跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 05:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何秀榮
研究生(外文):Hsiu-Jung Ho
論文名稱:基於多變量偏斜t分佈之穩健的線性混合模型
論文名稱(外文):Robust linear mixed models based on the multivariate skew t distribution
指導教授:林宗儀林宗儀引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:應用數學系所
學門:數學及統計學門
學類:數學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:71
中文關鍵詞:多變量偏斜常態分佈多變量偏斜t 分佈EM 演算法AECM 演算法間斷的遺失值離群值隨機效應偏斜t 線性混合模型
外文關鍵詞:Multivariate skew normal distributionMultivariate skew t distributionEM algorithmAECM algorithmIntermittent missing valuesOutliersRandom effectsSTLMM
相關次數:
  • 被引用被引用:0
  • 點閱點閱:277
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
線性混合模型(LMM) 已成為分析連續型長期資料的一個有效的工具,特別被應用在由生物統計學研究所產生的資料。LMM 的特點是它同時為實驗對象之間和相異時間觀察的變異建立模型。在LMM 的架構下,為了數理推導和統計分析的便利,隨機效應和誤差項經常假定為常態分配。然而,當隨機效應嚴重背離常態性時,將使得模型因穩健性的欠缺而更糟,並導致隨後的無效推論和不合理的估計。基於多變量偏斜t 分佈的架構下,本文提出一個具有穩健性的線性混合效應模型之建模方法來處理上述的問題。

多變量偏斜常態分佈已被普遍地認為是一個有用的統計分析工具,它能處理具有不對稱性的多變量資料。多變量偏斜t 分佈是多變量偏斜常態分佈的一種具穩健性的延伸, 它能同時捕捉資料中厚尾與偏斜的行為。本文會先探討這兩個分佈的一些基本性質並提供可解析的EM 演算法來求得最大概似估計值。

在一個LMM 的延伸模型中,我們對隨機效應及誤差項分別假設服從多變量偏斜t 分佈及多變量t 分佈。所提出的模型具有高度的靈活性,它能為連續型長期資料的隨機效應同時獲取具偏斜及厚尾的資訊。在兩個便利的階層展式中,我們提出一個有效的AECM 演算法來計算參數的最大概似估計值。在這種模式下,我們也討論隨機效應和間斷的遺失值的預測研究。最後,我們透過二組實際的例子來闡述我們所提出的方法。

Linear mixed models (LMM) have been frequently used to analyze continuous longitudinal data arising particularly from a wide variety of biometrical studies. One important strength of LMM is attributed to the fact that it offers a great flexibility in modelling the between- and within-subjects correlations. In the framework of LMM, the random effects and error terms are routinely assumed to have a normal distribution due to their mathematical tractability and computational convenience. However, a serious departure of normality may suffer from lack of robustness and
subsequently lead to invalid inference and unreasonable estimates. This dissertation proposes a robust linear mixed modeling framework using the multivariate skew t distribution for dealing with these problems.

The multivariate skew normal distribution has been recognized to be a useful statistical tool for modeling multivariate data with asymmetric behaviors. The multivariate skew t distribution, a robust extension of skew normal, can better capture skewness and fat tails simultaneously. This dissertation reviews some basic properties and provides, respectively, a computational feasible EM-type algorithm to obtain the maximum likelihood estimates for these two skew distributions.

We consider an extension of linear mixed models by assuming a multivariate skew t distribution for the random effects and a multivariate t distribution for the error terms. The proposed model provides flexibility in capturing the effects of skewness and heavy tails simultaneously among continuous longitudinal data. We present an efficient AECM algorithm for the computation of maximum likelihood estimates of parameters on the basis of two convenient hierarchical formulations. The techniques for the prediction of random effects and intermittent missing values under this model are also investigated. The proposed methodologies are illustrated by analyzing two real data sets.

1. Introduction 1
2. Review of the MSN and the MST distributions 4
2.1. Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2. The multivariate skew normal distribution . . . . . . . . . . . . . . . 5
2.3. The multivariate skew t distribution . . . . . . . . . . . . . . . . . . . 8
3. Model and method 16
4. ML estimation via the AECM algorithm 20
5. Prediction of random effects and missing values 25
6. Application 27
6.1. The schizophrenia data . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2. The Framingham cholesterol data . . . . . . . . . . . . . . . . . . . . 34
7. Simulation study 39
8. Conclusion and future works 42
Appendix 43
A. Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
B. Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
C. Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
D. Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
E. Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
F. Parameter estimation for the MSN distribution using an EM-type algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
G. Proof of Lemma 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
H. Proof of Lemma 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
I. Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
J. Parameter estimation for the MST distribution using an EM-type approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
K. Proof of (18) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
L. Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
M. Proof of the observed information matrix for the STLMM . . . . . . . 62
References 68

