跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 19:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊玉婷
研究生(外文):Yu-Ting Yang
論文名稱:以磁振擴散張量造影觀察紐西蘭大白兔之神經系統發育
論文名稱(外文):Monitoring Brain Neural Development in New Zealand Rabbit Using MR Diffusion Tensor Imaging
指導教授:陳博洲陳博洲引用關係
指導教授(外文):Po-Chou Chen
口試委員:陳博洲郭士民饒若琪
口試委員(外文):Po-Chou ChenShyh-Ming KuoJo-Chi Jao
口試日期:2013-07-19
學位類別:碩士
校院名稱:義守大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:93
中文關鍵詞:擴散張量磁振造影動物模式神經纖維走向平均擴散性部分不等向性指標神經系統發育
外文關鍵詞:Diffusion Tensor ImagingAnimal ModelMR TractographyMean DiffusivityFractional AnisotropyBrain Neural Development
相關次數:
  • 被引用被引用:0
  • 點閱點閱:2883
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
擴散張量磁振造影(diffusion tensor imaging, DTI),為一種非侵入式的磁振造影技術,目前已經被廣泛應用在神經生理學、神經解剖學及多發性硬化症等的診斷和研究。腦中白質神經纖維束(white matter tract)的部分不等向性指標(Fractional Anisotropy, FA)明顯高於灰質,所以擴散張量影像對白質的敏感度較高;且非等向性會隨著疾病的影響和神經發育而有所改變。本研究之目的為瞭解兔腦動物模式的擴散量化指標隨著發育成長的變化及腦部神經纖維之發育情形,擬建立擴散張量磁振造影之兔腦動物模式,藉由縱向觀察紐西蘭大白兔全腦白質神經纖維之部分不等向性指標、平均擴散性(Mean Diffusivity, MD)及神經纖維走向(MR Tractography)評估比較不同發育期之變化情形。本研究以動物模式擴散張量磁振造影針對各時間點紐西蘭大白兔腦部之平均擴散性、非等向性指標及神經纖維走向進行縱向評估,結果顯示隨著紐西蘭大白兔之年齡週數增加,腦部各部位之平均擴散性值皆呈現下降趨勢。反之,腦部各部位之部分不等向性FA值皆呈現上升趨勢。DTI神經纖維走向影像之評估結果則顯示隨著紐西蘭大白兔之年齡週數增加神經纖維越來越密集且逐漸趨於完整,藉此可觀察神經纖維之發育過程,希望此研究成果可進一步應用於臨床的診斷上。
Diffusion tensor imaging (DTI), a novel non-invasive method of magnetic resonance imaging (MRI), has been wildly used in neurophysiology, neurons anatomy and multiple sclerosis diagnosis and research. Brain white matter tracts’ fractional anisotropy (FA) was significantly higher than gray matter, and sensitive to white matter in diffusion tensor imaging as well. Diffusion anisotropy changes with diseases and also with neural developments. Therefore, diffusion tensor imaging was used to acquire image data and to investigate changes in regional diffusion quantitative indices, mean diffusivity (MD), FA, and white matter fiber tract during rabbit brain developments. The results were evaluated and compared longitudinally. DTI is able to fully document integrity of neural fiber tracks and presents tissue’s microstructure in rabbit brain in vivo. The goal of this study was to study changes in regional diffusion quantitative indices and white matter fiber tract of animal brain development model. In order to present neural fiber tractography and diffusion characteristics in different regions of rabbit’s brain, time course MD, FA and MR tractography of normal New Zealand rabbits were statistically quantified longitudinally. The results showed that the MD values in each part of the New Zealand rabbits’ brain gradually decreased as they became older. On the contrary, the FA values in each part of the brain showed significantly increased as the New Zealand rabbit getting older. DTI tractography also showed that the brain neural fibers became denser and gradually showing integrity as the New Zealand rabbits getting older. Hence, it might be capable of investigating the developmental process of brain neural fiber longitudinally. It is hoped that the achievements of this study can be further applied in clinical diagnosis.
