跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/29 10:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:闕銘宏
研究生(外文):Ming Hong Cyue
論文名稱:分析戈登鏈球菌第8以及第13對雙分子訊息調控系統之路徑
論文名稱(外文):Identification and functional analysis of Streptococcus gordonii CH1 TCS-08 and TCS-13
指導教授:陳怡原
指導教授(外文):Y. Y. M. Chen
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
論文頁數:68
中文關鍵詞:戈登鏈球菌雙分子調控系統二維蛋白質電泳
外文關鍵詞:Streptococcus gordoniitwo component systemTwo-dimensional gel electrophoresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:520
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
戈登鏈球菌是牙菌斑的早期成員之一。口腔細菌可因宿主的進食啟動糖解,造成環境酸化,進而破壞健康菌叢生態平衡並引發蛀牙。因應環境酸化,口腔細菌也需適時啟動適應機制,以利生存。為了解戈登鏈球菌在口腔生態的生理調控及抗壓反應,本計畫針對戈登鏈球菌 pH 訊息調控系統及其對抗酸反應的影響進行分析。因雙分子調控系統 (two component systems) 是細菌主要的訊息調控系統,本計畫利用對 pH敏感的尿素酶啟動子結合報導基因 (pureI-cat) 來觀察雙分子系統突變對戈登鏈球菌的影響。由分析13對功能未知雙分子系統得知,第8及第13對雙分子訊息調控系統在酸性的環境下抑制尿素酶啟動子的表現,暗示此二對系統參與pH訊息調控路徑。第8對突變株在耐酸性測試中 (acid killing assay) 的存活率較野生株生差,但第13對突變並不影響戈登鏈球菌的存活率。此外,第8對突變株在含巴拉刈環境下的生長速率較野生株快,而第13對系統則較慢,故此二系統也參與氧化壓力反應。為全面研究此二系統可能參與的調控途徑,此計畫也分析此二突變株與野生株蛋白質體間的差異。分別在第8及第13對系統突變株發現8及4個表現量不同於野生株的蛋白質點,而這些蛋白質多參與糖類以及氨基酸代謝途徑,顯示此二系統可藉調控代謝參與戈登鏈球菌的抗壓反應。
Streptococcus gordonii CH1 is one of the early colonizers of the dental plaque. The two-component system (TCS) is the major signal transduction system in bacteria. Since pH alteration is a frequent event occurring in the oral cavity, this study aims to identify TCSs that are potentially involved in the pH signaling in S. gordonii. To monitor the effects of mutations in TCS in pH signaling, the promoterless chloramphenicol acetyltransferase gene (cat) was fused with the pH-sensitive urease promoter (pureI) of Streptococcus salivarius and integrated into the gtfG of S. gordonii (SL17). Mutants of each TCS in SL17 background were generated by allelic exchange, and the expression of the pureI in cells grown at acidic pH was examined. The result revealed that TCS08- and TCS13-mutant strains exhibited aberrant cat expression comparing to the wild-type strain at pH 5.5. A lower survival rate at pH 3 was also detected in TCS08, but not in TCS13 mutant strain, comparing to the wild-type strain. The growth rate of TCS08 mutant was faster than the wild-type strain in the presence of paraquat, whereas TCS13 mutant grew more slowly than the wild-type strain. To identify the potential targets regulated by the two systems, the proteomes of these two strains were analyzed. 8 and 4 protein spots were indentified from TCS08 and TCS13 mutants, respectively, that are differentially expressed from the wild-type strain. Most of the identified proteins are involved in the metabolism, suggesting that these two systems participate in stress responses through modulating metabolic activities.
