跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳建凱
研究生(外文):Chen chien kai
論文名稱:重金屬銅、鋅、鉻對A2O與SBR活性污泥去氮能力之影響
論文名稱(外文):The effects of Copper, Zinc, Chromium on the nitrogen removal of the activated sludge of the A2O and SBR systems
指導教授:蔡勇斌蔡勇斌引用關係
指導教授(外文):Tsai Y. P.
學位類別:碩士
校院名稱:國立暨南國際大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:191
中文關鍵詞:活性污泥批次實驗重金屬
外文關鍵詞:Active sludge、batch test、heavy metal、copper、zinc、chromium、SAUR、SNUR
相關次數:
  • 被引用被引用:4
  • 點閱點閱:545
  • 評分評分:
  • 下載下載:118
  • 收藏至我的研究室書目清單書目收藏:0
在近年來經濟活動的快速成長,科學園區的擴張、科技發達及人類生活趨於都市化,使得廢(污)水量急遽攀升,台灣地區也以科技產業為世界有名,其含重金屬之未經處理的廢(污)水直接排入水體中,導致水庫、河川及土壤等遭受不同程度的污染,並造成毒害,目前陸續有利用微生物來處理含有重金屬廢(污)水的技術,但鮮少有文獻探討重金屬本身對微生物去除營養鹽或生化反應之影響。
本研究利用A2O、SBR模廠,進行重金屬突增負荷實驗,利用批次實驗來探討銅、鋅、鉻對活性污泥去氮能力之毒性抑制影響。
實驗中利用代表硝化作用之 SAUR批次實驗及代表脫硝作用之 SNUR批次實驗做探討,批次實驗添加重金屬銅(0、0.2、1、3、5、10 mg/L)、重金屬鋅(0、2、5、10、20、40 mg/L)、重金屬鉻(0、4、20、60、100、140 mg/L),以個別與混合(銅、鋅、鉻、銅+鋅、銅+鉻、鋅+鉻、銅+鋅+鉻)之批次實驗,探求其毒性抑制情形,研究之A2O系統之SRT採10天,SBR系統採15 天。
經由單一重金屬測試結果(SRT = 10 days),在SAUR顯示臨界毒性濃度銅離子在10 mg/L抑制率達90%,臨界毒性濃度鋅離子在40 mg/L抑制率達91%,鉻離子濃度在140 mg/L抑制率達77%,經SAUR與重金屬離子濃度之迴歸曲線,利用反應動力學推求其比抑制率,發現重金屬比抑制率順序為銅>鋅>鉻;在SNUR顯示臨界毒性濃度銅離子在5 mg/L抑制率達99%,鋅離子濃度在40 mg/L抑制率達66%,鉻離子濃度在140 mg/L抑制率達80%,經SNUR與重金屬離子濃度之迴歸曲線,利用反應動力學推求比抑制率,發現重金屬比抑制率為銅>鋅>鉻。
由SRT = 10 days(A2O)之SAUR、SNUR批次實驗結果可發現,對混合之毒性效應:銅、鋅(Cu+Zn)之毒性測試,與銅+鉻(Cu+Cr)與鉻、鋅(Zn+Cr)及銅、鋅、鉻(Cu+Zn+Cr)一樣,實驗中同時添加兩種或三種重金屬毒性抑制情形均有增加,SAUR、SNUR會受毒性強的重金屬抑制,但不會隨著重金屬共同混合添加,而產生加成作用。
經由單一重金屬測試結果(SRT=15 days),在SAUR顯示臨界毒性濃度銅離子在10 mg/L抑制率達94%,鋅離子濃度在40 mg/L抑制率達45%,臨界毒性鉻離子濃度在140 mg/L抑制率達96%,經SAUR與重金屬離子濃度之迴歸曲線,利用反應動力學推求比抑制率,發現重金屬比抑制率為銅>鋅>鉻;在SNUR顯示臨界毒性濃度銅離子在5 mg/L抑制率達99%,臨界毒性濃度鋅離子在40 mg/L抑制率達100%,臨界毒性濃度鉻離子在100 mg/L抑制率達99%。比抑制率順序為銅>鉻>鋅。
由SBR,SRT=15 days之SAUR、SNUR批次實驗結果可發現,對混合之毒性效應:銅、鋅(Cu+Zn)之毒性測試,與銅+鉻(Cu+Cr)與鉻、鋅(Zn+Cr)及銅、鋅、鉻(Cu+Zn+Cr)一樣,實驗中同時添加兩種或三種重金屬毒性抑制情形均有增加,SAUR、SNUR受抑制現象,與SRT = 10 days(A2O)系統相同,會以毒性強的重金屬抑制,但不會隨著重金屬共同混合添加,而產生加成作用。
A2O(SRT=10 days)與SBR(SRT=15 days)之SAUR與銅、鋅、鉻離子關係,SBR(SRT=15 days) 之SAUR幾乎大於A2O(SRT=10 days),對其毒性還有很高的抵抗能力,顯示硝化菌生長所需之世代期較長,以較高的污泥齡操作,可以使系統保有一定的硝化菌比例,對毒性抑制有較高抵抗能力。
A2O(SRT=10 days)與SBR(SRT=15 days)之SNUR與銅、鋅、鉻離子關係,SBR(SRT=15 days) 之SNUR也皆較A2O(SRT=10 days)高,對其毒性還有很高的抵抗能力,可以使系統保有一定的脫硝菌比例,也對系統整體之脫硝速率增加,脫硝能力也較佳,且對毒性抑制有較高抵抗能力。
In recent year, the rapid growth of economic activities, expanding the science park zone, developing technology and urbanization increase the waste water quantity. Taiwan is famous for his technical industry, but parts of untreated waste water which contains heavy metals is poured into and poisoned the water body of reservoirs, rivers and soil in different levels. The techniques which use microorganisms to treat heavy metals contained wastewater are developed continually, but heavy metals effect on the removal abilities of nutrition by microorganisms and its biochemical reactions are seldom found in related researches.
A2O and SBR pilot plants are applied to precede loading experiments to test the copper, zinc, chromium toxicity inhibition effects on the nitrogen removal abilities of activated sludge by batch tests.
The SAUR batch test which represents nitrification and the SNUR batch test which represents denitrification are used. The heavy metal copper with the concentrations of 0, 0.2, 1, 3, 5, 10 mg/L , the heavy metal zinc with 0, 2, 5, 10, 20, 40 mg/L and the heavy metal chromium with 0, 4, 20, 60, 100, 140 mg/L separately are added in these tests respectively. The individual (copper, zinc and chromium) and mixture of (the, copper + zinc, copper + chromium, zinc + chromium, copper + zinc + chromium) batch tests are utilized to test the toxicity inhibition behaviors for SRT with 10 days and 15 days for.A2O and SBR systems respectively
