跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 21:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳啟炘
研究生(外文):Wu Chi-Shin
論文名稱:複合型光觸媒之吸附及光分解特性分析
論文名稱(外文):Adsorption and Photocatalysis Characterization of Composite Photocatalysts
指導教授:吳卓夫石晉方石晉方引用關係
指導教授(外文):Wu Chu-Fu
學位類別:博士
校院名稱:中華大學
系所名稱:科技管理學系(所)
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:153
中文關鍵詞:複合型光觸媒實驗設計法變異數分析吸附降解
外文關鍵詞:Composite photocatalystsDesign of experiments (DOE)Analysis of variance (ANOVA)AdsorptionPhotocatalysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:491
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過實驗設計法(Design of Experiment, DOE)與變異數分析(Analysis of Variance, ANOVA)尋求高性能複合光觸媒,有機化合物之相對最佳化操作配比。五個控制因子包括光觸媒種類、光觸媒濃度、載體種類、熱處理溫度及攪拌轉速等,分別設定4個水準。本研究應用L16直交表實驗配置及ANOVA再驗證分析發現提高吸附與光分解的效率之參數。二組參數設定顯示相似的最佳組合,其中載體種類扮演最重要的貢獻,去影響吸附與光分解作用的能力。這被歸因於載體中巨大的毛孔結構,可能引導均質分散的光觸媒,因而促進光分解作用的能力。這ANOVA結果証實,實驗的可信度和合理的變異等二者信心水準區間落在99%內,指出穩健複合光觸媒的設計。基於經濟和穩健設計觀點,複合型光觸媒的製備中,變異參數組透過ANOVA和DOE方法學提供一個有效率方法,不僅在提升吸附和光分解能力亦是最佳控制因素。
The objective of this research is to obtain an optimal combination on improving the adsorption/photocatalysis capability of composite photocatalysts by means of design of experiments (DOE) and analysis of variance (ANOVA). Five control factors, including photocatalyst type, catalyst loading, support type, heat-treated temperature, and stirring speed, with four levels were considered to investigate the optimal parameter setting. The present work applied an L16 orthogonal array combined with ANOVA analysis to individually find out their improved parameters: adsorption and photocatalysis efficiencies. Two sets of parameter settings appeared a similar optimal combination, in which the type of support acts as the most crucial contribution to affect both of adsorption and photocatalysis capabilities. This can be attributed to the fact that vast pore structure of supports probably leads to uniform dispersion of catalysts, thus promoting the photocatalysis capability. The ANOVA result also confirmed that both the reliability of experiments and rationality of variances fall within a confidence level of 99%, indicating the robust design for these composite photocatalysts. The parameter settings via ANOVA and DOE methodologies provide an efficient approach not only in enhancing the adsorption/photocatalysis hybrid performance but also tuning the optimal controlling factors for preparation of the composite photocatalysts, based on economic and robust-design viewpoints.
