跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/08 02:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳重融
研究生(外文):Chung-Jung Chen
論文名稱:以均勻/步階阻抗式槽線共振器設計之平衡式寬頻/超寬頻帶通濾波器
論文名稱(外文):Balanced WB/UWB BPF Designs Using Uniform/Stepped-Impedance Slotline Resonators
指導教授:李 清 和
指導教授(外文):Ching-Her Lee
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:99
語文別:中文
論文頁數:35
中文關鍵詞:槽線共振器寬頻帶通濾波器超寬頻帶通濾波器
外文關鍵詞:Slotline ResonatorsWideband Bandpass filterUWB BPFs
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在探討平衡式寬頻及超寬頻帶通濾波器,研究主題共分為三部份。第一部份之平衡式寬頻帶通濾波器是利用微帶線耦合饋入多模槽線共振器組成,並利用步階式阻抗之概念來設計槽線共振器以縮減其尺寸。
在第二部份的研究中,我們以微帶線耦合饋入半電路為均勻之多模槽線共振器來設計平衡式超寬頻帶通濾波器(UWB BPF)。在差模操作時,對稱面等效為短路(電牆),多模槽線共振器之半電路為一個寬度均勻之槽線結構,我們利用將槽線共振器之前三個共振模態設計於UWB通帶內,並輔以微帶線對槽線傳輸(MST)饋入結構所產生之強耦合來得到超寬頻響應;在共模方面則利用對稱面上等效為開路(磁牆),槽線共振器被分成兩段較短之四分之一波長共振器,且中間槽線段結構不完整而無磁流,藉此使得共模訊號無法得到傳輸而被抑制。
本論文第三部分所設計者為一具有5-GHz止帶頻段之平衡式UWB BPF,其電路仍以槽線共振器作為主架構,設計概念類似於第二部份之電路者,但槽線共振器則改成步階式阻抗結構,以提供通帶內模態分布選擇之彈性,進而可得到較均勻之超寬頻響應。而為抑制UWB通帶內所不要之WLAN訊號(頻譜介於5.15 GHz與5.825 GHz間),此部分所設計之BPF於饋入線加載有一段在差模時為二分之一波長之短路微帶殘段來產生一中心頻率為5.5 GHz之帶拒頻段。
本研究所設計之平衡式寬頻和超寬頻帶通濾波器,除模擬其特性外,亦以實作來驗證其效能,而結果顯示兩者相當吻合。預期本研究之成果可實際運用在MB-OFDM與UWB系統中,而所提出之設計方法可作為此方面相關研究之有用參考。

This study aims to design and implement balanced wideband (WB) and ultra-wideband (UWB) bandpass filters (BPFs) for application in modern wireless communication systems. The proposed research work of this thesis is divided into three parts with each addressed in a chapter. In the first part, a slotline multi-mode resonator (SLMMR) in conjunction with a microstrip-to-slotline transition (MST) feeding structure was used to construct a balanced WB BPF. The concept of adjustable higher-order-mode resonant frequency of the stepped-impedance structure was adopted to reduce the size of the slotline resonator and thus make the designed BPF a more compact one.
In the second part of this thesis, a UWB BPF was designed using a slotline resonator (SLR) whose differential-mode (DM) half circuit has a uniform width. The SLR is bent at two sides, but with its mid-section left straight along the plane of symmetry (POS). When the BPF is excited differentially, the POS can be replaced with an electric wall, and the SLR half circuit works as a uniform slotline multi-mode resonator (USMMR). To obtain the desired UWB response, the first three resonant modes of the USMMR were located in the DM passband. Then the USMMR was fed with a similar MST structure as that used in the BPF circuit of the first part to achieve strong coupling and UWB response. On the other hand, when the BPF is in CM operation, the POS is virtually open-circuited, and the USMMR is divided into two shorter quarter-wavelength SLRs. In addition, the mid-section of the USMMR is now an incomplete slotline. This renders null magnetic current flow in the mid-section and thereby prevents the CM signal from transmission.
In the third part of the proposed research work, a UWB BPF with a 5-GHz notch band was designed and implemented. The design idea is the same as that employed in the second part except that the SLR is a stepped-impedance one. To avoid the interference with the WLAN system (with frequency ranging from 5.15 GHz to 5.825 GHz), a notch-band centered at 5.5 GHz within the UWB was generated by loading the microstrip feeding lines with a half-wavelength short-circuited stub.
The proposed balanced WB and UWB BPFs in this thesis were simulated and measured for performance verification, and very good agreement between theoretical prediction and measurement was observed. Results obtained in this study reveal that the proposed balance WB and UWB BPFs are feasible for application in MB-OFDM and UWB communication systems. The proposed design technique can serve as a useful reference for researchers and engineers working in this and related fields.