致謝 Ⅰ
中文摘要 Ⅱ
Abstract Ⅳ
表目錄 Ⅷ
圖目錄 Ⅸ
第一章緒論 1
1-1研究背景及文獻回顧 1
1-2 研究動機及目的 5
1-3 論文架構 6
第二章 原理與應用 7
2-1 MR EPI成像原理 7
2-2 MR DTI成像原理 11
2-3擴散量化指標 18
2-3-1部分不等向性(FA) 18
2-3-2平均擴散率(MD) 19
2-4神經纖維走向DTI Tractography 20
2-5兔腦解剖 22
第三章 實驗方法與步驟 29
3-1實驗方法 29
3-2實驗步驟 31
3-2-1動物準備 31
3-2-2磁振造影掃描 33
3-3影像數據處理 36
3-4統計分析 47
第四章實驗結果 48
4-1擴散張量磁振造影數據分析 48
4-2擴散張量磁振造影數據統計分析 56
4-3神經纖維走向(Tractography) 65
第五章 實驗結果 68
5-1討論 68
5-2結論 71
第六章參考文獻 72

表目錄
表2-1 兔子與人類的年齡對照表 25
表2-2 兔腦nNOS陽性神經元的密度、胞體直徑、第一級突觸數及最長突觸長度 28
表3-1 MRI掃描波序及參數 34
表4-1 紐西蘭大白兔全腦及腦部分葉區MD值之線性迴歸分析 59
表4-2 紐西蘭大白兔全腦及腦部分葉區FA值之線性迴歸分析 59
表4-3 紐西蘭大白兔全腦不同成長期MD值之線性迴歸分析 60
表4-4 紐西蘭大白兔枕葉區FA值之時變曲線 61
表4-5 紐西蘭大白兔全腦及各腦部分葉區間MD值之獨立樣本t檢定分析 62
表4-6 紐西蘭大白兔全腦及各腦部分葉區間FA值之獨立樣本t檢定分析 62
表4-7 紐西蘭大白兔全腦及各腦部分葉區間不同成長期MD值之單因子變異數多重分析 63
表4-8 紐西蘭大白兔全腦及各腦部分葉區間不同成長期FA值之單因子變異數多重分析 64

圖目錄
圖1-1 磁振擴散張量造影每年在Pubmed中收集之出版論文估計數 4
圖2-1 傳統MRI掃描波序 k-space之填入方式 7
圖2-2 EPI掃描波序k-space之填入方式 8
圖2-3 SE-EPI波序圖 9
圖2-4 擴散橢圓球體與三個特徵向量及特徵值 15
圖2-5 FA色碼圖像(color-coded FA map) 16
圖2-6 向量追蹤 21
圖2-7 兔腦冠狀面解剖構造 22
圖2-8 兔腦矢狀面解剖構造 23
圖2-9 人類腦部發育程序示意圖 25
圖2-10 兔腦之組織切片及CT影像 26
圖3-1 Siemens MAGNETOM Skyra 3.0T全身磁振造影掃描儀 30
圖3-2 15通道高解析度膝線圈 30
圖3-3 紐西蘭大白兔 31
圖3-4 Zoletil 50麻醉劑 32
圖3-5 Rompun麻醉劑 32
圖3-6 紐西蘭大白兔擺位及固定 33
圖3-7 Siemens影像處理工作站syngo影像分析軟體之操作介面 35
圖3-8 上:紐西蘭大白兔腦部解剖圖,下:與上圖對應之T2加權影像 40
圖3-9 紐西蘭大白兔各切面擴散張量影像中EPI影像 38
圖3-10 紐西蘭大白兔各切面擴散張量影像中ADC影像之ROI圈選 40
圖3-11 紐西蘭大白兔各切面擴散張量影像中FA影像之ROI圈選 42
圖3-12 紐西蘭大白兔頭部之MRI 3D T2 SPACE連續切面解剖影像 44
圖3-13 影像處理分析流程圖 46
圖4-1 紐西蘭大白兔全腦及腦部枕葉、頂葉顳葉及額葉區MD值之時變曲線 50
圖4-2 紐西蘭大白兔全腦及腦部枕葉、頂葉顳葉及額葉區
圖4-3 紐西蘭大白兔枕葉區MD值之時變曲線 51
圖4-4 紐西蘭大白兔枕葉FA值之時變曲線 51
圖4-5 紐西蘭大白兔頂葉及顳葉MD值之時變曲線 54
圖4-6 紐西蘭大白兔頂葉及顳葉FA值之時變曲線 52
圖4-7 紐西蘭大白兔額葉區MD值之時變曲線 52
圖4-8 紐西蘭大白兔額葉區FA值之時變曲線 52
圖4-9 紐西蘭大白兔全腦MD值之時變曲線 54
圖4-10 紐西蘭大白兔全腦FA值之時變曲線 54
圖4-11 紐西蘭大白兔全腦不同成長期MD值之時變曲線 55
圖4-12 紐西蘭大白兔全腦不同成長期FA值之時變曲線 55
圖4-13 第5週齡紐西蘭大白兔腦部神經纖維走向圖 65
圖4-14 第11週齡紐西蘭大白兔腦部神經纖維走向圖 66
圖4-15 第17週齡紐西蘭大白兔腦部神經纖維走向圖 66
圖4-16 第24週齡紐西蘭大白兔腦部神經纖維走向圖 67
圖4-17 紐西蘭大白兔腦組織海馬迴之神經纖維走向圖 67


1.M. K. Chung, J. K. Worsley, “A unified statistical approach to deformation-based morphometry,” NeuroImage, 14 (3):595- 606, 2001.