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 3
1.3 研究目的 4
1.4 研究範圍 5
1.5 研究限制 5
1.6 研究方法 5
1.7 研究流程 7
第二章 奈米複合材吸附理論與應用之回顧 9
2.1奈米材料之特性 9
2.1.1奈米及複合材料之定義 9
2.1.2奈米材料與碳材吸附 10
2.2 吸附之定義與理論 10
2.2.1 吸附之定義 10
2.2.2 吸附原理 10
2.2.3 吸附理論 12
2.2.4吸附之種類 18
2.3碳材吸附之應用 19
2.3.1 液相吸附過程 20
2.3.2以奈米碳管為載體之製備技術 20
2.3.3以活性碳為載體之製備技術 22
2.3.4以氧化鋁為載體之製備技術 25
2.3.5 以竹炭為載體之製備技術 28
第三章 光觸媒光分解發展之應用 32
3.1奈米光觸媒之回顧 32
3.1.1光觸媒之定義 32
3.1.2 光觸媒反應之原理: 34
3.1.3 光觸媒基本特性 35
3.2 光觸媒應用範圍 36
3.3 建材導入光觸媒材料之應用現況及趨勢 38
3.4 小結 40
第四章 研究方法之分析 41
4.1 傳統實驗設計之分析 41
4.1.1實驗設計之概述 41
4.1.2實驗設計的意義及類型 41
4.1.3實驗設計法之分類 42
4.2 田口式品質工程之分析 44
4.2.1田口式品質工程基本概念 44
4.2.2傳統實驗設計與田口方法之比較 44
4.3實驗計畫法之選定分析 49
4.4田口式穩健設計與其他實驗設計法交叉驗證 53
4.4.1 信號雜音比 53
4.4.2 變異數分析 54
4.4.3再驗證實驗 56
第五章 實驗計畫 58
5.1 實驗目的 58
5.2 實驗計畫配置 58
5.2.1 理想機能品質特性、控制因子選定與因子水準設定 58
5.2.2 特性要因與實驗配置 61
5.2.3 實驗配置、直交表選定與水準設定 65
5.3 實驗儀器特性分析 66
5.3.1 實驗儀器 66
5.3.2 特性分析 70
5.4 實驗藥品 75
5.4.1藥品 75
5.4.2氣體 80
5.5 實驗方法與流程 82
5.5.1 實驗方法 82
5.5.2實驗流程 82
5.6實際操作 85
5.6.1複合型光觸媒的製備 85
5.6.2液相吸附和光分解 85
5.7 複合型光觸媒吸附與光分解量測與數據彙整 85
5.7.1複合型光觸媒光分解量測與數據彙整 85
5.7.2 複合型光觸媒吸附量測與數據彙整 88
5.7.3 複合型光觸媒吸附加光分解量測與數據彙整 90
第六章 實驗結果討論、分析與驗證 92
6.1複合型光觸媒的表面特性及光催化作用 92
6.1.1複合型光觸媒的表面特性 92
6.1.2 複合型光觸媒的光催化作用 95
6.2 複合型光觸媒吸附與光分解有機污染物質之結果討論 96
6.2.1 光分解有機污染物質之討論 96
6.2.2 吸附有機污染物質之討論 102
6.2.3 吸附與光分解有機污染物質之討論 107
6.3 預估最佳配比組合 112
6.3.1預估最佳配比之討論 112
6.3.2預估最佳配比之組合 114
6.4 變異數分析驗證 116
6.4.1 變異數分析光分解效率 116
6.4.2 變異數分析吸附效率 117
6.4.3 變異數分析光分解加吸附效率 118
6.5 再驗證實驗 119
6.6最佳參數建立之結論 121
6.7工程應用的意義 122
第七章 結論、建議與貢獻 124
7.1 結論 124
7.2 建議 126
7.3 貢獻 126
參考文獻 127
附錄:本研究相關之學術論文 136
1. Yu , Y. Yu , J. C. Chan , C. Y. Che , Y. K. Zhao , J. C. Ding , L. Ge , W. K. and Wong, P. K.,“Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye,” Applied Catalysis B:Enivronmental, Vol. 61 , pp. 1-11, 2005.
2. Couteau, E. Hernadi, K. Seo, J.W. Thien-Nga, L. Miko, C. Gaal, R.and Forro, L. , “CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production,” Chemical Physics Letters, Vol. 378, pp. 9-17, 2003.
3. Fernandez, A. Lassaletta, G. Jimenez, V.M. Justo, A. Gonzalez- Elipe, A.R. Herrmann, J.M. Tahiri, H. and Ait-Ichou, Y., “Preparation and characterization of TiO2 photocatalysts supported on various rigid supports(glass, quartz and stainless steel).Comparative studies of photocatalytic activity in water purification,” Applied Catalysis B:Enivronmental, Vol. 7, pp. 49-63, 1995.
4. Robert, D. Piscora, A. Heinta, O. and Weber, J.V.“Photocatalytic detoxification with TiO2 supported on glass-fibre by using artificial and natural light,” Catalysis Today, Vol. 54 , pp. 291-296, 1999.
