylcysteine through phosphatidylinositol (PI) 3-kinase. Mol Immunol 2008, 45, 3984-3989.
94.Kaltschmidt, B.; Kaltschmidt, C.; Hofmann, T.G.; Hehner, S.P.; Droge, W.; Schmitz, M.L. The pro- or anti-apoptotic function of NF-kappaB is determined by the nature of the apoptotic stimulus. Eur J Biochem 2000, 267, 3828-3835.
95.Ladner, K.J.; Caligiuri, M.A.; Guttridge, D.C. Tumor necrosis factor-regulated biphasic activation of NF-kappa B is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem 2003, 278, 2294-2303.
96.Nelson, D.E.; Ihekwaba, A.E.; Elliott, M.; Johnson, J.R.; Gibney, C.A.; Foreman, B.E.; Nelson, G.; See, V.; Horton, C.A.; Spiller, D.G.; Edwards, S.W.; McDowell, H.P.; Unitt, J.F.; Sullivan, E.; Grimley, R.; Benson, N.; Broomhead, D.; Kell, D.B.; White, M.R. Oscillations in NF-kappaB signaling control the dynamics of gene expression. Science 2004, 306, 704-708.
97.Kaufman, P.A.; Weinberg, J.B.; Greene, W.C. Nuclear expression of the 50- and 65-kD Rel-related subunits of nuclear factor-kappa B is differentially regulated in human monocytic cells. J Clin Invest 1992, 90, 121-129.
98.Epinat, J.C.; Gilmore, T.D. Diverse agents act at multiple levels to inhibit the Rel/NF-kappaB signal transduction pathway. Oncogene 1999, 18, 6896-6909.
99.Stark, L.A.; Din, F.V.; Zwacka, R.M.; Dunlop, M.G. Aspirin-induced activation of the NF-kappaB signaling pathway: a novel mechanism for aspirin-mediated apoptosis in colon cancer cells. FASEB J 2001, 15, 1273-1275.
100.Niederberger, E.; Tegeder, I.; Vetter, G.; Schmidtko, A.; Schmidt, H.; Euchenhofer, C.; Brautigam, L.; Grosch, S.; Geisslinger, G. Celecoxib loses its anti-inflammatory efficacy at high doses through activation of NF-kappaB. FASEB J 2001, 15, 1622-1624.
101.Lou, J.; Fatima, N.; Xiao, Z.; Stauffer, S.; Smythers, G.; Greenwald, P.; Ali, I.U. Proteomic profiling identifies cyclooxygenase-2-independent global proteomic changes by celecoxib in colorectal cancer cells. Cancer Epidemiol Biomarkers Prev 2006, 15, 1598-1606.
102.Glebov, O.K.; Rodriguez, L.M.; Lynch, P.; Patterson, S.; Lynch, H.; Nakahara, K.; Jenkins, J.; Cliatt, J.; Humbyrd, C.J.; Denobile, J.; Soballe, P.; Gallinger, S.; Buchbinder, A.; Gordon, G.; Hawk, E.; Kirsch, I.R. Celecoxib treatment alters the gene expression profile of normal colonic mucosa. Cancer Epidemiol Biomarkers Prev 2006, 15, 1382-1391.
103.Lissbrant, I.F.; Stattin, P.; Wikstrom, P.; Damber, J.E.; Egevad, L.; Bergh, A. Tumor associated macrophages in human prostate cancer: relation to clinicopathological variables and survival. Int J Oncol 2000, 17, 445-451.
104.Luo, Y.; Zhou, H.; Krueger, J.; Kaplan, C.; Lee, S.H.; Dolman, C.; Markowitz, D.; Wu, W.; Liu, C.; Reisfeld, R.A.; Xiang, R. Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 2006, 116, 2132-2141.
Chapter IV
1.Nitiss, J.L. DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 2009, 9, 327-337.
2.Nitiss, J.L. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer 2009, 9, 338-350.
3.Pommier, Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 2006, 6, 789-802.
4.Pommier, Y. DNA Topoisomerase I Inhibitors: Chemistry, Biology, and Interfacial Inhibition. Chem Rev 2009.
5.Pommier, Y.; Pourquier, P.; Fan, Y.; Strumberg, D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. Biochim Biophys Acta 1998, 1400, 83-105.