2.M. E. Berens, J. T. Rutka, M. L. Rosenblum, “Brain tumor pidemiology, growth, and invasion,” Neurosurg Clin North Am, (1):1-18, 1990.
3.J. A. Brunberg, T. L. Chenevert, P. E. McKeever, D. A. Ross, L. R. Junck, K. M. Muraszko, et al., “In vivo MR determination of water diffusion coefficients and diffusion anisotropy: Correlation with structural alteration in gliomas of the cerebral hemispheres,” Am J Neuroradiol, (16):361-371, 1995.
4.M. V. Boland, “Quigley HARisk factors and open-angle glaucoma: classification and application,” J Glaucoma, (16):406-418, 2007.
5.N. Gupta, Y. H. Yucel, “Glaucoma as a neurodegenerative disease,” Curr Opin Ophthalmol, (18):110-114, 2007.
6.T. Ebisu, C. Tanaka, M. Umeda, M. Kitamura, S. Naruse, T. Higuchi, S. Ueda, H. Sato, “Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo planar imaging,” Magn Reson Imaging, (14):1113-1116, 1996.
7.Y. J. Kim, K.H. Chang, I.C. Song, “Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging,” Am J Roentgenol, (171):1487-1490, 1998.
8.S. H. Park, K. H. Chang, I. C. Song, Y. J. Kim, S. H. Kim, M. H. Han, “Diffusion-weighted MRI in intracranial lesions,” Neuroradiology, (42): 716-721, 2000.
9.J. Y. Albert, A. V. Luis, W. S. Pamela, A. H. Joshua, D. R. James, R. G. Gilberto, “MRI-based Selection for Intra-arterial Stroke Therapy: Value of Pre-treatment DWI Lesion Volume in Selecting Acute Stroke Patients Who Will Benefit from Early Recanalization,” NIHPA Author Manuscripts, 40(6): 2046-2054, 2009.
10.S. Mori, P. B. Barker, “Diffusion magnetic resonance imaging: its principle and applications,” The Anatomical record, 257(3):102-109, 1999.
11.D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, H. Chabriat, “Diffusion Tensor Imaging: Concepts and. Applications,” Journal of Magnetic Resonance Imaging, 13(4):534-546, 2001.
12.Melheml ER, Mori S, Mukundan G, Kraut MA, Pomper MG, van Zijl PCM, “ Diffusion tensor MR imaging of the brain and white matter tractography”, American journal of roentgenology, 178(1):3-16, 2002.
13.O. Adelman, “Brownian motion never increases: a new proof of a theorem of Dvoretzky,” Erdos and Kakutani Israel J, 1985, p.189-192.
14.E. L. Hahn, “Spin echoes,” Physical Review 80: 580-594, 1950.
15.D. G. Taylor, M. C. Bushell, “The spatial mapping of translational diffusion coefficients by the NMR imaging techniques[J] ,” Phys Med Biol, 30(4):345-349, 1985.
16.D. Le Bihan, E. Breton, et al., “MR Imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders,” Annual Meeting of the RSNA, Chicago, 1985.
17.M. E. Moseley, Y. Cohen, J. Kucharczyk, et al., “Diffusion-weighted MRI imaging of anisotropic water diffusion in cat central nervous system,” Radiology176:439-445, 1990.
18.P. Douek, , R. Turner, J. Pekar, N. Patronas, D. LeBihan, “MR color mapping of myelin fiber orientation,” Comput Assist Tomogr15:923-929, 1991.
19.J. B. Heidi, E. J. Timothy, “Diffusion MRI,” Academic Press, 2009, p.206.
