跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.188) 您好!臺灣時間:2025/10/07 17:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳俊豪
研究生(外文):Jiun-Hau Chen
論文名稱:半車主動式懸吊系統之最佳模糊控制器設計
論文名稱(外文):Optimal Fuzzy Controller Design of Half-Car Active Suspension Systems
指導教授:李祖添李祖添引用關係
指導教授(外文):Tsu-Tian Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:英文
論文頁數:45
中文關鍵詞:主動式懸吊系統半車最佳化模糊
外文關鍵詞:active suspension systemshalf-caroptimal fuzzy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:292
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:0
本論文利用以Takagi-Sugeno (T-S)模型為基礎的最佳模糊控制器來設計一個非線性半車主動式懸吊系統。我們有兩個方法獲得非線性懸吊系統的T-S模糊模型。第一種方法是從半車懸吊系統的數學模型直接推導,另一種方法由一個六層的修正自我建構模糊類神經推論網路來得到懸吊系統的T-S模型。有了懸吊系統的輸出和輸入資料,修正自我建構模糊類神經推論網路可以動態地增加模糊規則,使模型輸出誤差最小化。位於車體和車輪之間的懸吊系統會經由車體的垂直位移和前傾位移產生垂直力,所以路面不規則性是影響乘客舒適性的主要因子,一個主動式懸吊系統的控制器必須能夠減少垂直和前傾位移量。所推導出的最佳化模糊控制器經由模擬顯示其可行性及實用性,而且比一般的被動式懸吊系統的性能還好。

The optimal fuzzy controller of a nonlinear active suspension system is designed based on the Takagi-Sugeno (T-S) fuzzy model. There are two ways to obtain the T-S fuzzy model. First, we can convert the mathematical model of the half-car suspension system into a T-S fuzzy model directly. Second, we can use a six layer modified self-constructing neural fuzzy inference network (modified SONFIN) to generate its T-S fuzzy model. With proper input and output data of the half-car suspension system for training, the modified SONFIN can dynamically increase the number of fuzzy rules, and meanwhile minimize the model output error. The vertical displacement of suspension elements between the vehicle body and the wheels will generate vertical forces which will excite both heave and pitch motions, and road irregularities are the main factor affecting ride comfort of passengers. An active suspension controller must be able to minimize both heave and pitch movements. Simulation results indicate the feasibility and the applicability of the designed controller. Results show that the developed controller provides better performance than conventional passive suspension system.

摘要 Ⅰ
ABSTRACT Ⅱ
誌謝 Ⅲ
CONTENTS Ⅳ
LIST OF FIGURES Ⅴ
CHAPTER1 INTRODUCTION 1
1.1 Motivation 1
1.2 Literature Review 3
1.3 Brief Sketch of the Contents 5
CHPATER2 HALF-CAR SUSPENSION MODEL 6
2.1 Introduction 6
2.2 Mathematical Model 7
CHAPTER3 FUZZY MODELING 10
3.1 Introduction of T-S Fuzzy Model 10
3.2 T-S Fuzzy Model of Tanaka’s approach 10
3.3 T-S Fuzzy Modeling of Half-Car Suspension Systems
via Tanaka’s approach 11
3.4 T-S Fuzzy Model of the Modified SONFIN Learning 14
3.5 T-S Fuzzy Modeling of Half-Car Suspension Systems
via the Modified SONFIN Learning 17
CHAPTER4 OPTIMAL FUZZY CONTROLLER DESIGN 19
CHAPTER5 SIMULATION RESULTS 23
5.1 Simulation for T-S Fuzzy Modeling via Tanaka’s approach 23
5.1.1 Simulation for Road Disturbance D1 23
5.1.2 Simulation for Road Disturbance D2 24
5.2 Simulation for T-S Fuzzy Modeling via the Modified SONFIN 33
5.2.1 Simulation for Road Disturbance D1 33
5.2.2 Simulation for Road Disturbance D2 33
CHAPTER6 CONCLUSIONS 42
REFERENCES 43