6.Lue, N.; Sharma, A.; Mondragon, A.; Wang, J.C. A 26 kDa yeast DNA topoisomerase I fragment: crystallographic structure and mechanistic implications. Structure 1995, 3, 1315-1322.
7.Lima, C.D.; Wang, J.C.; Mondragon, A. Three-dimensional structure of the 67K N-terminal fragment of E. coli DNA topoisomerase I. Nature 1994, 367, 138-146.
8.Staker, B.L.; Hjerrild, K.; Feese, M.D.; Behnke, C.A.; Burgin, A.B., Jr.; Stewart, L. The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci U S A 2002, 99, 15387-15392.
9.Koster, D.A.; Croquette, V.; Dekker, C.; Shuman, S.; Dekker, N.H. Friction and torque govern the relaxation of DNA supercoils by eukaryotic topoisomerase IB. Nature 2005, 434, 671-674.
10.Redinbo, M.R.; Stewart, L.; Kuhn, P.; Champoux, J.J.; Hol, W.G. Crystal structures of human topoisomerase I in covalent and noncovalent complexes with DNA. Science 1998, 279, 1504-1513.
11.Stewart, L.; Redinbo, M.R.; Qiu, X.; Hol, W.G.; Champoux, J.J. A model for the mechanism of human topoisomerase I. Science 1998, 279, 1534-1541.
12.Zhang, H.; Barcelo, J.M.; Lee, B.; Kohlhagen, G.; Zimonjic, D.B.; Popescu, N.C.; Pommier, Y. Human mitochondrial topoisomerase I. Proc Natl Acad Sci U S A 2001, 98, 10608-10613.
13.Zhang, H.; Meng, L.H.; Pommier, Y. Mitochondrial topoisomerases and alternative splicing of the human TOP1mt gene. Biochimie 2007, 89, 474-481.
14.Pfister, T.D.; Reinhold, W.C.; Agama, K.; Gupta, S.; Khin, S.A.; Kinders, R.J.; Parchment, R.E.; Tomaszewski, J.E.; Doroshow, J.H.; Pommier, Y. Topoisomerase I levels in the NCI-60 cancer cell line panel determined by validated ELISA and microarray analysis and correlation with indenoisoquinoline sensitivity. Mol Cancer Ther 2009, 8, 1878-1884.
15.Pommier, Y.; Barcelo, J.M.; Rao, V.A.; Sordet, O.; Jobson, A.G.; Thibaut, L.; Miao, Z.H.; Seiler, J.A.; Zhang, H.; Marchand, C.; Agama, K.; Nitiss, J.L.; Redon, C. Repair of topoisomerase I-mediated DNA damage. Prog Nucleic Acid Res Mol Biol 2006, 81, 179-229.
16.Sun, Q.; Gatto, B.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Synthesis and evaluation of terbenzimidazoles as topoisomerase I inhibitors. J Med Chem 1995, 38, 3638-3644.
17.Kim, J.S.; Gatto, B.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Substituted 2,5''-Bi-1H-benzimidazoles: topoisomerase I inhibition and cytotoxicity. J Med Chem 1996, 39, 992-998.
18.Xu, Z.; Li, T.K.; Kim, J.S.; LaVoie, E.J.; Breslauer, K.J.; Liu, L.F.; Pilch, D.S. DNA minor groove binding-directed poisoning of human DNA topoisomerase I by terbenzimidazoles. Biochemistry 1998, 37, 3558-3566.
19.Makhey, D.; Yu, C.; Liu, A.; Liu, L.F.; LaVoie, E.J. Substituted benz[a]acridines and benz[c]acridines as mammalian topoisomerase poisons. Bioorg Med Chem 2000, 8, 1171-1182.
20.Janin, Y.L.; Croisy, A.; Riou, J.F.; Bisagni, E. Synthesis and evaluation of new 6-amino-substituted benzo[c]phenanthridine derivatives. J Med Chem 1993, 36, 3686-3692.
21.Qin, Y.; Pang, J.Y.; Chen, W.H.; Zhao, Z.Z.; Liu, L.; Jiang, Z.H. Inhibition of DNA topoisomerase I by natural and synthetic mono- and dimeric protoberberine alkaloids. Chem Biodivers 2007, 4, 481-487.
