參考文獻
張家修(1994),重金屬污染的生物處理技術,化工,第四十一卷,第三期,52-59
蘇昭郎(1996),厭氧好氧RBC及活性污泥法去除營養鹽之特性研究,博士論文,國立中央大學環境工程研究所張鎮南、曾四恭、鄭幸雄、趙家珍、謝永旭、Zimpro Inc. (1995),高級廢水處理技術,滄海書局。
游勝傑(2001),併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究,博士論文,國立中央大學環境工程研究所陳國蔚(2004),重金屬鎘對A2O系統微生物反應動力特性及菌相之影響,碩士論文,國立暨南國際大學土木工程學系Arvin E. (1985). Observations supporting phosphate removal by biologically mediated chemical precipitation: A review, Wat. Sci. Technol., 15, 43-63.
Arican B., Yetis U., (2003). Nickel sorption by acclimatized activated sludge culture, Wat. Res., 37, 3508-3516.
Arican B., Gokcay F. Celal., Yetis U., (2003). Mechanistics of nickel sorption by sludge , Process Biochemistry., 37, 1307-1315.
Alberto C., Sara F., Fernando M., Julian G.. (1998). Effect of copper and zinc on the activated sludge bacteria growth kinetics., Wat. Res., 32, 1355-1366.
Bitton G. (1999) Wastewater microbiology. John Wiley & Sons, New York.
Blum D.J. and Speece R. E. (1992) The toxicity of organic chemicals to treatment processes. Water Sci Tech. 25, 23-31.
Brierly, C. L.(1990) Bioremediation of Metal-Contaminated Surface and Groundwaters. Geomicrobiology Journal 8:201-223.
Brune A., Ludwig W., and Schink B. (2002) Propionivibrio limicola sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacter pelophilus as Propionivibrio pelophilus comb. nov. and amended description of the genus propionivibrio International journal of Systematic and Evolutionary Microbiology. 52, 441-444
Cheng M. H., Patterson J. W. and Minear R. A., (1975) Heavy metals uptake by actived sludge. J. WPCF, Vol.47, No. 2, pp.362
Christine J. Kelly., Nattapong Tumsarij., Curtis A. Lajoie., (2004). Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system , Wat. Res., 38, 423-431
Chua, H., Yu, P.H.F., Sin, S.N. and Cheung, M.W.L. (1999). Sub-lethal effects of heavy metals on activated sludge microorganisms. Chemosphere 39(15), 2681-2692.
Comeau Y., Hall K.J., Hancock R.E. and Oldham W.K. (1986). Biological model for biological phosphorous removal , Wat. Res., 20(12), 1511-1517
Cronje G.L., Beehharry A.O., Wentzel M.C. and Ekama G.A. (2002). Active biomass in activated sludge mixed liquor, Wat. Res., 36, 439-444.
Dilek, Filiz B.; Gökçay, Celal F. (1996) Microbiology of activated sludge treating wastewater containing Ni(II) and Cr(VI) Water Science and Technology Volume: 34, Issue: 5-6, pp. 183-191
Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A. (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol. Jan;51(Pt 1):17-26.
Fang, Herbert H.P.; Zhang, Tong; Liu, Yan (2002) Characterization of an acetate-degrading sludge without intracellular accumulation of polyphosphate and glycogen Water Research Volume: 36, Issue: 13, July, pp. 3211-3218
Ghosh, M. M. and Zugger, P. D. (1979). Toxic effects of mercury on the activated sludge process. J. Water Pollution Control Federation 45, 424-433
Gregory R. Crocetti, Jillian F. Banfield, Jurg Keller, Philip L. Bond and Linda L. Blackall(2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology, 148, 3353-3364.
Ginestet P., Audic J. M., Urbain V., Block J. C. (1998) Estimation of Nitrifying Bacterial Activities by Measuring Oxygen Uptake in the Presence of the Metabolic Inhibitors Allylthiourea and Azide. Appl. Envir. Microbiol. 64: 2266-2268.
Juliastuti S.R., Baeyens J., Creemers C., Bixio D., Lodewyckx E., (2003). The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge, Journal of Hazardous Materials., B100, 271-283.
Hans-Jurgen (1990). Elimination of Nitrogen and Phosphorous by Microorganism, 450-454.
Hafez, N., Abdel-Razek, A.S. and Hafez, M.B. (1997). Accumulation of Some Heavy Metals on Aspergillus flavus. J. Chem. Tech. Biotechnol. 68,19-22
Hamdy, A.A. (2000). Biosorption of heavy metals by marine algae. Curr Microbiol. 41(4),232- 238.
Holt G. J., Krieg R. N., Sneath H. P., Staley T. J and Williams T. S. (1994) Bergey’s manual of determinative bacteriology. 9th Edition, Williams and Wilkins, Maryland.
Kappeller J. and Gujer W. (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling, Wat. Sci. Technol., 25(6), 125-139.
Katherine D. McMahon, Michael A. Dojka, Norman R. Pace, David Jenkins, and Jay D. Keasling(2002) Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl. Envir. Microbiol. 68 ,(10) 4971-4978.