The SAUR batch tests show that the inhibition rate is 90%, 91% and 77%, while the critical toxicity concentrations of 10, 40 and 140 mg/L for copper, zinc and chromium ion respectively are found in the single heavy metal (SRT =10 days) test. The specific inhibition rate is derived from the reaction kinetics through the regression curves of SAUR with the concentration of heavy metal ion. The order of specific inhibition rates are found to be copper>zinc >chromium.
The SNUR batch tests show that the inhibition rate is 99%, 66% and 40 mg/L, while the critical toxicity concentrations of 5 mg/L, 40 mg/L and 140 mg/L for copper, zinc and chromium ion respectively are found. The specific inhibition rates are found to be copper>zinc >chromium.
From the results of SAUR and SNUR batch tests in A2O system (SRT =10 days), the mixture toxicity effects of copper plus zinc (Cu +Zn), copper plus chromium(Cu +Cr), chromium plus zinc (Zn +Cr), and copper plus zinc plus chromium (Cu +Zn +Cr) are the same. The toxicity inhibition is increasing when two or three heavy metals are added in the experiments,. The inhibited phenomenon of SAUR and SNUR are inhibited by the heavy metal which toxicity is the strongest, but additive effect is not found when various heavy metals are added.
While the test result of single heavy metal with SRT =15 days, the SAUR batch tests show that the inhibition rate is 94%, 45% and 96%, while the critical toxicity concentrations of 10, 40 and 140 mg/L for copper, zinc and chromium ion respectively are found.. The order for the specific inhibition rates are found to be copper>zinc >chromium.
. The SNUR batch tests show that the inhibition rate is 99%,100% and 99%, while the critical toxicity concentration of 5, 40 and 140 mg/L for copper, zinc and chromium ion respectively. The order for the specific inhibition rates are found to be copper> chromium> zinc.
From the results of SAUR and SNUR batch tests in A2O system (SRT =15 days), the mixed toxicity effects of copper plus zinc (Cu +Zn), copper plus chromium(Cu +Cr), chromium plus zinc (Zn +Cr), and copper plus zinc plus chromium (Cu +Zn +Cr) are the same. The toxicity inhibition is increasing when two or three heavy metals are added. The inhibited phenomenon of SAUR and SNUR are inhibited by the heavy metal which toxicity is the strongest, but additive effect is not found when various heavy metals are added.
From the comparison between the SAUR of A2O (SRT =10 days) and SBR (SRT =15 days) systems for the inhibition of copper, zinc, chromium ion, SBR (SRT=15 days) is greater than A2O (SRT=10 days). The result shows that the nitrifying bacteria (Nitrosomonas communis) need longer growth generation while longer SRT is operated.
From the comparison between the SNUR of A2O (SRT =10 days) and SBR (SRT =15 days) systems for the inhibition of copper, zinc, chromium ion, SBR (SRT=15 days) is greater than A2O (SRT=10 days) and the toxicity resistant ability of the denitrifying bacteria in SBR (SRT=15 days) is still high. The result shows that SBR system contains certain ratio of denitrifying bacteria which create better denitrification rate and higher toxic resistant ability.
目 錄
中文摘要
英文摘要
目錄
圖目錄
表目錄
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與研究重點 3
1.3 研究架構 3