[1] Arellano-Valle, R.B., Bolfarine, H. and Lachos, V.H. (2005). Skew-normal linear mixed models. Journal of Data Science 3, 415–438.
[2] Azzalini, A. and Dalla Valle, A. (1996). The multivariate skew-normal distribution. Biometrika 83, 715–726.
[3] Azzalini, A. and Capitaino, A. (1999). Statistical applications of the multivariate skew-normal distribution. Journal of the Royal Statistical Society, Series B 61, 579-602.
[4] Azzalini, A. and Capitaino, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t-distribution. Journal of the Royal Statistical Society, Series B 65, 367–389.
[5] Box, G.E.P. and Cox, D.R. (1964). An analysis of transformation. Journal of the Royal Statistical Society, Series B 26, 211–252.
[6] Casella, G. and Berger, R.L. (2002). Statistical Inference, second ed., Duxbury, California.
[7] Cnaan, A., Laird, N.M. and Slasor, P. (1997). Using the general linear mixed model to analyse unbalanced repeated measures and longitudinal data. Statistics in Medicine 16, 2349–2480.
[8] Dempster, A.P., Laird, N.M. and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B 39, 1–38.
[9] Genton, M.G. (2004). Skew-Elliptical Distributions and Their Applications. Chapman and Hall, New York.
[10] Ghosh, P., Branco, M.D. and Chakraborty, H. (2007). Bivariate random effect model using skew-normal distribution with application to HIV-RNA. Statistics in Medicine 26, 1255–1267.
[11] Gurka, M.J., Edwards, L.J., Muller, K.E. and Kupper, L.L. (2006). Extending the Box-Cox transformation to the linear mixed model. Journal of the Royal Statistical Society, Series B 169, 273–288.
[12] Healy, M.J.R. (1968). Multivariate normal plotting. Applied Statistics 17, 157–161.
[13] Hogan, J.W. and Laird, N.M. (1997). Mixture models for the joint distribution of repeated measures and event times. Statistics in Medicine 16, 239–257.
[14] Jara, A., Quintana, F. and Mart’ın, E.S. (2008). Linear mixed models with skew-elliptical distributions: A Bayesian approach. Computational Statistics and Data Analysis 52, 5033–5045.
[15] Lachos, V.H., Ghosh, P. and Arellano-Vallec, R.B. (2010). Likelihood based inference for skew-normal independent linear mixed models. Statistica Sinica 20, 303–322.
[16] Laird, N.M. (1988). Missing data in longitudinal studies. Statistics in Medicine 7, 305–315.
[17] Laird, N.M. and Ware, J.H. (1982). Random effects models for longitudinal data. Biometrics 38, 963–974.
[18] Lange, K. and Sinsheimer, J.S. (1993). Normal/independent distributions and their applications in robust regression. Journal of Computational and Graphical Statistics 2, 175–198.
[19] Lapierre, Y.D., Nai, N.V., Chauinard, G., Awad, A.G., Saxena, B., James, B., McClure, D.J., Bakish, D., Max, P., Manchanda, R., Beaudry, P., Bloom, D., Rotstein, E., Ancill, R., Sandor, P., Sladen-Dew, N., Durand, C., Chandrasena, R., Horn, E., Elliot, D., Das, M., Ravindra, A. and Matsos, G. (1990). A controlled dose-ranging study of remoxipride and haloperidol in schizophreniaDA Canadian multicentre trial. Acta Psychiatric Scandinavica 82, 72–76.
[20] Lin, T.I. and Lee, J.C. (2003) On modelling data from degradation sample paths over time. Australian and New Zealand Journal of Statistics 45, 257–270.
[21] Lin, T.I. and Lee, J.C. (2006). A robust approach to t linear mixed models applied to multiple sclerosis data. Statistics in Medicine 25, 1397–1412.
[22] Lin, T.I. and Lee, J.C. (2007). Bayesian analysis of hierarchical linear mixed modeling using the multivariate t distribution, Journal of Statistical Planning Inference 137, 484–495.
[23] Lin, T.I. and Lee, J.C. (2008). Estimation and prediction in linear mixed models with skew normal random effects for longitudinal data. Statistics in Medicine 27, 1490–1507.
[24] Lin, T.I., Lee, J.C. and Hsieh, W.J. (2007). Robust mixture modeling using the skew t distribution. Statistics and Computing 17, 81–92.