[1] M. G. Pollard and N. J. A. Simons, “Passenger Comfort-the Role of Active Suspension,” Proceedings of Institution of Mechanical Engineers, vol.198D, pp.161-175, 1984.
[2] D. Hrovat, “Survey of Advanced Suspension Developments and Related Optimal Control Applications,” Automatica, vol.33, no.10, pp.1781-1817, 1997.
[3] R. Krtolica and D. Hrovat, “Optimal Active Suspension Control Based on a Half-Car Model,” Proceeding of the 29th IEEE Conference on Decision and Control, pp2238-2243, Dec 1990.
[4] R. Krtolica and D. Hrovat, “Optimal Active Suspension Control Based on a Half-Car Model: Analytical Solution,” IEEE Transactions on Automatic Control, vol.37, No.4, pp.528-532, Apr 1992.
[5] J. S. Lin and I. Kanellakopoulos, “Nonlinear Design of Active Suspensions,” IEEE Control Systems Magazine, pp.45-59, June 1997.
[6] J. S. Lin and I. Kanellakopoulos, “Road-Adaptive Nonlinear Control of Active Suspension,” Proceedings of the 1997 American Control Conference, Albuquerque, NM, pp.714-718, June 1997.
[7] J. S. Lin and I. Kanellakopoulos, “Modular Adaptive Design for Active suspension,” Proceedings of the 36th IEEE Conference on Decision and Control, San Diego, CA, pp.3626-3631, December 1997.
[8] A. G. Thompson and C. E. M. Pearce, “Physically Realizable Feedback Control for a Half-Car Model,” Vehicle System Dynamics, vol. 30, pp.17-35, 1998.
[9] A. G. Thompson and B. R. Davis, “Optimal Linear Active Suspension with Derivative Constraints and Output Feedback Control,” Vehicle System Dynamics, vol.17, pp.179-192, 1988.
[10] H. Wang, K. Tanaka, and M. Griffin, “Parallel Distributed Compensation of Nonlinear Systems by Takagi and Sugeno’s Fuzzy Model,” Proceedings of FUZZ-IEEE’95, pp.531-538, Yokohama, Japan, May 1995.
[11] L. X. Wang, “Stable and Optimal Fuzzy Control of Linear Systems,” IEEE Transactions on Fuzzy Systems, vol.6, pp.137-143, Feb. 1998.
[12] K. Tanaka, T. Taniguchi, and H. O. Wang, “Fuzzy Control Based on Quadratic Performance Function,” Proceeding of the 37th IEEE Conference on Decision and Control, Tampa, FL, pp.2914-2919, 1998.
[13] K. Tanaka, T. Taniguchi, and H. O. Wang, “Model-Based Fuzzy Control of TORA System: Fuzzy Regulator and Fuzzy Observer Design via LMI’s that Represent Decay Rate, Disturbance Rejection, Robustness, Optimality,” Proceedings of FUZZ-IEEE’98, Alaska, pp.313-318, 1998.
[14] S. J. Wu and C. T. Lin, “Optimal Fuzzy Controller Design: Local Concept Approach”, IEEE Transactions on Fuzzy Systems, pp.171-185, April 2000.
[15] S. J. Wu and C. T. Lin, “Optimal Fuzzy Controller Design in Continuous Fuzzy System: Global Concept Approach,” IEEE Transactions on Fuzzy Systems, pp.713-729, Dec. 2000.
[16] S. J. Wu and C. T. Lin, “Discrete-Time Optimal Fuzzy Controller Design: Global Concept Approach,” IEEE Transactions on Fuzzy Systems, vol.10, pp.21-38, Feb. 2002.
[17] T. Takagi and M. Sugeno, “Fuzzy Identification of System and Its Application to Modeling and Control,” IEEE transactions on Systems, Man, and Cybernetics, vol.15, no.1, pp.116-132, 1985.
[18] T. D. Gillespie, “Fundamentals of Vehicle Dynamics,” Society of Automotive Engineers, Inc., 1992.
[19] C. F. Juang and C. T. Lin, “An Online Self-Constructing Neural Fuzzy Inference Network and Its Applications,” IEEE Transactions on Fuzzy Systems, vol.6 Issue:1, pp.12-32, Feb. 1998.
[20] H. T. Lin, and S. J. Wu, and T. T. Lee, “An Approach to Integrate Nonlinear System Modeling and Optimal Controller Design,” Proceedings of SCIS, 2002.
[21] H. O. Wang, J. Li, D. Niemann and K. Tanaka, “T-S Fuzzy Model with Linear Rule Consequence and PDC Controller: a Universal Framework for Nonlinear Control System,” IEEE Transactions on Fuzzy Systems, vol.2, pp.549-554, 2000.
[22] L. X. Wang and J. M. Mendel, “Fuzzy Basis Functions, Universal Approximation, and Orthogonal Least-Squares Learning,” IEEE Transactions on Neural Networks, vol.3, pp.807-814, Sept. 1992.
[23] K. Tanaka, T. Ikeda, and H. O. Wang, “Robust Stabilization of a Class of Uncertain Nonlinear Systems via Fuzzy Control: Quadratic Stabilizability, H∞ Control Theory, and Linear Matrix Inequalities,” IEEE Transactions on Fuzzy Systems, vol.4, no.1, pp.1-13, 1996.
[24] K. Tanaka and M. Sano, “Trajectory Stabilization of a Model Car via Fuzzy Control,” Fuzzy Sets and Systems, vol.70, pp.155-170, 1995.
[25] K. Tanaka and T. Kosaki, “Design of a Stable Fuzzy Controller for an Articulated Vehicle,” IEEE Transactions on Systems, Man, and Cybernetics, vol.27, pp552-558, June 1997.
[26] T. Taniguchi, K. Tanaka, H. Ohtake, H. O. Wang, “Model Construction, Rule Reduction, Robust Compensation for Generalized Form of Takagi-Sugeno Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol.9, no.4, pp.525-538, August 2001.
[27] H. O. Wang and K. Tanaka, “An LMI-Based Stable Fuzzy Control of Nonlinear Systems and Its Application to Control of Chaos,” Proceedings of FUZZ-IEEE’96, vol2, pp.1433-1438, 1996.
[28] K. Tanaka, T. Kosaki, and H. O. Wang, “Fuzzy Control of a Mobile Robot with Multiple Trailers-Stability Analysis and Parallel Distributed Compensation,” Proceedings of IEEE Intelligent Control, pp.259-264, 1996.
[29] J. Campos, L. Davis, F. L. Lewis, S. Ikenaga, S. Scully, and M. Evans, “Active Suspension Control of Ground Vehicle Heave and Pitch Motions,” Proceedings of the 7th IEEE Mediterranean Conference on Control and Automation, pp.222-233, Haifa Israel, June 1999.
[30] D. Karnopp, “Active Damping in Road Vehicle Suspension Systems,” Vehicle System Dynamics, no.12, pp.291-316, 1983.
[31] C. J. Huang and J. S. Lin, “Nonlinear control design of half-car active suspensions,” Proceedings of the 2002 Chinese Automatic Control Conference, Tainan, Taiwan, R.O.C., pp.643-648, March 2002.
[32] C. J. Huang and J. S. Lin, “Nonlinear active suspension design for half-car models,” Proceedings of the 2002 International Conference on Control and Automation, Xiamen, P. R. China, pp.1436-1440, June 2002.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文