第二章 文獻回顧 5
2.1 生物脫氮除磷理論 5
2.1.1 生物脫氮 5
2.1.1.1厭氧相之生化反應機制 7
2.1.1.2缺氧相生化反應機制及其影響因素 10
2.1.1.3好氧相生化反應機制及其影響因素 15
2.1.2併同除碳、氮、磷之處理程序發展與應用 24
2.2活性污泥處理重金屬廢水之研究及機制 30
2.2.1微生物處理重金屬機制 30
2.2.1.1生物轉換 31
2.2.1.2胞外吸附 31
2.2.1.3胞內累積 32
2.3重金屬對於活性污泥之影響 33
2.4以批次實驗原理與應用探討重金屬對活性污泥影響 37
2.4.1 批次實驗之原理 37
2.4.2 以批次實驗探討重金屬對活性污泥影響 38
2.4.3 批次實驗應用之限制 42
2.5化學物質相互作用與反應方程式 43

第三章 研究設備與方法 46
3.1 研究設備 46
3.1.1 A2O各單元設備 47
3.1.2 SBR各單元設備 48
3.1.3 批次實驗反應槽 48
3.1.4 實驗分析設備 49
3.2 研究方法 50
3.2.1 A2O系統模廠操作條件與基質組成成份 50
3.2.2 SBR系統模廠操作條件與基質組成成份 51
3.2.3 批次實驗設計 53
3.2.3.1 重金屬對氨氮利用率(AUR)反應特性之實驗設計 55
3.2.3.2 重金屬對氨氮利用率(NUR)反應特性之實驗設計 56

