|
[1] B.-Y. Yang and J.-M. Chen All in the XL Family: Theory and Practice. Proc. 7th International Conference on Information Security and Cryptology, volume 3506, Lecture Notes in Computer Science, pages 67-86, 2004. [2] Gregory V. Bard Algebraic Cryptanalysis. Springer-Verlag, New York, first edition, 2009. [3] N. T. Courtois and Gregory V. Bard Algebraic Cryptanalysis of the Data Encryption Standard. Available at http://eprint.iacr.org/2006/402/. [4] G. V. Bard, N. T. Courtois, and C. Jefferson. Efficient methods for conver- sion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers. http://eprint.iacr.org/2007/024. [5] M. Bardet, J.-C. Faugère, and B. Salvy. On the complexity of Grobner basis computation of semi-regular overdetermined algebraic equations. In Proc. Int’l Conference on Polynomial System Solving, pp. 71–74, 2004. INRIA report RR- 5049. [6] M. Bardet, J.-C. Faugère, B. Salvy, and B.-Y. Yang. Asymptotic expansion of the degree of regularity for semi-regular systems of equations. Proc. MEGA 2005, 2005. [7] C. Berbain, H. Gilbert, and J. Patarin. QUAD: A practical stream cipher with provable security. Eurocrypt 2006, LNCS 4004, pp. 109–128. [8] D. J. Bernstein, T.-R. Chen, C.-M. Cheng, T. Lange, and B.-Y. Yang. ECM on graphics cards. Eurocrypt 2009, LNCS 5479, pp. 483–501. [9] Luk Bettale, Jean-Charles Faugère and Ludovic Perret. Hybrid approach for solving multivariate systems over finite fields, J. Math. Crypto. 3:3(2009) pp. 177–197. [10] C. Bouillaguet, J.-C. Faugère, P.-A. Fouque, and L. Perret. Differential- algebraic algorithms for the isomorphism of polynomials problem. http://eprint.iacr.org/2009/583 [11] C. Bouillaguet, P.-A. Fouque, A. Joux, and J. Treger. A family of weak keys in HFE (and the corresponding practical key-recovery). http://eprint.iacr. org/2009/619. [12] B. Buchberger. Ein Algorithmus zum Auffinden der Basiselemente des Restk- lassenringes nach einem nul ldimensionalen Polynomideal. PhD thesis, Inns- bruck, 1965. [13] Johannes Buchmann, Daniel Cabarcas, Jintai Ding and Mohamed Saied Emam Mohamed. Flexible Partial Enlargement to Accelerate Gröbner Basis Compu- tation over F , Africacrypt 2010, LNCS 6055, pp. 69–81. [14] N. Courtois, G. V. Bard, and D. Wagner. Algebraic and slide attacks on Keeloq. FSE 2008, LNCS 5086, pp. 97–115. [15] N. Courtois, L. Goubin, and J. Patarin. SFLASH: Primitive specification (sec- ond revised version), 2002. https://www.cosic.esat.kuleuven.be/nessie [16] N. T. Courtois, A. Klimov, J. Patarin, and A. Shamir. Efficient algorithms for solving overdefined systems of multivariate polynomial equations. Euro- crypt 2000, LNCS 1807, pp. 392–407. Extended ver.: http://www.minrank. org/xlfull.pdf. [17] N. de Bruijn. Asymptotic methods in analysis. 2nd edition. Bibliotheca Math- ematica. Vol. 4. Groningen: P. Noordhoff Ltd. XII, 200 p. , 1961. [18] J.-C. Faugère. A new efficient algorithm for computing Grobner bases (F4 ). J. of Pure and Applied Algebra, 139(1999), pp. 61–88. [19] J.-C. Faugère. A new efficient algorithm for computing Grobner bases without reduction to zero (F5 ). ACM ISSAC 2002, pp. 75–83. [20] J.-C. Faugère and A. Joux. Algebraic cryptanalysis of Hidden Field Equations (HFE) using Gröbner bases. CRYPTO 2003, LNCS 2729, pp. 44–60. [21] A. Fog. Instruction Tables. Copenhagen University, College of Engineering, Feb 2010. Lists of Instruction Latencies, Throughputs and micro-operation break- downs for Intel, AMD, and VIA CPUs, http://www.agner.org/optimize/ instruction_tables.pdf. [22] J. Patarin. Asymmetric cryptography with a hidden monomial. Crypto 1996, LNCS 1109, pp. 45–60. [23] J. Patarin. Hidden Field Equations (HFE) and Isomorphisms of Polynomials (IP): two new families of asymmetric algorithms. Eurocrypt 1996, LNCS 1070, pp. 33–48. Extended ver.: http://www.minrank.org/hfe.pdf. [24] J. Patarin, N. Courtois, and L. Goubin. QUARTZ, 128-bit long digital signa- tures http://www.minrank.org/quartz/. CT-RSA 2001, LNCS 2020, pp. 282– 297. [25] J. Patarin, L. Goubin, and N. Courtois. Improved algorithms for Isomorphisms of Polynomials. Eurocrypt 1998, LNCS 1403, pp. 184–200. Extended ver.: http://www.minrank.org/ip6long.ps. [26] H. Raddum. MRHS equation systems. SAC 2007, LNCS 4876, pp. 232–245. [27] M. Sugita, M. Kawazoe, L. Perret, and H. Imai. Algebraic cryptanalysis of 58-round SHA-1. FSE 2007, LNCS 4593, pp. 349–365. [28] B.-Y. Yang and J.-M. Chen. Theoretical analysis of XL over small fields. ACISP 2004, LNCS 3108, pp. 277–288. [29] B.-Y. Yang, J.-M. Chen, and N. Courtois, On Asymptotic Security Estimates in XL and Gröbner Bases-Related Algebraic Cryptanalysis, ICICS 2004, LNCS 3269, pp. 401-413.
|