跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/21 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮慶全
研究生(外文):Khanh-Toan Nguyen
論文名稱:利用計算流體力學模擬玻璃微珠於氣、液、固三相流體化床之流力特性
論文名稱(外文):Simulation of Hydrodynamic Characteristics of Glass Beads in Gas-Liquid-Solid Three Phase Fluidized Beds by Computational Fluid Dynamics
指導教授:黃世疇
指導教授(外文):Shyh-Chour Huang
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:精密模具與機械產研碩士外國專班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:英文
論文頁數:82
中文關鍵詞:相流化床床的降壓床的伸展
外文關鍵詞:Fluidized bedBed pressure dropGas holdupLiquid holdupBed expansionThree-phase fluidized bed
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1177
  • 評分評分:
  • 下載下載:109
  • 收藏至我的研究室書目清單書目收藏:0
本研究係利用計算流體動力學的模型,計算三相流化床的流動力學。研究中,我們已試著計算三相流化床複雜的流動力學:床的伸展、兩相停滯、床的降壓、流化床的行為與速度數據圖表。這個模型的開發,是利用商業版的CFD code Fluent 6.2. 用來激發的阻力模型,則是用Gidaspow 模型。分析重點則在於高為1.5公尺,直徑0.1公尺的圓柱。Euler-Euler多階段流動方法,有能力預測氣體-液體-固體流化床的整體表現。結果顯示液體阻塞,隨著液體進入的速度增加而增加。氣體的阻塞,則是隨著氣體流率增加而增加,且隨著液體流動比率的增加而減少。
A computational fluid dynamics model used to understand the hydrodynamics of three phase fluidized bed is presented in this paper. In the present investigation, an attempt has been made to study the complex hydrodynamics of three phase fluidized bed; bed expansion, holdup of two phases, bed pressure drop, fluidized bed voidage and velocity profile. The model is developed by using the commercial CFD code Fluent 6.2. The drag model for simulating is used Gidaspow model. The main focus on for analyzing the results is on the column with 1.5m height and diameter 0.1m. Euler-Euler multiphase flow approach is capable of predicting the overall performance of gas-liquid-solid fluidzed bed. The results obtained show that the liquid holdup increased with the inlet liquid velocity, gas holdup increased with the flow rate of gas and decreased with an increase in the liquid flow rate.
Contents

Abstract ii
Acknowledgments iii
Contents iv
List of Tables vii
List of Figures viii
List of Symbols ix
Chapter1 Introduction 1
1.1 A brief introduction about gas–liquid–solid fluidized bed 1
1.2 Advantages of three phase fluidized bed 2
1.3 Disadvantages of fluidized bed 2
1.4 Application of three phase fluidized bed 3
1.5 Modes of operation of gas-liquid-solid fluidized bed and flow regimes 4
1.6 Variables affect the quality of fluidization 4
1.7 Complexion of three phase system 5
1.8 Objectives 6
1.9 Outline of the Thesis 6
Chapter 2 Literature Review 7
2.1 Experimental investigation 7
2.2 CFD modeling investigation 9
Chapter 3 CFD Modeling of Three Phase Fluidized Bed 11
3.1 Computational fluid dynamics (CFD) 11
3.2 Advantages of CFD 11
3.3 Application of CFD 12
3.4 Limitations of CFD 13
3.5 Discretization methods in CFD 13
3.5.1 Finite difference method (FDM) 14
3.5.2 Finite volume method (FVM) 14
3.5.3 Finite element method (FEM) 15
3.5.4 Comparison of three methods 15
3.6 CFD solution procedure 16
3.6.1 Pre-processor 17
3.6.2 Solver 19
3.6.3 Post-processing 21
3. 7 Approaches for numerical calculations of multiphase flow 22
3.7.1 Euler-Lagrange approach 23
3.7.2 Euler-Euler approach 23
3.7.2.1 Volume of fluid method (VOF) 24
3.7.2.2 Mixture model 25
3.7.2.3 The Euler model 25