20.內政部統計處(2006)中華民國九十四年老人狀況調查報告,台北:內政部。
21.R. M. Heidemann, A. Anwander, T. Feiweier, T. R. Knösche, R. Turner, “k-space and q-space: combining ultra-high spatial and angular resolution in diffusion imaging using ZOOPPA at 7 T,” Neuroimage, 60(2):967-78, 2012.
22.C. J. Wargo, J. C. Gore, “Localized high-resolution DTI of the human midbrain using single-shot EPI, parallel imaging, and outer-volume suppression at 7T,” Magn Reson Imaging, S0730-725X(13)00043-X, 2013.
23.N. Barakat, F. B. Mohamed, L. N. Hunter, P. Shah, S. H. Faro, A. F. Samdani, J. Finsterbusch, R. Betz, J. Gaughan, M. J. Mulcahey, “Diffusion tensor imaging of the normal pediatric spinal cord using an inner field of view echo-planar imaging sequence,” Am J Neuroradiol, 33(6):1127-33, 2012.
24.J. P. Basser et al., “Estimation of the effective selfdiffusion tensor from the NMR spin echo,” J Magn Reson B, 103(3):247-254, 1994.
25.H. Daniela et al., “Pathways that make voices: white matter changes in auditory hallucinations,” Arch Gen Psychiatry, 61(7): 658-668, 2004.
26.J. Matthew, Hoptman et al., “DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis,” Neuroreport, 15(16): 2467-2470, 2004.
27.A. Einstein, “Investigations on the Theory of the Brownian Movement,” Dover Publications, 1956.
28.H. C. Torrey, “Bloch equations with diffusion terms,” Phys Rev, 104: 563-565, 1956.
29.E. O. Stejskal, J. E. Tanner, “Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient,” J Chem Phys, 42: 288, 1965.
30.P. J. Basser, J. Mattiello, R. Turner, Le Bihan D, “Diffusion tensor echo-planar imaging of human brain,” in Proceedings of the SMRM, 56: 584, 1993.
31.P. J. Basser, J. Mattiello, D. LeBihan, “Estimation of the effective self- diffusion tensor from the NMR spin echo,” J Magn Reson, 103(3):247-54, 1994.
32.J. Scholz, “DTI-based fibre tracking in the examination of visuomotor networks,” Nijmegen CNS, 2(1): 9-29, 2007.
33.K. Heberlein, J. Grinstead, H. Meyer, C. Boyea, M. Dhamankar, “Diffusion Tensor Imaging,” Siemens Medical Solutions, 2006.
34.S. Haller, A. Xekardaki, C. Delaloye, A. Canuto, K. O. Lovblad, G. Gold, “Giannakopoulos PCombined analysis of grey matter voxel-based morphometry and white matter tract-based spatial statistics in late-life bipolar disorder,” J Psychiatry Neurosci, (36):391-401, 2011.
35.D. K. Jones, M. R. Symms, M. Cercignani, R. J. Howard, “The effect of filter size on VBM analyses of DT-MRI data,” NeuroImage, (26):546-554, 2005.
36.K. Wheeler, M. Cercignani, “About “axial” and“radial” diffusivities,” Magn Reson Med, (61):1255-1260, 2009.
37.D. K. Jones, M. R. Symms, M. Cercignani, R. J. Howard, “The effect of filter size on VBM analyses of DT-MRI data,” NeuroImage, (26):546-554, 2005.
38.T. Yang, Z. Guo, C. Luo, Q. Li, B. Yan, L. Liu, “White matter impairment in the basal ganglia-thalamocortical circuit of drug-naive childhood absence epilepsy,” Epilepsy Res, (99):267-273, 2012.
39.A. C. Guo, J. M. Provenzale, L. C. H. Cruz, J. R. Petrella, “Cerebral abscesses: investigation using apparent diffusion coefficient maps,” Neuroradiology, (43): 370-374, 2001.
40.Y. Jiang, G. A. Johnson, “Microscopic diffusion tensor imaging of the mouse brain,” Neuroimage, 50(2):465-471, 2010.
41.M. M. Cheung, D. T. Li, E. S. Hui, S. Fan, A. Y. Ding, Y. Hu, E. X. Wu, “In vivo diffusion tensor imaging of chronic spinal cord compression in rat model,” Conf Proc IEEE Eng Med Biol Soc, 2715-2718, 2009.