5. Tryba, B. Morawske, A.W. and Inagaki, M., “Application of TiO2-mounted activated carbon to the removal of phenol from water,” Applied Catalysis B:Enivronmental, Vol. 41, pp. 427-433, 2003.
6. Fujihara, K. Izumi, S. Ohno, T. and Matsumura, M.“Time-resolved photoluminescence of particulate TiO2 photocatalysts suspended in aqueous solutions,” Journal Photochemistry Photobiology A: Chemical, Vol. 132 , pp. 99-104, 2000.
7. Ollis, D.F. and Al-Ekabi (Eds.), H.“Photocatalytic Purification and Treatment of Water and Air,” Elsevier, Amsterdam, 1993.
8. Islam, A. Sugihara, H. Hara, K. Singh, L.P. Katoh, R. Yanagida, M. Wijayantha, M. and Sirimanne, P.M.,“Semiconduct,” Science Technology, Vol. 10 , pp. 1689, 1995.
9. Masakazu , A. and Masato , T. “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” Journal of Catalysis , Vol. 216, pp. 505-516, 2003.
10.Chen, M. Yao, X. and Zhang , L., “Preparation of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric ceramics using colloidal processing and the field induced strain properties,” Journal of the European Ceramic Society, Vol. 21, pp. 1159-1164, 2001.
11.Hu, C. Yu, J.C. Hao, Z. and Wong, P.K.,“Effects of acidity and inorganic ions on the photocatalytic degradation of different azo dyes,” Applied Catalysis B:Enivronmental, Vol. 46, pp. 35-47, 2003.
12.Litter, M.I., “Heterogeneous photocatalysis Transition metal ions in photocatalytic systems,” Applied Catalysis B:Enivronmental, Vol. 23 , pp. 89-114, 1999.
13.Yang, C. Wohlgenannt, M. Vardeny, Z.V. Blau, W.J. Dalton, A.B. Baughman, R. and Zakhidov, A.A.,“Photoinduced charge transfer in poly(p-phenylene vinylene)derivatives and carbon nanotube/C60 composites,” Physica B, Vol. 338 , pp. 366-369, 2003.
14.Arabatzis,I.M. Stergiopoulos, T. Andreeva, D. Neophytides, S.G. and Falaras, P., “Characterization and photocatalytic activity of Au/TiO2 thin films for azo-dye degradation,” Journal Catalysis, Vol. 220 , pp. 127-135, 2003.
15.Arana, J. Dona-Rodriguez, J.M. Rendon, E.T. Cabo, C.G. Gonzalez-Diaz, O. Herrera-Melian, J.A. Perez-Pena, J. G. Colon, and Navio, J.A.,“TiO2 activation by using activated carbon as a support Part II. Photoreactivity and FTIR study,” Applied Catalysis B:Enivronmental, Vol. 44 , pp. 153-160, 2003.
16.Matos, J. Laineb, J. and Herrmanna, J.M., “Synergy effect in the photocatalytic degradation of phenol on a suspended mixture of titania and activated carbon,” Applied Catalysis B:Enivronmental, Vol. 18 , pp. 281-291, 1998.
17.Ohko, Y. Tatsuma, T. and Fujishima, A.“Characterization of TiO2 Photocatalysis in the gas phase as a photoelectrochemical system: behavior of salt-modified systems,” Journal Physics Chemical B, Vol. 105 , pp. 10016–10021, 2001.
18.Harada, M. Sasaki, T. Ebina, Y. and Watanabe, M., “Preparation and characterizations of Fe- or Ni-substituted titania nanosheets as photocatalysts,” Journal Photochemistry Photobiology A, Vol. 148 , pp. 273–276, 2002.
19.Sehili, T. Boule, P. and Lemaire, J., “Photocatalysed transformation of chloroaromatic derivatives on zinc oxide II: Dichlorobenzenes,” Journal Photochemistry Photobiology A , Vol. 50 , pp. 103–116, 1989.
