跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/14 02:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:呂承駿
研究生(外文):Cheng-Chun Lu
論文名稱:水性聚氨基甲酸酯/銀奈米複合物之製備與性質探討
論文名稱(外文):Preparation and properties of waterborne polyurethane/silver nanocomposites
指導教授:李訓清
指導教授(外文):Hsun-Tsing Lee
學位類別:碩士
校院名稱:萬能科技大學
系所名稱:工程科技研究所
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:90
中文關鍵詞:水性聚氨基甲酸酯奈米複合物
外文關鍵詞:Waterborne polyurethanesSilverNanocomposites
相關次數:
  • 被引用被引用:1
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:48
  • 收藏至我的研究室書目清單書目收藏:0
  本研究是以預聚物混合法合成水性聚氨基甲酸酯(WPU),在加入不同含量的硝酸銀(AgNO3)水溶液,再經加熱烘乾鑄膜形成WPU/AgNO3複合膜,最後將WPU/AgNO3複合膜浸入還原劑聯胺(N2H5OH)進行還原作用,形成WPU/Ag奈米複合膜。
研究中使用粒徑分析儀、黏度儀與界面電位分析儀分析複合物乳液特性,利用傅立葉轉換紅外線光譜儀、表面掃描電子顯微鏡、X-ray繞射光譜、熱重量分析儀、原子力顯微鏡探討複合物的結構、熱性質與結晶情形,同時也利用萬能拉力機、動態機械熱分析儀探討複合物的機械性質。
首先探討WPU/AgNO3乳液,硝酸銀含量增加,使其Zeta絕對值變小,導電度及平均粒徑增加,但黏度則維持在1~2cps之間。
接著探討WPU/AgNO3複合膜及WPU/Ag奈米複合膜,隨著硝酸銀增加,其抗張強度減弱,延伸率則上伸。抗菌效果也較好。而將WPU/AgNO3複合膜還原成WPU/Ag奈米複合膜時,其耐熱性增加。在WPU/Ag奈米複合膜中隨著銀含量增加,在表面形成聚集使得顆粒變大。
Waterborne polyurethane (WPU) dispersions were prepared through the prepolymer mixing process. Then different amounts of aqueous AgNO3 solutions were added to the WPU dispersions to form the WPU/AgNO3 dispersions. The characteristics of the WPU/AgNO3 dispersions were measured by a particle sizer, a coaxial cylinder rheometer and a zeta potential analyzer.
The WPU/AgNO3 composite films were obtained by casting the corresponding dispersions. Also, by dipping the WPU/AgNO3 films in the aqueous hydrazine (N2H5OH) solution, the WPU/Ag nanocomposites were obtained through the reduction reaction. The structure and thermal properties of the WPU/AgNO3 and WPU/Ag films were measured by a Fourier transform infrared spectrophotometer, a scanning electron microscope, an X-ray diffractometer and a thermogravimetric analyzer. Moreover, the mechanical properties of the WPU/AgNO3 and WPU/Ag films were measured by a dynamic mechanical analyzer and a uniaxial stress-strain tester.
The WPU/AgNO3 dispersion with higher AgNO3 content exhibits a larger average particle size, a less negative zeta potential and a higher conductivity, whereas the viscosity remains nearly constant in 1-2 cps. In addition, the WPU/AgNO3 film with higher AgNO3 content exhibits a higher thermal resistivity and antibacterial property. On the other hand, the elongation increases with AgNO3 content. Besides, the tensile strength decreases with AgNO3 content. The thermal resistivity can be enhanced by reducing WPU/AgNO3 films to WPU/Ag ones. The size of aggregated Ag particles on the surface of WPU/Ag films was larger with higher Ag concentration.
摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章、 序論 - 1 -
1.1前言 - 1 -
1.2 研究動機與目的 - 3 -
第二章、文獻回顧 - 4 -
2.1聚胺基甲酸酯 - 4 -
2.2水性PU製造技術【1,12-18】 - 4 -
2.2.1水性PU合成方式 - 5 -
2.2.2水性PU分類 - 12 -
2.2.3 水性PU的發展 - 14 -
2.3 奈米粒子 - 20 -
2.3.1 奈米材料與奈米技術的簡介 - 20 -
2.3.2奈米粒子的製備 - 22 -
2.4 抑菌檢測技術之簡介 - 23 -
第三章 實驗部份 - 29 -
3.1 實驗藥品 - 29 -
3.2 儀器 - 31 -
3.3. 實驗方法 - 33 -
3.3.1 實驗流程 - 33 -
3.3.2 WPU/ AgNO3乳液之製備 - 34 -
3.3.3抗菌實驗 - 38 -
第四章、結果與討論 - 40 -
4.1 WPU/AgNO3乳液之物化特性及安定性測試 - 40 -
4.1.1 粒徑分析 - 40 -
4.1.2 黏度分析 - 41 -
4.1.3 界面電位分析 - 43 -
4.2 WPU/AgNO3複合膜及水性PU/銀奈米複合膜之結構與物性測試 - 45 -
4.2.1結構分析 - 45 -
4.2.1.1紅外光光譜分析 - 45 -
4.2.1.2 X-ray繞射儀分析 - 49 -
4.2.2 物性分析 - 51 -
4.2.2.1 耐熱性分析 - 51 -
4.2.3 機械分析 - 53 -
4.2.3.1 拉力分析 - 53 -
4.2.3.2 動態機械分析 - 57 -
4.2.4 型態分析 - 61 -
4.2.4.1場發射掃描式電子顯微鏡分析 - 61 -
4.2.4.2 原子力顯微鏡分析 - 64 -
4.2.5 抗菌測試 - 68 -
4.2.6 導電性測試 - 71 -
第五章 結論 - 73 -
第六章 參考文獻 - 75 -
1.C. Hepburn, "Polyurethane Elastomer." Applied Science Publishers, New York,1982, p.290 .
2.O. Guenter, "Polyurethane Handbook." Hanser Publisher, Munich Vienna New York ,1985.
3.C. S. Schollenberger, "Polyurethane Technology." Ed., Bruin, P.F., Interscience Publishers, New York, 1979,p197 .
4.范孝明,PU樹脂添加奈米SiO2/TiO2之性能提升研究,元智大學化學工程學系碩士論文,2004.
5.M. Melchiors, M. Sonntag, C. Kobusch, E. Jurgens, Prog. in Organic Coatings. 2000, 40, 99.
6.Show-An Chen and Jen-Sung Hsu, Polymer, 1993, 2769.
7.H. B. Park and Y. M. Lee, J. Membrane Sci., 2002, 197, 283.
8.A. Gugliuzza, G. Clarizia, G. Golemme and E. Drioli, Eur. Polym. J., 2002, 38, 235.
9.白國維,聚胺酯彈性纖維製程技術探討,大葉大學食品工程研究所碩士論文,2001.
10.陳柏弘,完全相分離PU之完整型態研究,國立中央大學化學工程研究所碩士論文,2000.
11.T.C. Wen, Y.J. Wang, T.T. Chang, C.H. Yang, Polymer, 1999,40, pp.3979-3988.
12.H. H. Lo et al, 24th Annual International Waterborne, High-Solids, and Powder Coatings Symposium
13.E. J. Malec, D. J. David, Analytical Chemistry of Polyurethane, 1969.
14.O. Lorenz and H. Huck, Angew. Makromol. Chem., 1978,72, 115 .
15.D. Dieterich, Prog. Org. Coat., 1981,9, 281 .
16.T. M. Chapman, J. Polym. Sci.: Part A:Polym.Chem.,1989, 27, 1993 .
17.H. Traubbel, J. Soc. Leather Tech. Chem., 1990,74, 7 .
18.P. H. Markush, U.S. Patent ,October 4, 1981,4,408,008 .