22.Fujii, N.; Yamashita, Y.; Saitoh, Y.; Nakano, H. Induction of mammalian DNA topoisomerase I-mediated DNA cleavage and DNA winding by bulgarein. J Biol Chem 1993, 268, 13160-13165.
23.Fujii, N.; Yamashita, Y.; Mizukami, T.; Nakano, H. Correlation between the formation of cleavable complex with topoisomerase I and growth-inhibitory activity for saintopin-type antibiotics. Mol Pharmacol 1997, 51, 269-276.
24.Vicker, N.; Burgess, L.; Chuckowree, I.S.; Dodd, R.; Folkes, A.J.; Hardick, D.J.; Hancox, T.C.; Miller, W.; Milton, J.; Sohal, S.; Wang, S.; Wren, S.P.; Charlton, P.A.; Dangerfield, W.; Liddle, C.; Mistry, P.; Stewart, A.J.; Denny, W.A. Novel angular benzophenazines: dual topoisomerase I and topoisomerase II inhibitors as potential anticancer agents. J Med Chem 2002, 45, 721-739.
25.Morrell, A.; Antony, S.; Kohlhagen, G.; Pommier, Y.; Cushman, M. A systematic study of nitrated indenoisoquinolines reveals a potent topoisomerase I inhibitor. J Med Chem 2006, 49, 7740-7753.
26.Yamashita, Y.; Fujii, N.; Murakata, C.; Ashizawa, T.; Okabe, M.; Nakano, H. Induction of mammalian DNA topoisomerase I mediated DNA cleavage by antitumor indolocarbazole derivatives. Biochemistry 1992, 31, 12069-12075.
27.Li, T.K.; Houghton, P.J.; Desai, S.D.; Daroui, P.; Liu, A.A.; Hars, E.S.; Ruchelman, A.L.; LaVoie, E.J.; Liu, L.F. Characterization of ARC-111 as a novel topoisomerase I-targeting anticancer drug. Cancer Res 2003, 63, 8400-8407.
28.Antony, S.; Kohlhagen, G.; Agama, K.; Jayaraman, M.; Cao, S.; Durrani, F.A.; Rustum, Y.M.; Cushman, M.; Pommier, Y. Cellular topoisomerase I inhibition and antiproliferative activity by MJ-III-65 (NSC 706744), an indenoisoquinoline topoisomerase I poison. Mol Pharmacol 2005, 67, 523-530.
29.Antony, S.; Agama, K.K.; Miao, Z.H.; Takagi, K.; Wright, M.H.; Robles, A.I.; Varticovski, L.; Nagarajan, M.; Morrell, A.; Cushman, M.; Pommier, Y. Novel indenoisoquinolines NSC 725776 and NSC 724998 produce persistent topoisomerase I cleavage complexes and overcome multidrug resistance. Cancer Res 2007, 67, 10397-10405.
30.Beijnen, J.H.; Rosing, H.; ten Bokkel Huinink, W.W.; Pinedo, H.M. High-performance liquid chromatographic analysis of the antitumour drug camptothecin and its lactone ring-opened form in rat plasma. J Chromatogr 1993, 617, 111-117.
31.Mauser, H.; Guba, W. Recent developments in de novo design and scaffold hopping. Curr Opin Drug Discov Devel 2008, 11, 365-374.
32.Kim, J.Y.; Su, T.L.; Chou, T.C.; Koehler, B.; Scarborough, A.; Ouerfelli, O.; Watanabe, K.A. Cyclopent[a]anthraquinones as DNA intercalating agents with covalent bond formation potential: synthesis and biological activity. J Med Chem 1996, 39, 2812-2818.
33.Carmichael, J.; DeGraff, W.G.; Gazdar, A.F.; Minna, J.D.; Mitchell, J.B. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 1987, 47, 936-942.
34.Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc 2006, 1, 1112-1116.
35.Voigt, W. Sulforhodamine B assay and chemosensitivity. Methods Mol Med 2005, 110, 39-48.
36.Jinno, H.; Steiner, M.G.; Mehta, R.G.; Osborne, M.P.; Telang, N.T. Inhibition of aberrant proliferation and induction of apoptosis in HER-2/neu oncogene transformed human mammary epithelial cells by N-(4-hydroxyphenyl)retinamide. Carcinogenesis 1999, 20, 229-236.