20.Villasenor, J. Reyes, P. and Pecchi, G.,“Photodegradation of pentachlorophenol on ZnO,” Journal Chemical Technology Biotechnology, Vol. 72, pp. 105–110, 1998.
21.Driessen, M.D. Miller, T.M. and Grassian, V.H., “Photocatalytic oxidation of trichloroethylene on zinc oxide:characterization of surface-bound and gas-phase products and intermediates with FT-IR spectroscopy,” Journal Catalysis A, Vol. 131, pp. 149–156, 1998.
22.Anpo, M. and Takeuchi, M., “The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,” Journal Catalysis, Vol. 216, pp. 505–516, 2003.
23.Asahi, R. Morikawa, T. Ohwaki, T. Aoki, K. and Taga, Y. “Visible-light photocatalysis in nitrogen-doped titanium oxides,” Science, Vol. 293, pp. 269–271, 2001.
24.Yu, Y. Yu, J.C. Chan, C.Y. Che, Y.K. Zhao, J.C. Ding, L. Ge, W.K. and Wong,P.K., “Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye,” Applied Catalysis B:Enivronmental, Vol. 61, pp. 1–11, 2005.
25.Yu, Y. Yu, J.C. Yu, J.G. Kwok, Y.C. Che, Y.K. Zhao, J.C. Ding, L. Ge, W.K. and Wong, P.K., “Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes,” Applied Catalysis A , Gen. Vol. 289 ,pp. 186–196, 2005.
26.Ruddy, E.N.and Carroll, L.A.,“Select the best VOC control stretegy,” Chemical engineering progress , pp. 28-35, 1993.
27.Irdemez, S. Yildiz, Y. S. and Tosunoglu, V., “Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes,” Separation Purification Technology, Vol. 52, pp. 394–401, 2006.
28.Lin, Y.R. and Teng, H.,“Mesoporous carbons from waste tire char and their application in wastewater discoloration,” Micropore Mesopore Materials, Vol. 54, pp. 167-174, 2002.
29.Wu, F.C. Tseng, R.L. and Juang, R.S.,“Preparation of highly microporous carbons from fir wood by KOH activation for adsorption of dyes and phenols from water,” Separation Purification Technology, Vol. 47 ,pp. 10–19, 2005.
30.江建良,統計學,普林斯頓國際有限公司,台北,第365-420頁,2006。
31.王宗華,實驗計劃法與田口品質工程,工業技術研究院產業學院,高雄,第7-42頁,2006。
32.蘇朝墩,品質工程,中華民國品質學會,台北,第11-148頁,2005。
33.Yu, Y. Ma, L.L. Huang,W.Y. Du,F.P. Yu, J.C. Yu, J.G. Wang, J.B. and Wong, P.K., “Sonication assisted deposition of Cu2O nanoparticles on multiwall carbon nanotubes with polyol process,” Carbon , Vol. 43 , pp. 670-673, 2005.
34.咸才軍,奈米建材,五南圖書出版股份有限公司,臺北,第2-186頁,2004。
35.尹邦躍,奈米時代,五南圖書出版股份有限公司,臺北,第3-49頁,2002。

36.黃德歡,納米技術與應用,中國紡織大學出版社,上海,第129-132,2003。
37.王世敏,許祖勛,傅晶,納米材料制備技術,化學工業出版社材料科學與工程出版中心,北京,第145-241頁,2002。
38.高濂,李蔚,納米陶瓷,化學工業出版社-材料科學與工程出版中心,北京,第140-148頁,2001。
39.李玲,向航,功能材料與納米技術,化學工業出版社材料科學與工程出版中心,北京,第66-77頁,2002。
40.林大森,疏水奈米塗層之理論與應用,中華大學科技管理研究所,博士論文,新竹,第14-134頁,2006。
41.Nanoscience Instrument, UK, 2004. http://www.nanoscience.com/
42.Nano Investor News, Cleveland, USA, 2005. http://www.nanoinvestornews.com/
43.Nanoscience and Technology, The University of California of Department of Energy, USA, 2005. http://www.lanl.gov/mst/nano/definition.html
44.National Technical Information Service, USA, 2005.