Kim, D.W., Cha, D.K., Wang, J. and Huang, C.P. (2002). Heavy metal removal by activated sludge: influence of Nocardia amarae. Chemosphere 46(1), 137-142
Kortstee, G. J. J., K. J. Appeldoorn, C. F. C. Bonting, E. W. J. van Niel,and H. W. van Veen. (2000). Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal. Biochemistry(Moscow)65:332-340
Laurie A. Achenbach, Urania Michaelidou, Royce A. Bruce, Johanna Fryman and John D. Coates (2001) Dechloromonas agitate gen. nov., sp. Nov. and Dechlorosoma suillum gen. nov., sp. Nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position International journal of Systematic and Evolutionary Microbiology. 51, 527-533.
Lester, J. N., Harrison, R. M. and Perry, R. (1979) The balance of heavy metals through a sewage treatment works: I. Lead, Cadmium and Copper. Sci. Total Environ. 12, 13-23
Lim, Poh-Eng; Ong, Soon-An; Seng, Chye-Eng., Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater Water Research Volume: 36, Issue: 3, February, 2002, pp. 667-675
Macaskie, L.E. (1990) An immobilized cell bioprocess for removal of heavy metals from aqueous flows. Journal of Chemical Technology and Biotechnology, vol. 49, p. 330-334.
Madoni P., Davoli D. and Guglielmi L. (1999). Response of sour and aur to heavy metal contamination in activated sludge, Wat. Res., 33(10), 2459-2464.
Mejare, M. and Bulow, L.(2001) Metal binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, vol. 19, no. 2, p. 67-75.
Nakamura, K., A. Hiraishi, Y. Yoshimi, M. Kawaharasaki, K. Masuda, and Y. Kamagata. (1995) Microlunatus phosphovorus gen. nov., sp. Nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int. J. Syst. Bacteriol. 45:17-22.
Ong, Soon-An; Lim, Poh-Eng; Seng, Chye-Eng., Effects of Cu(II) and Cd(II) on the performance of sequencing batch reactor treatment system. Process Biochemistry., Volume: 40., 453-460.
Pansward T. and Polprucksa P. (1998). Specific oxygen uptake, nitrification and denitrification rates of a zinc-added anoxic/oxic activatedsludge process, Wat. Sci. Technol., 38(1), 133-139.
Poon, C. P. C. and Bhayani, K. H. (1971) Metal toxicity to sewage organisms. J. Sanitary Engineering Division, American Society of Civil Engineering 97(SA2), 161-169
Pradhan, S. and Rai, L.C. (2001). Biotechnological potential of Microcystis sp. in Cu, Zn and Cd biosorption from single and multimetallic systems. Biometals 14(1), 67-74.
Randall C.W., Barnard J.L. and Stensel H.D. (1992). Design and Retrofit of Wastewater Treatment Plants for Biological Nutriment Removal. Ch1-4, Technology Publishing Company, Inc.
Richard L.F. and Mclintock S.A. (1992). Potassium and magnesium requirements for enhanced biological phosphorous removal from wastewater, Wat. Sci. Technol., 26, 2203-2209.
Romero-Gonzalez, M.E., Williams, C.J. and Gardiner, P.H.E. (2001). A study of the mechanism of cadmium biosorption by dealginated seaweed waste. Environ. Sci. Tech. 35, 3025-3030.
Sag, Y. and Kutsal, T. (2000). Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal 6(2), 145-151.
Say, R., Yilmaz, N. and Denizli, A. (2004). Removal of chromium(VI) ions from synthetic solutions by the fungus Penicillium purpurogenum. Engineering in Life Sciences 4(3), 276-280.
Sedlak R.I. (1991). Phosphorous and Nitrogen Removal from Municipal Wastewater. 2nd Ed. The Soap and Detergent Association.
Sozen S., Cokgor U.E., Orhon D. and Henze M. (1998). Respirometric analysis of activated sludge behaviour-II.heterotrophic growth under aerobic and anoxic conditions, Wat. Res., 32(2), 476-488.
Strotmann U.J., Geldern A., Kuhn A., Gendig C. and Klein S. (1999). Evaluation of a respirometric test method to determine the heterotrophic yield coefficient of activated sludge bacteria, Chemosphere., 388(15), 3555-3570.
Su, M.C., Cha, D.K. and Anderson, P.R. (1995). Influence of selector technology on heavy metal removal by activated sludge: secondary effects of selector technology. Wat. Res. 29(3), 971-976
Tchobanoglous G. (1979). Wastewater Engineering : Treatment, Dispposal, Reuse. 2nd Ed. Metcalf & Eddy, Boston.
Tsai Y., You S., Pai T. Y., Chen K. W. (2006). Effect of Cd(II) on different bacterial specoes present in a single sludge activated sludge process for carbon and nutrient removal, Journal of Environmental Engineering, ASCE. 132, 173-180.
Vanrolleghem P.A., Spanjjers H., Petersen B., Ginestet P. and Takacs I. (1999). Estimating (combinations of) activated sludge model NO.1 parameters and components by respirometry, Wat. Sci. Technol., 39(1), 195-214.
Volesky, B.,(1994) Advances in Biosorption of Metals: Selection of Biomass Types. FEMS Microbiology Review, 14, 291
Wentzel M.C., Ubisi M.F. and Ekama G.A. (1998). Heterotrophic active biomass component of activated sludge mixed liquor, Wat. Sci. Technol., 37(4-5), 79-87.
You, S.J.; Hsu, C.L.; Chuang, S.H.; Ouyang, C.F. (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems Water Research Volume: 37, Issue: 10, May, pp. 2281-2290