37.Topcu, Z.; Castora, F.J. Mammalian mitochondrial DNA topoisomerase I preferentially relaxes supercoils in plasmids containing specific mitochondrial DNA sequences. Biochim Biophys Acta 1995, 1264, 377-387.
38.Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988, 175, 184-191.
39.Tice, R.R.; Agurell, E.; Anderson, D.; Burlinson, B.; Hartmann, A.; Kobayashi, H.; Miyamae, Y.; Rojas, E.; Ryu, J.C.; Sasaki, Y.F. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000, 35, 206-221.
40.Holm, C.; Covey, J.M.; Kerrigan, D.; Pommier, Y. Differential requirement of DNA replication for the cytotoxicity of DNA topoisomerase I and II inhibitors in Chinese hamster DC3F cells. Cancer Res 1989, 49, 6365-6368.
41.Blumenthal, R.D.; Goldenberg, D.M. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol Biotechnol 2007, 35, 185-197.
42.Giovanella, B.C.; Stehlin, J.S.; Wall, M.E.; Wani, M.C.; Nicholas, A.W.; Liu, L.F.; Silber, R.; Potmesil, M. DNA topoisomerase I--targeted chemotherapy of human colon cancer in xenografts. Science 1989, 246, 1046-1048.
43.Champoux, J.J. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 2001, 70, 369-413.
44.Godard, T.; Deslandes, E.; Sichel, F.; Poul, J.M.; Gauduchon, P. Detection of topoisomerase inhibitor-induced DNA strand breaks and apoptosis by the alkaline comet assay. Mutat Res 2002, 520, 47-56.
45.Daza, P.; Torreblanca, J.; Moreno, F.J. The comet assay differentiates efficiently and rapidly between genotoxins and cytotoxins in quiescent cells. Cell Biol Int 2004, 28, 497-502.
46.Capranico, G.; Zunino, F.; Kohn, K.W.; Pommier, Y. Sequence-selective topoisomerase II inhibition by anthracycline derivatives in SV40 DNA: relationship with DNA binding affinity and cytotoxicity. Biochemistry 1990, 29, 562-569.
47.Fosse, P.; Rene, B.; Saucier, J.M.; Nguyen, C.H.; Bisagni, E.; Paoletti, C. Stimulation by gamma-carboline derivatives (simplified analogues of antitumor ellipticines) of site specific DNA cleavage by calf DNA topoisomerase II. Biochem Pharmacol 1990, 39, 669-676.
48.Antony, S.; Agama, K.K.; Miao, Z.H.; Hollingshead, M.; Holbeck, S.L.; Wright, M.H.; Varticovski, L.; Nagarajan, M.; Morrell, A.; Cushman, M.; Pommier, Y. Bisindenoisoquinoline bis-1,3-{(5,6-dihydro-5,11-diketo-11H-indeno[1,2-c]isoquinoline)-6-propyla mino}propane bis(trifluoroacetate) (NSC 727357), a DNA intercalator and topoisomerase inhibitor with antitumor activity. Mol Pharmacol 2006, 70, 1109-1120.
49.Dubrez, L.; Goldwasser, F.; Genne, P.; Pommier, Y.; Solary, E. The role of cell cycle regulation and apoptosis triggering in determining the sensitivity of leukemic cells to topoisomerase I and II inhibitors. Leukemia 1995, 9, 1013-1024.
50.Gong, Y.; Firestone, G.L.; Bjeldanes, L.F. 3,3''-diindolylmethane is a novel topoisomerase IIalpha catalytic inhibitor that induces S-phase retardation and mitotic delay in human hepatoma HepG2 cells. Mol Pharmacol 2006, 69, 1320-1327.
51.Tan, C.; Cai, L.Q.; Wu, W.; Qiao, Y.; Imperato-McGinley, J.; Chen, G.Q.; Zhu, Y.S. NSC606985, a novel camptothecin analog, induces apoptosis and growth arrest in prostate tumor cells. Cancer Chemother Pharmacol 2009, 63, 303-312.
52.Kim, Y.Y.; Park, C.K.; Kim, S.K.; Phi, J.H.; Kim, J.H.; Kim, C.Y.; Wang, K.C.; Cho, B.K. CKD-602, a camptothecin derivative, inhibits proliferation and induces apoptosis in glioma cell lines. Oncol Rep 2009, 21, 1413-1419.
