|
第六章 參考文獻 [1] W. Zhou, H. Liu, J. Wang, D. Liu, G. Du, and J. Cui, "Ag2O/TiO2 Nanobelts Heterostructure with Enhanced Ultraviolet and Visible Photocatalytic Activity," ACS Applied Materials & Interfaces, vol. 2, pp. 2385-2392, 2010.
[2] W. Yao, B. Zhang, C. Huang, C. Ma, X. Song, and Q. Xu, "Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions," Journal of Materials Chemistry, vol. 22, pp. 4050-4055, 2012.
[3] T. Hirakawa and P. V. Kamat, "Charge separation and catalytic activity of Ag@TiO2 core-shell composite clusters under UV-irradiation," Journal of the American Chemical Society, vol. 127, pp. 3928-3934, 2005.
[4] V. Subramanian, E. E. Wolf, and P. V. Kamat, "Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration," Journal of the American Chemical Society, vol. 126, pp. 4943-4950, 2004.
[5] A. T. Dinsdale, A. Akhmetova, A. V. Khvan, and N. Aristova, "A Critical Assessment of Thermodynamic and Phase Diagram Data for the Ge-O System," Journal of Phase Equilibria and Diffusion, vol. 36, pp. 254-261, 2015.
[6] Y. Su, X. Liang, S. Li, Y. Chen, Q. Zhou, S. Yin, et al., "Self-catalytic VLS growth and optical properties of single-crystalline GeO2 nanowire arrays," Materials Letters, vol. 62, pp. 1010-1013, 2008.
[7] P. Hidalgo, B. Mendez, and J. Piqueras, "GeO2 nanowires and nanoneedles grown by thermal deposition without a catalyst," Nanotechnology, vol. 16, pp. 2521-2524, 2005.
[8] Z. Gu, F. Liu, J. Y. Howe, M. P. Paranthaman, and Z. Pan, "Three-Dimensional Germanium Oxide Nanowire Networks, " Crystal Growth & Design, vol. 9, pp. 35-39, 2009.
[9] M. Simanullang, K. Usami, T. Kodera, K. Uchida, and S. Oda, "Growth of Narrow and Straight Germanium Nanowires by Vapor-Liquid-Solid Chemical Vapor Deposition, " Japanese Journal of Applied Physics, vol. 50, p. 6, 2011.
[10] C. Yan, M. Y. Chan, T. Zhang, and P. S. Lee, "Catalytic Growth of Germanium Oxide Nanowires, Nanotubes, and Germanium Nanowires: Temperature-Dependent Effect," Journal of Physical Chemistry C, vol. 113, pp. 1705-1708, 2009.
[11] J. Yu, H. Yang, R. Shi, L. Zhang, H. Zhao, and X. Wang, "Vapor-liquid-solid growth and narrow-band ultraviolet photoluminescence of well-aligned GeO2 nanowire arrays with controllable aspect ratios," Applied Physics A: Materials Science & Processing, vol. 100, pp. 493-499, 2010.
[12] Z. Jiang, T. Xie, G. Z. Wang, X. Y. Yuan, C. H. Ye, W. P. Cai, et al., "GeO2 nanotubes and nanorods synthesized by vapor phase reactions," Materials Letters, vol. 59, pp. 416-419, 2005.
[13] X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, "Preparation and photoluminescence properties of crystalline GeO2 nanowires," Chemical Physics Letters, vol. 349, pp. 210-214, 2001.
[14] 許舒涵,羅廣禮,朱俊霖,沈奕伶,姚潔宜,郭美玲,周棟煥,簡依玲,吳建霆,林昆霖," Fabrication of Ge nano-scaled MOSFETs,"國家奈米元件實驗室, 2013.
[15] S. P. Mondal and S. K. Ray, "Enhanced broadband photoresponse of Ge/CdS nanowire radial heterostructures," Applied Physics Letters, vol. 94, pp. 223119, 2009.
[16] Y. F. Zhang, Y. H. Tang, N. Wang, C. S. Lee, I. Bello, and S. T. Lee, "Germanium nanowires sheathed with an oxide layer," Physical Review B, vol. 61, pp. 4518-4521, 2000.
[17] C. K. Chan, X. F. Zhang, and Y. Cui, "High capacity Li ion battery anodes using Ge nanowires," Nano Letters, vol. 8, pp. 307-309, 2008.