[25] Little, R.J.A. and Rubin, D.B. (2002). Statistical Analysis with Missing Data, second ed., John Wiley and Sons, New York.
[26] Liu, C.H. (1998). Information matrix computation from conditional information via normal approximation. Biometrika 85, 973-979.
[27] Liu, C.H. and Rubin, D.B. (1994). The ECME algorithm: a simple extension of EM and ECM with faster monotone convergence. Biometrika 81, 633-648.
[28] Liu, C.H. and Rubin, D.B. (1995). ML estimation of the t distribution using EM and its extensions, ECM and ECME. Statistca Sinica 5, 19–39.
[29] Louis, T.A. (1982). Finding the observed information matrix when using the EM alorithm. Journal of the Royal Statistical Society, Series B 44, 226-233.
[30] Meng, X.L. and Rubin, D.B. (1993). Maximum likelihood estimation via the ECM algorithm: a general framework. Biometrika 80, 267–78.
[31] Meng, X.L. and van Dyk, D. (1997). The EM algorithm – an old folk-song sung to a fast new tune. Journal of the Royal Statistical Society, Series B 59, 511–567.
[32] Pinheiro, J.C., Liu, C.H. and Wu, Y.N. (2001). Efficient algorithms for robust estimation in linear mixed-effects models using the multivariate t distribution. Journal of Computational and Graphical Statistics 10, 249–276.
[33] Rosa, G.J.M., Padovani, C.R. and Gianola, D. (2003). Robust linear mixed models with normal/independent distributions and Bayesian MCMC implementation. Biometrical Journal 45, 573–590.
[34] Rosa, G.J.M., Gianola, D. and Padovani, C.R. (2004). Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using MCMC. Journal of Applied Statistics 31, 855–873.
[35] Rubin, D.B. (1976). Inference and missing data. Biometrika 63, 581–592.
[36] Sammel, M., Lin, X. and Ryan, L. (1999). Multivariate linear mixed models for multiple outcomes. Statistics in Medicine 18, 2479–2492.
[37] Schluchter, M.D. (1988). Analysis of incomplete multivariate data using linear models with structured covariance matrices. Statistics in Medicine 7, 317–324.
[38] Shah, A., Laird, N. and Schoenfeld, D. (1997). A random-effects model for multiple characteristics with possibly missing data. Journal of the American Statistical Association 92, 775–779.
[39] Shih, W.J. and Quan, H. (1997). Testing for treatment differences with dropouts present in clinical trials – A composite approach Statistics in Medicine 16, 1225–1239.
[40] Verberk, G. and Lesaffre, E. (1996). A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91, 217–221.
[41] Wakefield, J.C., Smith, A.F.M., Racine-Pooh, A. and Gelfand, A.E. (1994). Bayesian analysis of linear and non-linear model by using Gibbs sampler. Applied Statistics 43, 201–221.
[42] Zhang, D. and Davidian, M. (2001). Linear mixed models with flexible distributions of random effects for longitudinal data. Biometrics 57, 795–802.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 2. 尤重道,農業用地移轉土地增值稅之免稅與處罰問題之研究(一),現代地政,第19卷第1期,1999年1月,頁10-13。
2. 1. 王春木,以共有土地分割分式逃避土地增值稅之問題探討,土地問題研究季刊,第4卷第1期,2005年3月,頁111-115。
3. 3. 尤重道,農業用地移轉土地增值稅之免稅與處罰問題之研究(二),現代地政,第19卷第2期,1999年2月,頁12-17。
4. 4. 尤重道,農業用地移轉土地增值稅之免稅與處罰問題之研究(三),現代地政,第19卷第3期,1999年3月,頁15-20。
5. 5. 尤重道,農業用地移轉土地增值稅之免稅與處罰問題之研究(四),現代地政,第19卷第4期,1999年4月,23-27頁。
6. 6. 尤重道,農地開放自由買賣前後土地稅制差異比較分析(一),現代地政,第235期,2001年1月,頁20-25。
7. 7. 尤重道,農地開放自由買賣前後土地稅制差異比較分析(二),現代地政,第236期,2001年2月,頁20-25。
8. 8. 尤重道,農地開放自由買賣前後土地稅制差異比較分析(三),現代地政,第237期,2001年3月,頁20-23。
9. 9. 尤重道,農地開放自由買賣前後土地稅制差異比較分析(四),現代地政,第238期,2001年4月,頁25-27。
10. 10.尤重道,農地開放自由買賣前後土地稅制差異比較分析(五),現代地政,第239期,2001年5月,頁35-38。
11. 11.尤重道,農地開放自由買賣前後土地稅制差異比較分析(六),現代地政,第240期,2001年6月,頁32-37。
12. 12.尤重道,農地開放自由買賣前後土地稅制差異比較分析(七),現代地政,第241期,2001年7月,頁18-24。
13. 13.李宛霖,違憲稅徵法第19條3項應即失效,稅務旬刊,第2081期,2009年7月,頁13-18。
14. 15.林旺根,論農業發展條例修正後農業用地之登記與稅務問題,人與地,第198期,2000年6月,頁4-26。
15. 16.林明昕,公法上不當得利之體系,月旦法學教室,第36期,2005年10月,頁81-92。