http://www.ntis.gov/
45.News nano apex, PHP-Nuke, Canadian Web Hosting, Canada, 2002. http://news.nanoapex.com/
46.The Institute of Nanotechnology, 2004. http://www.nano.org.uk/
47.Nanotechnology Researchs Network Center, Japan, 2006. http://www.nanonet.go.jp/english/
48.Nanotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan, 2001.
http://unit.aist.go.jp/nanotech/
49.中山大學納米技術研究中心,廣州,2005。 http://www.nanoinfo.cn/
50.Anpo,M. Ertl, in: G. Knozinger, H. Weitkamp (Eds.), J. Handbook of Heterogeneous Catalysis, Wiley-VCH, Weinheim, and references therein, 1997.
51.李育群,半導體光觸媒與吸附劑之複合材料對VOCs處理之研究,中原大學化學工程學系,碩士論文,中壢,第6-36頁,2003。
52.黃定加物理化學。高立出版第425-431頁,1987。
53.吳萬全活性炭。台灣礦業第53期第3卷第37-51頁,2001。
54.黃盟欽,碳分子篩/氧化鋁複合膜之製備及其特性之研究,國立成功大學化學工程研究所,碩士論文,第18-50頁,2004。
55.Scott, D. S. and Dullien, F. A. “Diffusion of Ideal Gases in Capillaries and Porous Solids,” Journal AlChe , Vol. 8, p. 113 , 1962.
56.Keizer, K. Uhlorn, R. J. R. Zaspalis, V. T. and Burggraaf, A. J.“Microporoussol-gel modified membranes for hydrogen separation,” Key Engineering Materials, Vol. 61, pp. 143 , 1991.
57.林兼民,碳系材料吸附性能之探討。紡織中心期刊第11期第3卷第209-214頁,2001。
58.黃汝銘,活性碳纖維製成暨其吸附性能之研究。國立台灣科技大學纖維及高分子工程系研究所,博士論文,第1-112頁,2001。
59.Jonas, L.A.,“Reaction steps in gas sorption by impregnated carbon,” Carbon, Vol. 16, pp. 115-119, 1978.
60.Gregg,G.S. and Sing, K. S. W. Adsorption,“Surface Area and Porosity. Harcourt Brace Jovanovich,” London,England, 1982.
61.Freundlich,H., “Ueber die Adsorption in Loesungen,” Z.physics Chemical, Vol. 57, pp. 385-470, 1907.
62.Volesky, B.“Biosorption:Application aspects-Process simulation tools.In:Ciminelli VST & Garcia O Jr (Eds)Biohydrometallurg:Fundamentals,” Technology and Sustainable Development,Part B, pp. 69-80, 2001.
63.Langmuir, I.,“The adsorption of gases on plane surfaces of glass, mica and platinum,” Journal American Chemical Social, Vol. 40, pp. 1361-1403, 1918.
64.Brunauer,S.,P.H.Emmett and E.“Teller Adsorption of gases in multimolecular layers,” Journal American Chemical Social, Vol.. 40, pp. 1361-1403, 1938.
65.高廉、孫靜、劉陽橋,納米粉體的分散及表面改幸,化學工業出版社,北京,第40-62頁,2003。
66.阿根廷Myers, D. 原著Surface, interface and colloids-principles and applications,吳大城、朱譜新、王羅新、高緒珊等譯著,表面、介面和膠體 - 原理與應用,北京,第316-339頁,2005。
67.Vautier, M. Guillard, C. and Herrann, J.M.,“Photocatalytic Degradation of Dyes in Water: Case Study of Indigo and of Indigo Carmine,” Journal Catalysis, Vol. 201 , pp. 46-59, 2001.
68.Hu , Z.Y. Huang , G.H. and Chan, C.W., “A fuzzy process controller for in situ groundwater bioremediation,” Engineering Applications of Artificial Intelligence, Vol. 16 , pp. 131-147, 2003.