指導教授推薦書.....................................................................................i
口試委員會審定書....................................................................................ii
長庚大學授權書.....................................................................................iii
致謝.....................................................................................................iv
中文摘要....................................................................................................v
Abstract..........................................................................................vi
Table of Contents............................................................................vii
List of Figures.....................................................................................viii
List of Tables........................................................................................ix
Introduction.....................................................................................1
Materials and Methods.............................................................11
Results........................................................................................18
Discussion......................................................................................26
References.......................................................................................31
Figures...............................................................................................40
Tables..........................................................................................54

1. Adhikari, R. P., and R. P. Novick. 2008. Regulatory organization of the staphylococcal sae locus. Microbiology 154:949-59.
2. Bader, M. W., S. Sanowar, M. E. Daley, A. R. Schneider, U. Cho, W. Xu, R. E. Klevit, H. Le Moual, and S. I. Miller. 2005. Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461-72.
3. Bamford, C. V., A. d'Mello, A. H. Nobbs, L. C. Dutton, M. M. Vickerman, and H. F. Jenkinson. 2009. Streptococcus gordonii modulates Candida albicans biofilm formation through intergeneric communication. Infect Immun 77:3696-704.
4. Batchelor, E., and M. Goulian. 2003. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc Natl Acad Sci U S A 100:691-6.
5. Bjedov, I., O. Tenaillon, B. Gerard, V. Souza, E. Denamur, M. Radman, F. Taddei, and I. Matic. 2003. Stress-induced mutagenesis in bacteria. Science 300:1404-9.
6. Blanchard, J. L., W. Y. Wholey, E. M. Conlon, and P. J. Pomposiello. 2007. Rapid changes in gene expression dynamics in response to superoxide reveal SoxRS-dependent and independent transcriptional networks. PLoS One 2:e1186.
7. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248-54.
8. Burne, R. A., and R. E. Marquis. 2000. Alkali production by oral bacteria and protection against dental caries. FEMS Microbiol Lett 193:1-6.
9. Casino, P., V. Rubio, and A. Marina. The mechanism of signal transduction by two-component systems. Curr Opin Struct Biol 20:763-71.
10. Chang, C., C. Tesar, M. Gu, G. Babnigg, A. Joachimiak, P. R. Pokkuluri, H. Szurmant, and M. Schiffer. Extracytoplasmic PAS-like domains are common in signal transduction proteins. J Bacteriol 192:1156-9.
11. Chen, P. M., Y. Y. Chen, S. L. Yu, S. Sher, C. H. Lai, and J. S. Chia. Role of GlnR in acid-mediated repression of genes encoding proteins involved in glutamine and glutamate metabolism in Streptococcus mutans. Appl Environ Microbiol 76:2478-86.
12. Chen, Q., H. Wu, and P. M. Fives-Taylor. 2002. Construction of a novel transposon mutagenesis system useful in the isolation of Streptococcus parasanguis mutants defective in Fap1 glycosylation. Infect Immun 70:6534-40.
13. Chen, Y. Y., M. J. Betzenhauser, and R. A. Burne. 2002. cis-Acting elements that regulate the low-pH-inducible urease operon of Streptococcus salivarius. Microbiology 148:3599-608.
14. Chen, Y. Y., and R. A. Burne. 1996. Analysis of Streptococcus salivarius urease expression using continuous chemostat culture. FEMS Microbiol Lett 135:223-9.
15. Chen, Y. Y., and R. A. Burne. 2003. Identification and characterization of the nickel uptake system for urease biogenesis in Streptococcus salivarius 57.I. J Bacteriol 185:6773-9.
16. Chen, Y. Y., K. A. Clancy, and R. A. Burne. 1996. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque streptococcus. Infect Immun 64:585-92.
17. Chen, Y. Y., C. A. Weaver, D. R. Mendelsohn, and R. A. Burne. 1998. Transcriptional regulation of the Streptococcus salivarius 57.I urease operon. J Bacteriol 180:5769-75.
18. Choi, E., E. A. Groisman, and D. Shin. 2009. Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake. J Bacteriol 191:7174-81.
19. Cunin, R., N. Glansdorff, A. Pierard, and V. Stalon. 1986. Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314-52.