53.Han, M.; He, C.X.; Fang, Q.L.; Yang, X.C.; Diao, Y.Y.; Xu, D.H.; He, Q.J.; Hu, Y.Z.; Liang, W.Q.; Yang, B.; Gao, J.Q. A novel camptothecin derivative incorporated in nano-carrier induced distinguished improvement in solubility, stability and anti-tumor activity both in vitro and in vivo. Pharm Res 2009, 26, 926-935.
54.D''Arpa, P.; Beardmore, C.; Liu, L.F. Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 1990, 50, 6919-6924.
55.Hsiang, Y.H.; Lihou, M.G.; Liu, L.F. Arrest of replication forks by drug-stabilized topoisomerase I-DNA cleavable complexes as a mechanism of cell killing by camptothecin. Cancer Res 1989, 49, 5077-5082.
56.Pommier, Y.; Cherfils, J. Interfacial inhibition of macromolecular interactions: nature''s paradigm for drug discovery. Trends Pharmacol Sci 2005, 26, 138-145.
57.Jaxel, C.; Kohn, K.W.; Pommier, Y. Topoisomerase I interaction with SV40 DNA in the presence and absence of camptothecin. Nucleic Acids Res 1988, 16, 11157-11170.
58.Spitzner, J.R.; Muller, M.T. A consensus sequence for cleavage by vertebrate DNA topoisomerase II. Nucleic Acids Res 1988, 16, 5533-5556.
59.Bonven, B.J.; Gocke, E.; Westergaard, O. A high affinity topoisomerase I binding sequence is clustered at DNAase I hypersensitive sites in Tetrahymena R-chromatin. Cell 1985, 41, 541-551.
60.Gilmour, D.S.; Elgin, S.C. Localization of specific topoisomerase I interactions within the transcribed region of active heat shock genes by using the inhibitor camptothecin. Mol Cell Biol 1987, 7, 141-148.
61.Zhang, H.; Wang, J.C.; Liu, L.F. Involvement of DNA topoisomerase I in transcription of human ribosomal RNA genes. Proc Natl Acad Sci U S A 1988, 85, 1060-1064.
62.Li, T.K.; Liu, L.F. Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 2001, 41, 53-77.
63.Kohn, K.W.; Aladjem, M.I.; Weinstein, J.N.; Pommier, Y. Molecular interaction maps of bioregulatory networks: a general rubric for systems biology. Mol Biol Cell 2006, 17, 1-13.
64.Yang, J.; Yu, Y.; Hamrick, H.E.; Duerksen-Hughes, P.J. ATM, ATR and DNA-PK: initiators of the cellular genotoxic stress responses. Carcinogenesis 2003, 24, 1571-1580.
65.Sordet, O.; Khan, Q.A.; Kohn, K.W.; Pommier, Y. Apoptosis induced by topoisomerase inhibitors. Curr Med Chem Anticancer Agents 2003, 3, 271-290.
66.Matsuoka, S.; Ballif, B.A.; Smogorzewska, A.; McDonald, E.R., 3rd; Hurov, K.E.; Luo, J.; Bakalarski, C.E.; Zhao, Z.; Solimini, N.; Lerenthal, Y.; Shiloh, Y.; Gygi, S.P.; Elledge, S.J. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 2007, 316, 1160-1166.
Chapter VI
1.Dunstan, H.M.; Ludlow, C.; Goehle, S.; Cronk, M.; Szankasi, P.; Evans, D.R.; Simon, J.A.; Lamb, J.R. Cell-based assays for identification of novel double-strand break-inducing agents. J Natl Cancer Inst 2002, 94, 88-94.
2.Drews, J. Drug discovery: a historical perspective. Science 2000, 287, 1960-1964.
3.Fishman, M.C.; Porter, J.A. Pharmaceuticals: a new grammar for drug discovery. Nature 2005, 437, 491-493.
4.Hefti, F.F. Requirements for a lead compound to become a clinical candidate. BMC Neurosci 2008, 9 Suppl 3, S7.
5.Leeson, P.D.; Davis, A.M. Time-related differences in the physical property profiles of oral drugs. J Med Chem 2004, 47, 6338-6348.
6.Leeson, P.D.; Springthorpe, B. The influence of drug-like concepts on decision-making in medicinal chemistry. Nat Rev Drug Discov 2007, 6, 881-890.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