第四章 結果與討論 59
4.1 A2O程序之處理特性 59
4.1.1營養源去除特性 59
4.1.2 A2O活性污泥系統處理碳之特性 60
4.1.3 A2O活性污泥系統處理氮之特性 61
4.1.4 比氨氮利用率(SAUR)批次實驗 63
4.1.4.1 SAUR (Cu) 批次實驗 64
4.1.4.2 SAUR (Zn) 批次實驗 66
4.1.4.3 SAUR (Cr) 批次實驗 68
4.1.4.4 SAUR (Cu+Zn) 批次實驗 71
4.1.4.5 SAUR (Cu+ Cr) 批次實驗 72
4.1.4.6 SAUR (Zn+ Cr) 批次實驗 74
4.1.4.7 SAUR (Cu+ Zn+ Cr) 批次實驗 75
4.1.5 綜合比較 77
4.1.5.1 SAUR抑制比率之綜合比較 77
4.1.5.2 比抑制率之綜合比較 80
4.1.6 比硝酸鹽利用率(SNUR)批次實驗 80
4.1.6.1 SNUR (Cu) 批次實驗 81
4.1.6.2 SNUR (Zn) 批次實驗 83
4.1.6.3 SNUR (Cr) 批次實驗 85
4.1.6.4 SNUR (Cu+Zn) 批次實驗 88
4.1.6.5 SNUR (Cu+ Cr) 批次實驗 89
4.1.6.6 SNUR (Zn+ Cr) 批次實驗 91
4.1.6.7 SNUR (Cu+ Zn+ Cr) 批次實驗 92
4.1.7 綜合比較 94
4.1.7.1 SNUR抑制比率之綜合比較 94
4.1.7.2 比抑制率之綜合比較 97
4.1.8比抑制率之SAUR與SNUR綜合比較 98
4.2 SBR程序之處理特性 99
4.2.1營養源去除特性 99
4.2.2 B-SBR活性污泥系統處理碳之特性 101
4.2.3 B-SBR活性污泥系統處理氮之特性 102
4.2.4 B-SBR活性污泥系統處理磷之特性 104
4.2.5 比氨氮利用率(SAUR)批次實驗 105
4.2.5.1 SAUR (Cu) 批次實驗 105
4.2.5.2 SAUR (Zn) 批次實驗 107
4.2.5.3 SAUR (Cr) 批次實驗 109
4.2.5.4 SAUR (Cu+Zn) 批次實驗 112
4.2.5.5 SAUR (Cu+ Cr) 批次實驗 113
4.2.5.6 SAUR (Zn+ Cr) 批次實驗 115
5.2.5.7 SAUR (Cu+ Zn+ Cr) 批次實驗 116
4.2.6 綜合討論 118
4.2.6.1 SNUR抑制比率之綜合比較 118
4.2.6.2 比抑制率之綜合比較 121
4.2.7 比硝酸鹽利用率(SNUR)批次實驗 121
4.2.7.1 SNUR (Cu) 批次實驗 122
4.2.7.2 SNUR (Zn) 批次實驗 124
4.2.7.3 SNUR (Cr) 批次實驗 127
4.2.7.4 SNUR (Cu+Zn) 批次實驗 129
4.2.7.5 SNUR (Cu+ Cr) 批次實驗 130
4.2.7.6 SNUR (Zn+ Cr) 批次實驗 132
4.2.7.7 SNUR (Cu+ Zn+ Cr) 批次實驗 134
4.2.8 綜合討論 135
4.2.8.1 SNUR抑制比率之綜合比較 135
4.2.8.2 比抑制率之綜合比較 138
4.2.9 比抑制率之SAUR與SNUR綜合比較 138
4.3 A2O與SBR之綜合比較 139
4.3.1 A2O與SBR之SAUR綜合比較 140
4.3.1.1 A2O與SBR之SAUR與銅離子綜合比較 140
4.3.1.2 A2O與SBR之SAUR與鋅離子綜合比較 141
4.3.1.3 A2O與SBR之SAUR與銅離子綜合比較 142
4.3.1.4 A2O與SBR之SAUR與銅、鋅、鉻混合離子綜合比較 143
4.3.2 A2O與SBR之SNUR綜合比較 145
4.3.2.1 A2O與SBR之SNUR與銅離子綜合比較 145
4.3.2.2 A2O與SBR之SNUR與鋅離子綜合比較 146
4.3.2.3 A2O與SBR之SNUR與銅離子綜合比較 147
4.3.2.4 A2O與SBR之SNUR與銅、鋅、鉻混合離子綜合比較 148
4.3.3比抑制率之A2O與SBR綜合比較 151