69.Anpo, M. and in: Corma, A. et al. (Eds.), “12th International Congress on Catalysis,” in: Study Surface Science Catalysis, Vol. 130, p. 157, 2000.
70.Falaras, P. Hugot-le Goff, A. Bernard, M.C. and Xagas, A. “Characterization by resonance Raman spectroscopy of sol-gel TiO2 films sensitized by the Ru(PPh3)2(dcbipy)Cl2 complex for solar cells application,” Solar Energy Material Solar Cells, Vol. 64 , pp. 167-184, 2000.
71.So, C.M. Cheng, M.Y. Yu, J.C. and Wong, P.K.“Degradation of azo dye Procion Red MX-5B by photocatalytic oxidation,” Chemosphere , Vol. 46, pp. 905-912, 2002.
72.Horikoshi,S. Hidaka, H. and Serpone, N., “Hydroxyl radicals in microwave photocatalysis. Enhanced formation of OH radicals probed by ESR techniques in microwave-assisted photocatalysis in acqueous TiO2 dispersions,” Chemical Physical Letter, Vol. 376 , pp. 475-480, 2003.
73.Jia, Z. Wang, Z. Liang, L. Wei, B. and Wu, D.,“Production of short multi-walled carbon nanotubes,” Carbon, Vol. 37 , pp. 903-906, 1999.
74.Yu, Y. Ma, L.L. Huang, W.Y. Li, J.L. Wong, P.K. and Yu, J.C.,“Coating MWNTs with Cu2O of different morphology by a polyol process,” Journal Solid State Chemical, Vol. 78 , pp. 1488-1494, 2005.
75.Munoz-guillena, M.J., IIIan-Gomez, M.J. Martin-Martinez, J.M. Linares-Solano A. and Salinas-Martinez C., “De Lecea Activated carbon from Spanish coal.1.two-stage CO2 activation,” Energy Fuels , Vol. 6, pp. 9, 1992.
76.Hu, Z. Guo, H. Srinivasan, M.P. and Yaming, N., “A simple method for developing mesoporosity in activated carbon,” Separation and Purification Technology, Vol. 31 , pp. 47-52, 2003.
77.Shawwa, A. R., Smith , D.W. and Sego , D.C. “Color and chlorinated organics removal from pulp mills wastewater using activated petroleum,” coke.Wat. Res. , Vol. 35, pp. 745-749, 2001.
78.Chan, W. C. R., Kelbon, M. and Krieger, B. B. “Modelling and experimental verification of physical and chemical process during pyrolysis of a large biomass particle,” Fuel , Vol. 64 , pp. 1505-1513, 1985.
79.松永一彥、新村孝善、西和枝、神野好孝、國生徹郎 モウソウチクの炭化生成物と竹酢液の物性について。鹿兒島縣工業技術ヤソター研究報告Vol. 13, pp. 23-30, 1999.
80.謝建德,活性碳孔隙結構與製備條件對液相吸附的影響。私立中原大學化學工程學系研究所,碩士論文,第1-88頁,1998。
81.黃龍泰,以稻穀和花生殼製備高表面積之活性碳與其應用,國立台灣科技大學化學工程系研究所,碩士論文,台北,第1-89頁,2002。
82.Matos, J. Laine, J. and Herrmann, J.M.“Effect of the Type of Activated Carbons on the Photocatalytic Degradation of Aqueous Organic Pollutants by UV-Irradiated Titania,” Journal Catalysis, Vol. 200 , pp. 10-20, 2001.
83.周佳慧,活性碳孔洞結構對不同氣體有機物吸附之影響,國立成功大學化學工程系研究所,碩士論文,台南,第1-28頁,2001。
84.劉曾旭,活性碳製造技術及應用,產業調查與技術, Vol.127, pp.84-97, 1998。
85.Corapcioglu, M. O., and Huang , C. P. , “The surface acidity and characterization of some commercial activated carbon,” Carbon, Vol. 25, pp. 569, 1987.
86.Holleck, G.L.“Diffusion and solubility of hydrogen in palladium and palladium silver alloys,” Journal Chemical Physical , Vol. 74, pp. 503, 1970.
