一、中文文獻
[1] 王文中(民 87),EXCEL於資料分析與統計學上的應用,博碩文化。
[2] 左台益(民 91),Van Hiele模式之國中幾何教材設計,國立台灣師範大學中等教育雙月刊。
[3] 林福來(民76), 國中生反射、旋轉、平移概念發展研究,國科會專題研究計畫報告。NSC 75-0111-S003-01,NSC76-0111-S003-12
[4] 吳德邦、葉重新(民 87),台灣中部地區地區國小學童Van Hiele 幾何思考層次之研究。
國科會專題研究計畫報告。NSC 86-2511-S-142-001
[5] 林青山(民 88),心理與教育統計學,東華書局。
[6] 郭生玉(民 88),心理與教育測驗,精華書局。
[7] 黃哲男(民 91),於動態幾何環境下,國中生心像建構與幾何學習之研究,國立台灣師範大學數學教育研究所論文。[8] 曹亮吉(民 85),阿草的葫蘆---文化活動中的數學,遠哲科學教育基金會。
[9] 劉湘川、劉好(民81,民82),我國國小學童對稱概念的發展研究,國科會專題研究計畫報告。NSC-81-0111-S142-01-N,NSC-82-0111-S142-001
二、英文文獻
[1] Baruch B. & Hershkowitz, R.(1999). Prototypes: Brakes or Levers in Learning the Function
Concept ? The Role of Computer Tools. Journal for Research in Mathematics Education,1999
Vol 30, No. 4, 362-389.
[2] Bishop, A. J. (1983). Space and Geometry , in R. Lesh and M. Landau(Eds), Acquisition of
Mathematics Concepts and Processes , Academic Press Inc.
[3] Burger, W. P., & Shaughnessy, J. M. (1986). Characterizing the van Hiele levels of
development in geometry. Journal for Research in Mathematics Education, 17, 31-48.
[4] Crowley, M. L. (1987). The van Hiele model of the development of geometric thought. In
M. M. Lindquist, Ed., Learning and teachering geometry, k-12 (pp. 1-16). Reston, VA:
National Council of Teachers of Mathematics.
[5] CSMS Mathematics Team (1981), Children’s Understanding of Mathematics. 11-16,
London, U.K., John Murray.
[6] Dubinsky, E. (1991) Reflective Abstraction in advanced mathematical thinking. In D. Tall
(Ed.) Advanced Mathematical Thinking, 95-123. Dordrecht: Kluwer.
[7] Duval R.(1995) Geometry from a Cognitive Point of View. Reasoning In Geometry, Section
Ⅱ, P37~52
[8] Freudenthal, H. (1973) Mathematics as educational task. Dordrecht: Reidel.
[9] Gagne, E. (1985). The cognitive psychology of school learning . Summarizes modern cognitive
research and its relation to the psychology of instruction , Boston: Little , Brown.
[10] Gelman, S. A., and D. L. Medin. (1993). What''s so essential about essentialism? A different
perspective on the interaction of perception, language, and conceptual knowledge. Cognitive
Development 8:157-167.
[11] Genkins,E.F.(1975). The Concept of Bilateral Symmetry in Young Children. Collegiate
School, New York City. Rosskopf, M.F.(Ed.), Children’s Mathematical Concepts, Teachers
Collage, Columbia University. New York & London. pp. 5~42.
[12] Gutierrez, A. & Jaime, A. & Fortuny, J. M. (1991) An Altrnative Paradigm to Evaluate
The Acquisition of The Van Hiele Levels. Journal for Research in Mathematics
Education 1991. Vol.22. No.3.237-251.
[13] Gutierrez, A., & Jaime, A. (1987). Estudio de las caracteristicas de los niveles de van Hiele
[Study of the characteristics of the van Hiele levels]. In J. Bergeron, N. Herscovics, & C.
Kieran (Eds.), Proceedings of the 11th International Conference of the P.M.E., 3 (pp.
131-137). Montreal: Authors.
[14] Hershkowitz, R. (1989). Visualisation in Geometry-Two Sides of the Coin, Focus on
Learning Problems in Mathematics,11(1),61-76.
[15] Küchemann D. (1981). Reflection and Rotation, in Hart ed (1981) Children’s
Understanding of Mathematics,11~16 , P137~157
[16] Mayer, R. E. (1981). The promise of cognitive psychology. New York: Freeman.
(Presents an overview of cognitive psychology , with special focus on practical
applications )
[17] Sfard, A.(1991). On the dual nature of Mathematical conceptions: reflections on processes
and objects as different sides of the same coin , Educational Studies in Mathematics , 22.
1-36.
[18] Usiskin,Z.(1982). Van Hiele levels and achievement in secondary school geometry. (ERIC
Document Reproduction Servise No. ED 220 288)
[19] Vinner, S. (1983). Concept definition, concept images and the notion of function, Int. J. Math.
Educ. Sci.Technol.,Vol.14, No.3, 293-305.
[20] Vinner,S. & Dreyfus,T.(1989) . Images and Definitions for the concept of function .
Journal for Research in Mathematics Education,20,356-366.
[21] Yakimanskaya, I. (1991). The development of spatial thinking in school children.
In P. S. Wilson and E. J. Davis (Eds.), Soviet Studies in Mathematics Education,
(Vol. 3). Reston, VA: National Council of Teachers of Mathematics.