第五章 結論與建議 152
5.1 結論 152
5.2 建議 157
參考文獻 158
附錄 164
參考文獻

張家修(1994),重金屬污染的生物處理技術,化工,第四十一卷,第三期,52-59

蘇昭郎(1996),厭氧好氧RBC及活性污泥法去除營養鹽之特性研究,博士論文,國立中央大學環境工程研究所

張鎮南、曾四恭、鄭幸雄、趙家珍、謝永旭、Zimpro Inc. (1995),高級廢水處理技術,滄海書局。

游勝傑(2001),併同生物膜與活性污泥程序之硝化及脫硝攝磷特性研究,博士論文,國立中央大學環境工程研究所

陳國蔚(2004),重金屬鎘對A2O系統微生物反應動力特性及菌相之影響,碩士論文,國立暨南國際大學土木工程學系

Arvin E. (1985). Observations supporting phosphate removal by biologically mediated chemical precipitation: A review, Wat. Sci. Technol., 15, 43-63.

Arican B., Yetis U., (2003). Nickel sorption by acclimatized activated sludge culture, Wat. Res., 37, 3508-3516.

Arican B., Gokcay F. Celal., Yetis U., (2003). Mechanistics of nickel sorption by sludge , Process Biochemistry., 37, 1307-1315.

Alberto C., Sara F., Fernando M., Julian G.. (1998). Effect of copper and zinc on the activated sludge bacteria growth kinetics., Wat. Res., 32, 1355-1366.

Bitton G. (1999) Wastewater microbiology. John Wiley & Sons, New York.

Blum D.J. and Speece R. E. (1992) The toxicity of organic chemicals to treatment processes. Water Sci Tech. 25, 23-31.

Brierly, C. L.(1990) Bioremediation of Metal-Contaminated Surface and Groundwaters. Geomicrobiology Journal 8:201-223.

Brune A., Ludwig W., and Schink B. (2002) Propionivibrio limicola sp. nov., a fermentative bacterium specialized in the degradation of hydroaromatic compounds, reclassification of Propionibacter pelophilus as Propionivibrio pelophilus comb. nov. and amended description of the genus propionivibrio International journal of Systematic and Evolutionary Microbiology. 52, 441-444

Cheng M. H., Patterson J. W. and Minear R. A., (1975) Heavy metals uptake by actived sludge. J. WPCF, Vol.47, No. 2, pp.362

Christine J. Kelly., Nattapong Tumsarij., Curtis A. Lajoie., (2004). Assessing wastewater metal toxicity with bacterial bioluminescence in a bench-scale wastewater treatment system , Wat. Res., 38, 423-431

Chua, H., Yu, P.H.F., Sin, S.N. and Cheung, M.W.L. (1999). Sub-lethal effects of heavy metals on activated sludge microorganisms. Chemosphere 39(15), 2681-2692.

Comeau Y., Hall K.J., Hancock R.E. and Oldham W.K. (1986). Biological model for biological phosphorous removal , Wat. Res., 20(12), 1511-1517

Cronje G.L., Beehharry A.O., Wentzel M.C. and Ekama G.A. (2002). Active biomass in activated sludge mixed liquor, Wat. Res., 36, 439-444.

Dilek, Filiz B.; Gökçay, Celal F. (1996) Microbiology of activated sludge treating wastewater containing Ni(II) and Cr(VI) Water Science and Technology Volume: 34, Issue: 5-6, pp. 183-191

Eckert B, Weber OB, Kirchhof G, Halbritter A, Stoffels M, Hartmann A. (2001) Azospirillum doebereinerae sp. nov., a nitrogen-fixing bacterium associated with the C4-grass Miscanthus. Int J Syst Evol Microbiol. Jan;51(Pt 1):17-26.