42.K. H. Bockhorst, P. A. Narayana, J. Dulin, R. Liu, H. C. Rea, K. Hahn, J. Wosik, J. R. Perez-Polo, “Normobaric hypero- ximia increases hypoxia-induced cerebral injury: DTI study in rats,” J Neurosci Res, 88(5):1146-1156, 2010.
43.D. N. Guilfoyle, Helpern JA, Lim KO, “Diffusion tensor imaging in fixed brain tissue at 7.0 T”, NMR Biomed, 16(2):77-81, 2003.
44.S. W. Sun, J. J. Neil, S. K. Song, “Relative indices of water diffusion anisotropy are equivalent in live and formalin-fixed mouse brains,” Magn Reson Med, 450(4):743-748, 2003.
45.S. K. Song, J. H. Kim, S. J. Lin, R. P. Brendza, D. M. Holtzman, “ Diffusion tensor imaging detects age-dependent white matter changes in a transgenic mouse model with amyloid deposition,” Neurobiol Dis, 15(3):640-647, 2004.
46.R. N. Weinreb, P. T. Khaw, “Primary open-angle glaucoma,” Lancet, (363):1711-1720, 2004.
47.J. H. Jensen, J. A. Helpern, A. Ramani, H. Z. Lu, K. Kaczynski, “Diffusional kurtosis imaging: The quantification of non-Gaussian water diffusion by means of magnetic resonance imaging,” Magnetic Resonance in Medicine, 53: 1432-1440, 2005.
48.H. Z. Lu, J. H. Jensen, A. Ramani, J. A. Helpern, “Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging,” Nmr in Biomedicine, 19: 236-247, 2006.
49.S. Mori, et al., “Three-dimensional tracking of axonal projections in the brainby magnetic resonance imaging,” Ann Neurol, 45(2): 265-269, 1999.
50.Available:http://221.12.26.222/ec3.0/c78/eteach/jiaoan/html/mammal/m10.htm
51.A. J. Barkovich, “Pediatric neuroimaging,” New York Raven, 1990.
52.Available:http://easycalculation.com/other/fun/Rabbit-years-to-Human-years.html
53.H. E. D'Arceuil, M. P. Hotakainen, C. Liu, G. Themelis, A. J. de, M. A. Crespigny Franceschini, “Near-infrared frequency-domain optical spectroscopy and magnetic resonance imaging: a combined approach to studying cerebral maturation in neonatal rabbits,” J Biomed, 10(1):110-111, 2005.
54.M. C. Bllesteros, P. E. Hansen, K. Soila, “MR imaging of the developing human brain Part 2, Postnatal development,” Radiographics, 13: 611-622, 1993.
55.Available: http://blog.udn.com/weihan97/3843844
56.A. De Crespigny, H. Bou-Reslan, M. C. Nishimura, H. Phillips, R. A. Carano, H. E. D’Arceuil, “3D micro-CT imaging of the postmortem brain,” J Neurosci Methods, 171:207-213, 2008.
57.J. W. Shek, G. Y. Wen, H. M. Wisniewski, “Atlas of the rabbit brain and spinal cord,” Baker & Taylor Books, 1985.
58.A. V. Lorenzo, F. A. Jolesz, J. K. Wallmam, P. W. Ruenzel, “Proton magnetic resonance studies of triethyltin-induced edema during perinatal brain development in rabbits,” J Neurosurg, 70:432-440, 1989.
59.尹遜河,王樹迎, 邱建華, 蔡玉梅, 劉燕, 王傳寶, “兔腦nNOS 陽性神經元的形態、結構和分佈,” 中國農業科學, 39(10):2118-2123,2006.
60.Y. W. Peng, “In vivo characterization of deveioping Rabbit brain with diffusion tensor MRI and Tractography,” Ph.D. dissertation, National Chung Hsing University, 2011.
61.H. D’Arceuil, C. Liu, P. Levitt, B. Thompson, B. Kosofsky, A. Crespigny, “Three-dimensional high-resolution diffusion tensor imaging and tractography of the developing rabbit brain,” Dev Neurosci, 30: 262-275, 2008.
62.M. Mooney, M. Siegel, “Understanding Craniofacial Anomalies:The Etiopathogenesis of Craniostoses and Facial Clefting,” New York, Wiley Liss, 2002.
63.陳雅蓁, 莊濬超, 田雨生, “以擴散張量指標評估腦神經纖維發育,” 2008 第一屆中山醫學大學醫學影像暨放射科學研討會, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