20. Curran, T. M., J. Lieou, and R. E. Marquis. 1995. Arginine deiminase system and acid adaptation of oral streptococci. Appl Environ Microbiol 61:4494-6.
21. de Ruyter, P. G., O. P. Kuipers, M. M. Beerthuyzen, I. van Alen-Boerrigter, and W. M. de Vos. 1996. Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J Bacteriol 178:3434-9.
22. Demuth, D. R., Y. Duan, W. Brooks, A. R. Holmes, R. McNab, and H. F. Jenkinson. 1996. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol Microbiol 20:403-13.
23. Dixon, R., and D. Kahn. 2004. Genetic regulation of biological nitrogen fixation. Nat Rev Microbiol 2:621-31.
24. Dong, Y., Y. Y. Chen, and R. A. Burne. 2004. Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J Bacteriol 186:2511-4.
25. Dong, Y., Y. Y. Chen, J. A. Snyder, and R. A. Burne. 2002. Isolation and molecular analysis of the gene cluster for the arginine deiminase system from Streptococcus gordonii DL1. Appl Environ Microbiol 68:5549-53.
26. Eichenbaum, Z., M. J. Federle, D. Marra, W. M. de Vos, O. P. Kuipers, M. Kleerebezem, and J. R. Scott. 1998. Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64:2763-9.
27. Facklam, R. 2002. What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613-30.
28. Fish, R. N., and C. M. Kane. 2002. Promoting elongation with transcript cleavage stimulatory factors. Biochim Biophys Acta 1577:287-307.
29. Fozo, E. M., J. K. Kajfasz, and R. G. Quivey, Jr. 2004. Low pH-induced membrane fatty acid alterations in oral bacteria. FEMS Microbiol Lett 238:291-5.
30. Fozo, E. M., and R. G. Quivey, Jr. 2004. The fabM gene product of Streptococcus mutans is responsible for the synthesis of monounsaturated fatty acids and is necessary for survival at low pH. J Bacteriol 186:4152-8.
31. Fozo, E. M., and R. G. Quivey, Jr. 2004. Shifts in the membrane fatty acid profile of Streptococcus mutans enhance survival in acidic environments. Appl Environ Microbiol 70:929-36.
32. Ganeshkumar, N., M. Song, and B. C. McBride. 1988. Cloning of a Streptococcus sanguis adhesin which mediates binding to saliva-coated hydroxyapatite. Infect Immun 56:1150-7.
33. Gibbons, R. J., D. I. Hay, and D. H. Schlesinger. 1991. Delineation of a segment of adsorbed salivary acidic proline-rich proteins which promotes adhesion of Streptococcus gordonii to apatitic surfaces. Infect Immun 59:2948-54.
34. Gottesman, S., C. A. McCullen, M. Guillier, C. K. Vanderpool, N. Majdalani, J. Benhammou, K. M. Thompson, P. C. FitzGerald, N. A. Sowa, and D. J. FitzGerald. 2006. Small RNA regulators and the bacterial response to stress. Cold Spring Harb Symp Quant Biol 71:1-11.
35. Goulian, M. Two-component signaling circuit structure and properties. Curr Opin Microbiol 13:184-9.
36. Gusa, A. A., and J. R. Scott. 2005. The CovR response regulator of group A streptococcus (GAS) acts directly to repress its own promoter. Mol Microbiol 56:1195-207.
37. Havarstein, L. S., P. Gaustad, I. F. Nes, and D. A. Morrison. 1996. Identification of the streptococcal competence-pheromone receptor. Mol Microbiol 21:863-9.
38. Havarstein, L. S., R. Hakenbeck, and P. Gaustad. 1997. Natural competence in the genus Streptococcus: evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179:6589-94.
39. Hazelbauer, G. L., and W. C. Lai. Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 13:124-32.
40. Horinouchi, S., and B. Weisblum. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J Bacteriol 150:815-25.
41. Ishii, S., T. Yano, and H. Hayashi. 2006. Expression and characterization of the peptidase domain of Streptococcus pneumoniae ComA, a bifunctional ATP-binding cassette transporter involved in quorum sensing pathway. J Biol Chem 281:4726-31.