3.8 Guidelines for multiphase models 25
3.9 Computational flow model 26
3.9.1 Conservation equations 27
3.9.2 Closure law for turbulence 28
3.9.3 Closure law for solid pressure 29
3.9.4 Closure law for inter-phase momentum exchange 30
3.9.4.1 Liquid-solid inter-phase drag force (FD,ls) 30
3.9.4.2 Gas-liquid inter-phase drag force (FD,gl) 30
3.9.4.3 Gas-solid inter-phase drag force (FD,gs) 30
Chapter 4 Numerical Methodology 33
4.1 Mesh created in GAMBIT 33
4.2 Selection of models for simulation 34
4.3 Boundary and initial conditions 35
4.4 Solution techniques 37
Chapter 5 Result and Discussion 40
5.1 Phase dynamics 41
5.2 Bed expansion 43
5.3 Liquid holdup 46
5.4 Gas holdup 50
5.5 Bed voidage 53
5.6 Pressure drop 55
5. 7 Change in velocity profile with simulation time 57
Chapter 6 Conclusion and future perspective of the work 62
6.1 Conclusions 62
6.2 Future perspective of the work 63
References 64
[1] Gibilaro, L. G., 2001. Fluidization Dynamics. Butterworth-Heinemann, Washington.
[2] Krishna, R., J.W.A. de Swart, J. Ellenberger., 1997, “Gas Holdup in Slurry Bubble Columns: Effect of Column Diameter and Slurry Concentrations”, AIChE J 43, pages 311–316.
[3] Trambouze, P., Euzen, J., 2004. Chemical Reactors, From Design to Operation. Technip, Paris.
[4] Epstein, N., 1981, “Three-Phase Fluidization: Some knowledge gaps”, Can.J.Chem.Engg 59, pages 649-757.
[5] Briens, L. A., Briens. C. L., 1997, “Minimum liquid fluidization velocity in gas-liquid-solid fluidized beds of low-density particles”, A.I.Ch.E. J. 43, pages 1180–1189.
[6] Comte,M. P., Bastoul, D., Hebrard, G., Roustan, M., Lazarova, V., 1997, “Hydrodynamics of a three-phase fluidized bed the inverse turbulent bed”, Chemical Engineering Science 52, pages 3971– 3977.
[7] Kiared, K., Larachi, F., Chaouki, J., Guy, C., 1999, “Mean and turbulent particle velocity in the fully developed region of a three-phase fluidized bed”, Chemical Engineering & Technology 22, pages 683–689.
[8] Feng Wei., Wen Jianping., 2005, “Local hydrodynamics of gas-liquid-nanoparticles three-phase fluidization”, Chemical Engineering Science 60, pages 6887-6898.
[9] Jena, H. M., Sahoo, B.K,. 2008, “Characterization of hydrodynamic properties of a gas-liquid-solid three-phase fluidized bed with regular shape spherical glass bead particles”, Chemical Engineering Science 145, pages 50-56.
[10] Sivalingam, A,. 2009, “Effect of fluid flow rates on hydrodynamic characteristics of co-current three phase fluidized beds with spherical glass bead particles”, International Journal of ChemTech Research Vol.1, No.4, pages 851-855.
[11] Bahary, M., 1994, “Experimental and computational studies of hydrodynamics in three-phase and two-phase fluidised beds”, Ph.D. Thesis, Illinois Institute of Technology, Chicago.
[12] Grevskott, S., Sannas, B.H., Dudukovic, M.P., Hjarbo, K.W., Svendsen, H.F,.1996, “Liquid circulation, bubble size distributions, and solids movement in two and three-phase bubble columns”, Chemical Engineering Science 51, pages 1703–1713.
[13] Mitra-Majumdar, D., Farouk, B., Shah, Y.T., 1997, “Hydrodynamic modeling of three- phase flows through a vertical column”, Chemical Engineering Science 52, pages 4485 –4497.