Fang, Herbert H.P.; Zhang, Tong; Liu, Yan (2002) Characterization of an acetate-degrading sludge without intracellular accumulation of polyphosphate and glycogen Water Research Volume: 36, Issue: 13, July, pp. 3211-3218

Ghosh, M. M. and Zugger, P. D. (1979). Toxic effects of mercury on the activated sludge process. J. Water Pollution Control Federation 45, 424-433

Gregory R. Crocetti, Jillian F. Banfield, Jurg Keller, Philip L. Bond and Linda L. Blackall(2002) Glycogen-accumulating organisms in laboratory-scale and full-scale wastewater treatment processes. Microbiology, 148, 3353-3364.

Ginestet P., Audic J. M., Urbain V., Block J. C. (1998) Estimation of Nitrifying Bacterial Activities by Measuring Oxygen Uptake in the Presence of the Metabolic Inhibitors Allylthiourea and Azide. Appl. Envir. Microbiol. 64: 2266-2268.

Juliastuti S.R., Baeyens J., Creemers C., Bixio D., Lodewyckx E., (2003). The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge, Journal of Hazardous Materials., B100, 271-283.

Hans-Jurgen (1990). Elimination of Nitrogen and Phosphorous by Microorganism, 450-454.

Hafez, N., Abdel-Razek, A.S. and Hafez, M.B. (1997). Accumulation of Some Heavy Metals on Aspergillus flavus. J. Chem. Tech. Biotechnol. 68,19-22

Hamdy, A.A. (2000). Biosorption of heavy metals by marine algae. Curr Microbiol. 41(4),232- 238.

Holt G. J., Krieg R. N., Sneath H. P., Staley T. J and Williams T. S. (1994) Bergey’s manual of determinative bacteriology. 9th Edition, Williams and Wilkins, Maryland.

Kappeller J. and Gujer W. (1992). Estimation of kinetic parameters of heterotrophic biomass under aerobic conditions and characterization of wastewater for activated sludge modelling, Wat. Sci. Technol., 25(6), 125-139.

Katherine D. McMahon, Michael A. Dojka, Norman R. Pace, David Jenkins, and Jay D. Keasling(2002) Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal. Appl. Envir. Microbiol. 68 ,(10) 4971-4978.

Kim, D.W., Cha, D.K., Wang, J. and Huang, C.P. (2002). Heavy metal removal by activated sludge: influence of Nocardia amarae. Chemosphere 46(1), 137-142

Kortstee, G. J. J., K. J. Appeldoorn, C. F. C. Bonting, E. W. J. van Niel,and H. W. van Veen. (2000). Recent developments in the biochemistry and ecology of enhanced biological phosphorus removal. Biochemistry(Moscow)65:332-340

Laurie A. Achenbach, Urania Michaelidou, Royce A. Bruce, Johanna Fryman and John D. Coates (2001) Dechloromonas agitate gen. nov., sp. Nov. and Dechlorosoma suillum gen. nov., sp. Nov., two novel environmentally dominant (per)chlorate-reducing bacteria and their phylogenetic position International journal of Systematic and Evolutionary Microbiology. 51, 527-533.

Lester, J. N., Harrison, R. M. and Perry, R. (1979) The balance of heavy metals through a sewage treatment works: I. Lead, Cadmium and Copper. Sci. Total Environ. 12, 13-23

Lim, Poh-Eng; Ong, Soon-An; Seng, Chye-Eng., Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater Water Research Volume: 36, Issue: 3, February, 2002, pp. 667-675

Macaskie, L.E. (1990) An immobilized cell bioprocess for removal of heavy metals from aqueous flows. Journal of Chemical Technology and Biotechnology, vol. 49, p. 330-334.

Madoni P., Davoli D. and Guglielmi L. (1999). Response of sour and aur to heavy metal contamination in activated sludge, Wat. Res., 33(10), 2459-2464.
Mejare, M. and Bulow, L.(2001) Metal binding proteins and peptides in bioremediation and phytoremediation of heavy metals. Trends in Biotechnology, vol. 19, no. 2, p. 67-75.
Nakamura, K., A. Hiraishi, Y. Yoshimi, M. Kawaharasaki, K. Masuda, and Y. Kamagata. (1995) Microlunatus phosphovorus gen. nov., sp. Nov., a new gram-positive polyphosphate-accumulating bacterium isolated from activated sludge. Int. J. Syst. Bacteriol. 45:17-22.