42. Jin, Y., R. M. Watt, A. Danchin, and J. D. Huang. 2009. Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli. BMC Genomics 10:165.
43. Johnsborg, O., and L. S. Havarstein. 2009. Regulation of natural genetic transformation and acquisition of transforming DNA in Streptococcus pneumoniae. FEMS Microbiol Rev 33:627-42.
44. Kolenbrander, P. E., R. N. Andersen, D. S. Blehert, P. G. Egland, J. S. Foster, and R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol Mol Biol Rev 66:486-505
45. Kotake, Y., S. Ishii, T. Yano, Y. Katsuoka, and H. Hayashi. 2008. Substrate recognition mechanism of the peptidase domain of the quorum-sensing-signal-producing ABC transporter ComA from Streptococcus. Biochemistry 47:2531-8.
46. Kuipers, O. P., M. M. Beerthuyzen, P. G. de Ruyter, E. J. Luesink, and W. M. de Vos. 1995. Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J Biol Chem 270:27299-304.
47. Lau, P. C., C. K. Sung, J. H. Lee, D. A. Morrison, and D. G. Cvitkovitch. 2002. PCR ligation mutagenesis in transformable streptococci: application and efficiency. J Microbiol Methods 49:193-205.
48. LeBlanc, D. J., and F. P. Hassell. 1976. Transformation of Streptococcus sanguis Challis by plasmid deoxyribonucleic acid from Streptococcus faecalis. J Bacteriol 128:347-55.
49. Lemos, J. A., J. Abranches, and R. A. Burne. 2005. Responses of cariogenic streptococci to environmental stresses. Curr Issues Mol Biol 7:95-107.
50. Len, A. C., D. W. Harty, and N. A. Jacques. 2004. Stress-responsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiology 150:1339-51.
51. Levesque, C. M., R. W. Mair, J. A. Perry, P. C. Lau, Y. H. Li, and D. G. Cvitkovitch. 2007. Systemic inactivation and phenotypic characterization of two-component systems in expression of Streptococcus mutans virulence properties. Lett Appl Microbiol 45:398-404.
52. Liang, X., C. Yu, J. Sun, H. Liu, C. Landwehr, D. Holmes, and Y. Ji. 2006. Inactivation of a two-component signal transduction system, SaeRS, eliminates adherence and attenuates virulence of Staphylococcus aureus. Infect Immun 74:4655-65.
53. Liu, Y., and R. A. Burne. 2009. Multiple two-component systems modulate alkali generation in Streptococcus gordonii in response to environmental stresses. J Bacteriol 191:7353-62.
54. Liu, Y., Y. Dong, Y. Y. Chen, and R. A. Burne. 2008. Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes. Appl Environ Microbiol 74:5023-30.
55. Lucas, V. S., D. Beighton, and G. J. Roberts. 2000. Composition of the oral streptococcal flora in healthy children. J Dent 28:45-50.
56. Luo, P., H. Li, and D. A. Morrison. 2003. ComX is a unique link between multiple quorum sensing outputs and competence in Streptococcus pneumoniae. Mol Microbiol 50:623-33.
57. Maamar, H., and D. Dubnau. 2005. Bistability in the Bacillus subtilis K-state (competence) system requires a positive feedback loop. Mol Microbiol 56:615-24.
58. Marina, A., C. D. Waldburger, and W. A. Hendrickson. 2005. Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. Embo J 24:4247-59.
59. Mascher, T., J. D. Helmann, and G. Unden. 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol Mol Biol Rev 70:910-38.
60. Mitrophanov, A. Y., T. J. Hadley, and E. A. Groisman. Positive autoregulation shapes response timing and intensity in two-component signal transduction systems. J Mol Biol 401:671-80.