19.H.D. Kim, T.W. Kim, J Appl Polym Sci, 1998, 67, 2153.
20.B.Vogt-Birnbrich, Prog. in Organic Coatings. 1996, 29, 31.
21.W.J.Blank, V.J.Tramontano, Prog. in Organic Coatings. 1996, 27, 1.
22.R.B. Orr, L. Chicosky, Jr. (Seton Co.), US Patent No. 4,1987, 690, 953.
23.F.A. Wickert, Glidden Co.,US Patent ,No. 5 ,1991,066 705.
24.Y. Tamaki, S. Ueda, Dainippon Ink & Chemicals, ,1993,Jpn. Patent No. 5 202 162.
25.H.T. Lee and C.C. Wang, J. Polym. Res., 2005, 12, 271.
26.M. Hirose, J. Zhou and K. Nagai, Prog Org Coat, 2000,38, 27.
27.L.H. Sperling, Polymeric Multicomponent Materials, Wiley, New York, 1997.
28.H.J. Adler, K. Jahny, B. Vogt-Birnbrich, Prog Org Coat. 2001,43 , 251.
29.X. Huang, T. Ren, X. Tang, Mater. Lett. 2003,57 ,4182.
30.M.S. Park, Y.H. Cho, B.K. Kim, J.S. Jang, Curr. Appl. Phys. 2002,2 , 249.
31.G. N. Chen, and K. N. Chen, J. Appl. Polym. Sci., 1999,71, 903 .
32.B.M. Novak, Adv. Mater., 1993, 5, 422.
33.T.K. Chen, Y.I. Tien, K.H. Wei, Polymer, 2000, 41, 1345.
34.T.K. Chen, Y.I. Tien, K.H. Wei, J. Polym. Sci. : Polym. Chem., 1999, 37, 2225.
35.R.C.R. Nunes, R.A. Pereira, J.L.C. Fonseca, M.R. Pereira, Polymer Testing, 2001, 20, 707.
36.Z.S. Petrovic, I. Javni, A. Waddon, G. Banhegyi, J. Appl.Polym. Sci, 2000, 76, 133.
37.A.M.T. Palau, J.C.F. Garcia, A.C.O. Barcelo, J.M.M. Martinez, Intern. J. Adhesion & Adhesives, 2001, 21, 1.
38.B.J. Beloqui, J.C.F. Garcia, A.C.O. Barcelo, M.M.M. Bujanda, J.M.M. Martinez, Intern. J. Adhesion & Adhesives, 1999, 19, 321.
39.H. Goda, C.W. Frank, Chem. Mater., 2001, 13, 2783.
40.M. Tortora, G. Gorrasi, V. Vittoria, G..Galli, S.Ritrovati, E.Chiellini, Polymer, 2002, 43, 6147.
41.K.J. Yao, M. Song, D.J. Hourston, D.Z. Luo, Polymer, 2002, 43, 1017.
42.J. Ma, S. Zhang, Z. Qi, J. Appl. Polym. Sci., 2001, 82, 1444.
43.Ross, Mark, Kaizerman, Jacob, 1999,US 6521690.
44.H. Yuan, C. Zuyao, S. Lei, 2002, CN 1362450.
45H.C. Kuan, C. C. M. MA, W.P. Chuang, H.Y. SU, J. Polym. Sci. Part B: Polym. Phys. 2005, 43, 1.
46.B.K. Kim, J.W. Seo, H.M. Jeong, Eur. Polym. J, 2003, 39, 85.
47.Hsun-Tsing Lee, Li-Huei Lin, Macromolecules, 2006, 39, 6133.
48.I.S. Oh, N.H. Park, K.D. Suh, J. Appl. Polym. Sci., 2000, 75, 968.
49.J.W. Seo, B.K. Kim, Polym Bull, 2005, 54, 123.
50.Y. Zhu, D.X. Sun, J. Appl. Polym. Sci., 2004, 92, 2013.