[14] Padial, N.T., Van der Heyden, W.B., Rauenzahn, R.M., Yarbro, S.L., 2000, “Three- dimensional simulation of a three phase draft tube bubble column”, Chemical Engineering Science 55, pages 3261–3273.
[15] Joshi, J.B., 2001, “Computational flow modelling and design of bubble column reactors”, Chemical Engineering Science 56, pages 5893–5933.
[16] Matonis, D., Gidaspow, D., Bahary, M., 2002, “CFD simulation of flow and turbulence in a slurry bubble column”, A.I.Ch.E. Journal 48, pages 1413–1429.
[17] Feng, W., Wen, J., Fan, J., Yuan, Q., Jia, X., Sun, Y., 2005, “Local hydrodynamics of gas–liquid–nano particles three-phase fluidization”, Chemical Engineering Science 60, pages 6887–6898.
[18] Panneerselvam, R., Savithri, S., Surender, G.D., 2009, “CFD simulation of hydrodynamics of gas-liquid-solid fluidized bed reactor”, Chemical Engineering Science 64, pages 1119–1135.
[19] Bakker, A., 2002. Fluent introductory notes. Fluent Inc, Lebanon.
[20] Jena, H.M., 2009, “Hydrodynamics of gas-liquid-solid fluidized and semi-fluidized beds”, Ph.D thesis. National institute of technology, Rourkela.
[21] Tu, J., Yeoh, G.H., Liu, C., 2008. Computational Fluid Dynamics a Practical Approach. Butterworth-Heinemann, Washington.
[22] Fluent 6.3 Documentation., 2005. Fluent Inc.
[23] ANSYS FLUENT 12.1 Theory Guide., 2010.
[24] Anderson, J.D., 1995.Computational Fluid Dynamics. McGraw Hill, New York.
[25] Sato, Y., Sadatomi, M., Sekoguchi, K., 1981, “Momentum and heat transfer in two- phase bubble flow”, International Journal of Multiphase Flo7, pages 167–177.
[26] Jakobsen, H.A., Grevskott,S., Svendsen,H.F., 1997, “Modeling of vertical bubble-driven flows”, Industrial and Engineering Chemistry Research 36, pages 4052– 4074.
[27] Gidaspow, D., 1994. Multiphase Flow and Fluidization: Continuum and Kinetic Theory Descriptions. Academic Press, New York.
[28] Bouillard, J.X., Lyczkowski, R.W., Gidaspow, D., 1989, “Porosity distribution in a fluidised bed with an immersed obstacle”, A.I.Ch.E. Journal 35, pages 908–922.
[29] Wen, C.Y., Yu, Y.H., 1966, “Mechanics of fluidization”, Chemical Engineering Progress Symposium Series 62, pages 100–111.
[30] Tomiyama, A., 1998, “Struggle with computational bubble dynamics”, In Third International Conference on Multiphase Flow, ICMF 98, Lyon, France.
[31] Padial, N.T., Van der Heyden, W.B., Rauenzahn, R.M., Yarbro, S.L., 2000, “Three- dimensional simulation of a three-phase draft-tube bubble column”, Chemical Engineering Science 55, pages 3261–3273.
[32] Wang, F., Mao, Z.S., Wang, Y., Yang, C., 2006, “Measurement of phase holdups in liquid–liquid–solid three-phase stirred tanks and CFD simulation”, Chemical Engineering Science 61, pages 7535–7550.
[33] Vejahati, F., Mahinpey, N.,2009, “CFD simulation of gas-solid bubbling fluidized bed: A new method for adjusting drag law”, The Canadian Journal of Chemical Engineering 87, pages 19-30.
[34] Safoniuk, M., Grace, J.R., Hackman, L. and Mcknight, C.A., 2002, “Gas hold-up in a three-phase fluidized bed”, AIChE J 48, pages 1581–1587.
[35] Jena, H.M., Roy, G.K., Meikap, B.C., 2008, “Prediction of gas holdup in a three phase fluidized bed from bed pressure drop measurement”, IChE 86, pages 1301-1308.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top