Ong, Soon-An; Lim, Poh-Eng; Seng, Chye-Eng., Effects of Cu(II) and Cd(II) on the performance of sequencing batch reactor treatment system. Process Biochemistry., Volume: 40., 453-460.

Pansward T. and Polprucksa P. (1998). Specific oxygen uptake, nitrification and denitrification rates of a zinc-added anoxic/oxic activatedsludge process, Wat. Sci. Technol., 38(1), 133-139.

Poon, C. P. C. and Bhayani, K. H. (1971) Metal toxicity to sewage organisms. J. Sanitary Engineering Division, American Society of Civil Engineering 97(SA2), 161-169

Pradhan, S. and Rai, L.C. (2001). Biotechnological potential of Microcystis sp. in Cu, Zn and Cd biosorption from single and multimetallic systems. Biometals 14(1), 67-74.

Randall C.W., Barnard J.L. and Stensel H.D. (1992). Design and Retrofit of Wastewater Treatment Plants for Biological Nutriment Removal. Ch1-4, Technology Publishing Company, Inc.

Richard L.F. and Mclintock S.A. (1992). Potassium and magnesium requirements for enhanced biological phosphorous removal from wastewater, Wat. Sci. Technol., 26, 2203-2209.

Romero-Gonzalez, M.E., Williams, C.J. and Gardiner, P.H.E. (2001). A study of the mechanism of cadmium biosorption by dealginated seaweed waste. Environ. Sci. Tech. 35, 3025-3030.

Sag, Y. and Kutsal, T. (2000). Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochemical Engineering Journal 6(2), 145-151.

Say, R., Yilmaz, N. and Denizli, A. (2004). Removal of chromium(VI) ions from synthetic solutions by the fungus Penicillium purpurogenum. Engineering in Life Sciences 4(3), 276-280.

Sedlak R.I. (1991). Phosphorous and Nitrogen Removal from Municipal Wastewater. 2nd Ed. The Soap and Detergent Association.

Sozen S., Cokgor U.E., Orhon D. and Henze M. (1998). Respirometric analysis of activated sludge behaviour-II.heterotrophic growth under aerobic and anoxic conditions, Wat. Res., 32(2), 476-488.

Strotmann U.J., Geldern A., Kuhn A., Gendig C. and Klein S. (1999). Evaluation of a respirometric test method to determine the heterotrophic yield coefficient of activated sludge bacteria, Chemosphere., 388(15), 3555-3570.

Su, M.C., Cha, D.K. and Anderson, P.R. (1995). Influence of selector technology on heavy metal removal by activated sludge: secondary effects of selector technology. Wat. Res. 29(3), 971-976

Tchobanoglous G. (1979). Wastewater Engineering : Treatment, Dispposal, Reuse. 2nd Ed. Metcalf & Eddy, Boston.

Tsai Y., You S., Pai T. Y., Chen K. W. (2006). Effect of Cd(II) on different bacterial specoes present in a single sludge activated sludge process for carbon and nutrient removal, Journal of Environmental Engineering, ASCE. 132, 173-180.

Vanrolleghem P.A., Spanjjers H., Petersen B., Ginestet P. and Takacs I. (1999). Estimating (combinations of) activated sludge model NO.1 parameters and components by respirometry, Wat. Sci. Technol., 39(1), 195-214.

Volesky, B.,(1994) Advances in Biosorption of Metals: Selection of Biomass Types. FEMS Microbiology Review, 14, 291

Wentzel M.C., Ubisi M.F. and Ekama G.A. (1998). Heterotrophic active biomass component of activated sludge mixed liquor, Wat. Sci. Technol., 37(4-5), 79-87.

You, S.J.; Hsu, C.L.; Chuang, S.H.; Ouyang, C.F. (2003) Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems Water Research Volume: 37, Issue: 10, May, pp. 2281-2290
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top