[18] S. Kim, Y. Zhang, J. P. McVittie, H. Jagannathan, Y. Nishi, and H. S. P. Wong, "Integrating phase-change memory cell with Ge nanowire diode for crosspoint memory-experimental demonstration and analysis," Ieee Transactions on Electron Devices, vol. 55, pp. 2307-2313, 2008.
[19] J. W. Peng, N. Singh, G. Q. Lo, M. Bosman, C. M. Ng, and S. J. Lee, "Germanium Nanowire Metal-Oxide-Semiconductor Field-Effect Transistor Fabricated by Complementary-Metal-Oxide-Semiconductor-Compatible Process," IEEE Transactions on Electron Devices, vol. 58, pp. 74-79, 2011.
[20] C. O'Regan, S. Biswas, N. Petkov, and J. D. Holmes, "Recent advances in the growth of germanium nanowires: synthesis, growth dynamics and morphology control," Journal of Materials Chemistry C, vol. 2, pp. 14-33, 2014.
[21] H. Cheng, B. Huang, and Y. Dai, "Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications," Nanoscale, vol. 6, pp. 2009-2026, 2014.
[22] L.-C. Tien and J.-L. Shih, "Type-II alpha-In2S3/In2O3 nanowire heterostructures: evidence of enhanced photo-induced charge separation efficiency," RSC Advances, vol. 6, pp. 12561-12570, 2016.
[23] O. Akio, F. Hiroaki, N. Hiroshi, M. Hideki, "Photoemission Study of Ultrathin GeO2/Ge Heterostructures Formed by UV-O3 Oxidation, " E-Journal of Surface Science and Nanotech. Vol. 4, pp. 174-179, 2006.
[24] J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, and C. M. Lieber, "Ge/Si nanowire heterostructures as high-performance field-effect transistors," Nature, vol. 441, pp. 489-493, 2006.
[25] P. K. Giri and S. Dhara, "Freestanding Ge/GeO2 Core-Shell Nanocrystals with Varying Sizes and Shell Thicknesses: Microstructure and Photoluminescence Studies," Journal of Nanomaterials, vol. 2012, pp. 5, 2012.
[26] D. N. Lei, B. H. Qu, H. T. Lin, and T. H. Wang, "Facile approach to prepare porous GeO2/SnO2 nanofibers via a single spinneret electrospinning technique as anodes for Lithium-ion batteries," Ceramics International, vol. 41, pp. 10308-10313, 2015.
[27] S. Manna, N. Prtljaga, S. Das, N. Daldosso, S. K. Ray, and L. Pavesi, "Photophysics of resonantly and non-resonantly excited erbium doped Ge nanowires," Nanotechnology, vol. 23, pp. 6, 2012.
[28] H. Lu , X. Meng, "Nanophase diagram of binary eutectic Au-Ge nanoalloys for vapor-liquid-solid semiconductor nanowires growth," Scientific Reports, vol. 5, pp. 11263, 2015.
[29] A. D. Gamalski, J. Tersoff, S. Kodambaka, D. N. Zakharov, F. M. Ross, and E. A. Stach, "The Role of Surface Passivation in Controlling Ge Nanowire Faceting," Nano Letters, vol. 15, pp. 8211-8216, 2015.
[30] S. Manna, A. Katiyar, R. Aluguri, and S. K. Ray, "Temperature dependent photoluminescence and electroluminescence characteristics of core-shell Ge-GeO2 nanowires," Journal of Physics D-Applied Physics, vol. 48, pp. 6, 2015.
[31] S. K. Wang, H.-G. Liu, and A. Toriumi, "Kinetic study of GeO disproportionation into a GeO2/Ge system using x-ray photoelectron spectroscopy," Applied Physics Letters, vol. 101, pp. 061907, 2012.
[32] D. Majumdar, S. Biswas, T. Ghoshal, J. D. Holmes, and A. Singha, "Probing Thermal Flux in Twinned Ge Nanowires through Raman Spectroscopy," ACS Applied Materials & Interfaces, vol. 7, pp. 24679-24685, 2015.
[33] R. Jalilian, G. U. Sumanasekera, H. Chandrasekharan, and M. K. Sunkara, "Phonon confinement and laser heating effects in Germanium nanowires," Physical Review B, vol. 74, pp. 155421, 2006.
[34] X. C. Wu, W. H. Song, B. Zhao, Y. P. Sun, and J. J. Du, "Preparation and photoluminescence properties of crystalline GeO2 nanowires," Chemical Physics Letters, vol. 349, pp. 210-214, 2001.
|