61. Miyashiro, T., and M. Goulian. 2008. High stimulus unmasks positive feedback in an autoregulated bacterial signaling circuit. Proc Natl Acad Sci U S A 105:17457-62.
62. Moglich, A., R. A. Ayers, and K. Moffat. 2009. Structure and signaling mechanism of Per-ARNT-Sim domains. Structure 17:1282-94.
63. Mohedano, M. L., K. Overweg, A. de la Fuente, M. Reuter, S. Altabe, F. Mulholland, D. de Mendoza, P. Lopez, and J. M. Wells. 2005. Evidence that the essential response regulator YycF in Streptococcus pneumoniae modulates expression of fatty acid biosynthesis genes and alters membrane composition. J Bacteriol 187:2357-67.
64. Ng, W. L., K. M. Kazmierczak, and M. E. Winkler. 2004. Defective cell wall synthesis in Streptococcus pneumoniae R6 depleted for the essential PcsB putative murein hydrolase or the VicR (YycF) response regulator. Mol Microbiol 53:1161-75.
65. Ng, W. L., G. T. Robertson, K. M. Kazmierczak, J. Zhao, R. Gilmour, and M. E. Winkler. 2003. Constitutive expression of PcsB suppresses the requirement for the essential VicR (YycF) response regulator in Streptococcus pneumoniae R6. Mol Microbiol 50:1647-63.
66. Ng, W. L., H. C. Tsui, and M. E. Winkler. 2005. Regulation of the pspA virulence factor and essential pcsB murein biosynthetic genes by the phosphorylated VicR (YycF) response regulator in Streptococcus pneumoniae. J Bacteriol 187:7444-59.
67. Nobbs, A. H., R. M. Vajna, J. R. Johnson, Y. Zhang, S. L. Erlandsen, M. W. Oli, J. Kreth, L. J. Brady, and M. C. Herzberg. 2007. Consequences of a sortase A mutation in Streptococcus gordonii. Microbiology 153:4088-97.
68. Novick, R. P. 2003. Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429-49.
69. Novick, R. P., and D. Jiang. 2003. The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149:2709-17.
70. O'Farrell, P. H. 1975. High resolution two-dimensional electrophoresis of proteins. J Biol Chem 250:4007-21.
71. Perez-Casal, J., M. G. Caparon, and J. R. Scott. 1991. Mry, a trans-acting positive regulator of the M protein gene of Streptococcus pyogenes with similarity to the receptor proteins of two-component regulatory systems. J Bacteriol 173:2617-24.
72. Piggot, P. J., and D. W. Hilbert. 2004. Sporulation of Bacillus subtilis. Curr Opin Microbiol 7:579-86.
73. Prost, L. R., M. E. Daley, V. Le Sage, M. W. Bader, H. Le Moual, R. E. Klevit, and S. I. Miller. 2007. Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26:165-74.
74. Rogasch, K., V. Ruhmling, J. Pane-Farre, D. Hoper, C. Weinberg, S. Fuchs, M. Schmudde, B. M. Broker, C. Wolz, M. Hecker, and S. Engelmann. 2006. Influence of the two-component system SaeRS on global gene expression in two different Staphylococcus aureus strains. J Bacteriol 188:7742-58.
75. Rogers, J. D., R. J. Palmer, Jr., P. E. Kolenbrander, and F. A. Scannapieco. 2001. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect Immun 69:7046-56.
76. Rui, B., T. Shen, H. Zhou, J. Liu, J. Chen, X. Pan, H. Liu, J. Wu, H. Zheng, and Y. Shi. A systematic investigation of Escherichia coli central carbon metabolism in response to superoxide stress. BMC Syst Biol 4:122.
77. Russo, F. D., and T. J. Silhavy. 1993. The essential tension: opposed reactions in bacterial two-component regulatory systems. Trends Microbiol 1:306-10.