87.Guanjun, Q. Rong, M. and Zhihao, J., “The 3rd International Conference on Ecomaterials,” Japan, pp. 153-156, 1997.
88.Wu, K.H. Shin, Y.M. Yang, C.C. Wang, G.P. , and Horng, D.N.,“Preparation and characterization of bamboo charcoal/Ni0.5Zn0.5Fe2O4 composite with core-shell structure,” Materials Letters , Vol. 60, pp. 2707-2710, 2006.
89.Ikuo, A. Tomoko, F. Jun, M. Hideki, T. and Satoshi, I.“Preparation of carbonaceous adsorbents for removal of chloroform from drinking water,” Carbon , Vol. 39 , pp. 1069-1073, 2001.
90.Kei, M. Toshitatsu, M. Yasuo, H. Keiichi, N. and Tomoki, N. “Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal,” Bioresource Technology , Vol. 95, pp. 255-257, 2004.
91.Feleke, Z., and Sakakibara, Y.,“A bio-electrochemical reactor coupled with adsorber for the removal of nitrate and inhibitory pesticide,” Water Res, Vol. 36, pp. 3092-3102, 2002.
92.陳弘彬,孟宗竹炭與活性碳之研製,國立屏東科技大學森林系,碩士論文,第3-26頁,2003。
93.Abe, I., Fukuhara, T., Maruyama, J., Tatsumoto, H., and Iwasaki, S., “Preparation of carbonaceous adsorbents for removal of chloroform from drinking water,” Carbon , Vol. 39, pp. 1069-1073, 2001.
94.Yu, Y. Yu, J.C. Yu, J.G. Kwok, Y.C. Che, Y.K. Zhao, J.C. Ding, L. Ge, W.K. and Wong,P.K.,“Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes,” Applied Catalysis A: Gen , Vol. 289 , pp. 186–196, 2005.
95.Siegel, A. F. 著,統計學教學研究會譯,實用統計學,前程企業管理有限公司,臺北縣,第287-320,567-596,690頁,2001。
96.Phadke, M. S. 原著,黎正中編譯,穩健設計之品質工程,臺北圖書有限公司,臺北,第3-11,56-136頁,1993。
97.唐麗英,工業實驗設計法(DOE)課程,工研院材料研究所,新竹,第3-36頁,2004。
98.Morito, A., Xu, C. N., Nonaka, K., Shobu, K., and Watanabe, T., “Statistical approach for optimizing sputtering conditions of highly oriented aluminum nitride thin films,” Thin Solid Films, Vol. 315, pp. 62-65, 1998.
99.中山大學納米技術研究中心,廣州,2005。 http://www.nanoinfo.cn/
100.Taguchi, G. and Konishi, S., “Orthogonal arrays and linear graphs,” dearborn, MI: ASI Press, pp. 10-14, 1987.
101.Taguchi, G.“Introduction to quality engineering,” Asian Productivity Organization, pp. 20-24, 1986.
102.李輝煌,田口方法 - 品質設計的原理與實務,高立圖書有限公司,台北,第27-44頁,2002。
103.鍾清章,品質工程 (田口方法) Quality engineering,中華民國品質學會,台北,第215-243頁,2000。
104.邱國創,以實驗計畫法提高網板印刷品質,工業材料,工業技術研究院工業材料研究所,新竹,第136-140頁,1999。
105.林琤琦,淺談實驗設計法在多層陶瓷製程之應用,工業材料,工業技術研究院工業材料研究所,新竹,第123-128頁,1999。
106.陳耀茂譯,田口實驗計畫法,滄海書局,台北,第215-216頁,1997。
107.吳以晴,田品式品質工程,工研院田品式品質工程研討會,新竹,第115-116頁,2003。
108.盧昆宏,工程品質設計實務田口方法之應用研討會,工研院,新竹,第15-26頁,2004。
109.林秀雄,田口方法實戰技術,海天出版社,深训,第1-2頁,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top