51.N.H. Park, J.W. Lee, K.D. Suh, J. Appl. Polym. Sci., 2002, 84, 2327.
52.K. Lewandowski, L.R. Krepski, D.E. Mickus, R.R. Roberts, S.M. Heilmann, W.K. Larson, M.D. Purgett, S.D. Koecher, S.A. Johnson, D.J. Mcgurran, C.J. Rueb, S.V. Pathre, K.A.M. Thakur, J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 3037.
53.Q.D. Shen, C.Z. Yang, J. Polym. Sci. Part B: Polym. Phys. 1998, 36, 1539.
54.S.L. Huang, M.S. Chao, J.Y. Lai, J. Appl. Polym. Sci., 1998, 67, 865.
55.I. Francolini, V. Ruggeri, A. Martinelli, L. D’Ilario, A. Piozzi, Macromol. Rapid Commun. 2006, 27, 233.
56.H.J. Jeon, J.S. Kim, T.G. Kim, J.H. Kim, W.R. Yu, J.H. Youk, Appl. Surf. Sci., 2008, 254, 5886.
57.J.W. Cho, J.H. So, Mater. Lett., 2006, 60, 2653.
58.H.W. Lu, S.H. Liu, X.L. Wang, X.F. Qian, J. Yin, Z.K. Zhu, Mater. Chem. Phys. 2003, 81, 104.
59.C.W. Chou, S.H. Hsu, H. Chang, S.M. Tseng, H.R. Lin, Polym. Degrad. Stabil., 2006, 91, 1017.
60.C.W. Chou, S.H. Hsu, H. Chang, S.M. Tseng, H.R. Lin, J. Biomed. Mater. Res. Part A, 2007, 785.
61.N. Senthilkumar, A. Raghavan, A. Sultan Nasar, Macromol. Chem. Phys. 2005, 206, 2490.
62.I. Nova′k, I. Krupa, I. Choda′k, Synth. Met., 2002, 131, 93.
63.L.F. Kosyanchuk, T.E. Lipatova, V.A Vilensky, Y.S. Lipatov, V.I. Shtompel, J. Polym. Sci. Part A: Polym. Chem. 1998, 36, 1379.
64.Y.H. Wang, M.C. Suen, H.T. Lee, J.C. Wang, Polyhedron, 2006, 25, 2944.
65.Y.H. Wang, H.T. Lee, M.C. Suen, Polyhedron, 2008, 27, 1177.
H.T Lee, S.Y. Wu, R.J. Jeng, Colloid Surf. A: Physicochem. Eng. Asp., 2006, 276, 176.
66.S. Edelstein, R. C. Cammarata, Nanomaterials: Synthesis, Properties and Applications. Bristol: Institute of Physics Publishing ,1996.
67.J. H. Fendler, Nanoparticles and Nanostructured Film: Preparation,Characterization Applications. New York: Wiley-VCH ,1998.
68.N. Goldstein, Handbook of Nanophase Materials. New York: Marcel Dekker ,1997.
69.G. Schimid, Clusters and Colloids:From Theory to Application. New York:Wiley-VCH ,1994,.
70.R. W. Siegel, E. Hu, M. C. Roco, WTEC panel report on nanostructure science and technology: R & D status and trends in nanoparticles, nanostructured materials, and nanodevices. Boston: Kluwer Academic ,1999.
71.W. Göpel, Biosens, Bioelectron, 1998,13, 723 .
72.陳東佑,銅奈米粒子的表面修飾研究,國立成功大學化學研究所碩士論文,2001。
73.AATCC Test Method 90-1982。
74.AATCC Test Method 147-1998。
75.ASTM G22-76。
76.ASTM E2149-01。
77.JIS Z 2801-2000。
78.經濟部中央標準局(1997),纖維製品抗菌性試驗法,中國國家標準 (CNS),13907(L3284)。
79.L. Sun, Z. Zhang and H. Dang, Mater. Lett. ,2003,57 , p. 3874
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top