78. Senadheera, M. D., B. Guggenheim, G. A. Spatafora, Y. C. Huang, J. Choi, D. C. Hung, J. S. Treglown, S. D. Goodman, R. P. Ellen, and D. G. Cvitkovitch. 2005. A VicRK signal transduction system in Streptococcus mutans affects gtfBCD, gbpB, and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187:4064-76.
79. Shaw, W. V. 1975. Chloramphenicol acetyltransferase from chloramphenicol-resistant bacteria. Methods Enzymol 43:737-55.
80. Sissons, C. H., E. M. Hancock, and T. W. Cutress. 1988. The source of variation in ureolysis in artificial plaques cultured from human salivary bacteria. Arch Oral Biol 33:721-6.
81. Sissons, C. H., E. M. Hancock, H. E. Perinpanayagam, and T. W. Cutress. 1988. The bacteria responsible for ureolysis in artificial dental plaque. Arch Oral Biol 33:727-33.
82. Sourjik, V. 2004. Receptor clustering and signal processing in E. coli chemotaxis. Trends Microbiol 12:569-76.
83. Steinhuber, A., C. Goerke, M. G. Bayer, G. Doring, and C. Wolz. 2003. Molecular architecture of the regulatory Locus sae of Staphylococcus aureus and its impact on expression of virulence factors. J Bacteriol 185:6278-86.
84. Stephenson, K., and J. A. Hoch. 2002. Evolution of signalling in the sporulation phosphorelay. Mol Microbiol 46:297-304.
85. Stock, A. M., V. L. Robinson, and P. N. Goudreau. 2000. Two-component signal transduction. Annu Rev Biochem 69:183-215.
86. Suntharalingam, P., M. D. Senadheera, R. W. Mair, C. M. Levesque, and D. G. Cvitkovitch. 2009. The LiaFSR system regulates the cell envelope stress response in Streptococcus mutans. J Bacteriol 191:2973-84.
87. Szurmant, H., R. A. White, and J. A. Hoch. 2007. Sensor complexes regulating two-component signal transduction. Curr Opin Struct Biol 17:706-15.
88. Waters, L. S., and G. Storz. 2009. Regulatory RNAs in bacteria. Cell 136:615-28.
89. Wen, Z. T., and R. A. Burne. 2004. LuxS-mediated signaling in Streptococcus mutans is involved in regulation of acid and oxidative stress tolerance and biofilm formation. J Bacteriol 186:2682-91.
90. West, A. H., and A. M. Stock. 2001. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci 26:369-76.
91. Winkler, M. E., and J. A. Hoch. 2008. Essentiality, bypass, and targeting of the YycFG (VicRK) two-component regulatory system in gram-positive bacteria. J Bacteriol 190:2645-8.
92. Zeng, L., and R. A. Burne. 2008. Multiple sugar: phosphotransferase system permeases participate in catabolite modification of gene expression in Streptococcus mutans. Mol Microbiol 70:197-208.
93. Zeng, L., Z. T. Wen, and R. A. Burne. 2006. A novel signal transduction system and feedback loop regulate fructan hydrolase gene expression in Streptococcus mutans. Mol Microbiol 62:187-200.
94. Zhang, Y., Y. Lei, A. Khammanivong, and M. C. Herzberg. 2004. Identification of a novel two-component system in Streptococcus gordonii V288 involved in biofilm formation. Infect Immun 72:3489-94.
95. Zhang, Y., M. Whiteley, J. Kreth, Y. Lei, A. Khammanivong, J. N. Evavold, J. Fan, and M. C. Herzberg. 2009. The two-component system BfrAB regulates expression of ABC transporters in Streptococcus gordonii and Streptococcus sanguinis. Microbiology 155:165-73.
96. Zuniga, M., M. Champomier-Verges, M. Zagorec, and G. Perez-Martinez. 1998. Structural and functional analysis of the gene cluster encoding the enzymes of the arginine deiminase pathway of Lactobacillus sake. J Bacteriol 180:4154-9.


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文