目 錄
頁次
中文摘要 i
Abstract ii
誌謝 iv
目 錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 研究動機 1
1-2 文獻探討 2
1-3 論文大綱 4
第二章 以SLMMR設計之應用於MB-OFDM系統的平衡式寬頻BPF 5
2-1以SLMMR為主架構之平衡式寬頻BPF設計 5
2-2以SLMMR為主架構之平衡式寬頻BPF模擬與量測結果 7
第三章 以均勻SLR設計之平衡式UWB BPF 15
3-1 以均勻SLR為主體之平衡式UWB BPF設計 15
3-2 以均勻SLR為主體之平衡式UWB BPF模擬與量測結果 16
第四章 以SISLR設計之具有5-GHz止帶的平衡式UWB BPF 22
4-1具5-GHz止帶之平衡式UWB BPF結構與設計 22
4-2具5-GHz止帶之平衡式UWB BPF模擬與量測結果 24
第五章 結論 30
參考文獻 30
作者簡歷 35
圖目錄
頁次
圖1-1 MB-OFDM UWB 系統頻率使用圖 3
圖2-1 以SLMMR為主架構之平衡式寬頻BPF:(a)整體電路(b)正面與(c)背面電路圖 10
圖2-2 SLMMR操作在(a)差模與(b)共模時之等效半電路 10
圖2-3 SLMMR於差模操作時之(a) 模態分析及(b)磁場分析圖 11
圖2-4 有無YZ殘段時之差模頻率響應圖 12
圖2-5 操作於共模時,L形開路微帶殘段之長度與產生之傳輸零點關係圖 12
圖2-6 以SLMMR為主架構之平衡式寬頻BPF模擬與量測結果:(a)差模及(b)共模頻率響應圖 13
圖2-7 本章所設計之平衡式寬頻BPF之實作電路照片:(a)正面與(b)背面圖 14
圖3-1 以均勻SLR為主體之平衡式UWB BPF架構 18
圖3-2 圖3-1之等效半電路圖 18
圖3-3 USMMR操作在(a)差模與(b)共模時之等效半電路 19
圖3-4 Microstrip-slotline transition之基本架構圖 19
圖3-5 以均勻SLR為主體之平衡式UWB BPF模擬與量測結果:(a)差模頻率響應及(b)共模頻率響應圖 20
圖3-6 圖3-1之平衡式UWB BPF實作電路照片:(a)正面與(b)背面圖 21
圖4-1 具5-GHz止帶之平衡式UWB BPF架構 25
圖4-2 SISLR操作在(a)差模與(b)共模時之等效半電路 26
圖4-3 直線型步階式阻抗槽線共振器 26
圖4-4 直線型步階式阻抗槽線共振器之模態分析圖 27
圖4-5 本章電路所提出之彎折後的步階式阻抗槽線共振器之模態分析圖 27
圖4-6 具5-GHz止帶之平衡式UWB BPF模擬與量測結果:(a)差模頻率響應及(b)共模頻率響應圖 28
圖4-7 具5-GHz止帶之平衡式UWB BPF實作電路照片:(a)正面與(b)背面圖 29

表目錄
頁次
表1、MB-OFDM系統規格 3
表2、MB-OFDM UWB 系統各頻道群之頻譜範圍 3






[1] D. M. Pozar, Microwave engineering, 2nd ed., New York: Wiley, 1998.
[2] FCC, “Revision of part 15 of the commission’s rules regarding ultra-wideband transmission systems,” First Report and Order, ET Docket, pp. 98–153, Feb. 2002.
[3] C. T. Rodenbeck, S.-G. Kim, W.-H. Tu, M. R. Coutant, S. Hong, M. Li, and K. Chang, “Ultra-wideband low-cost phased-array radars,”IEEE Trans. Microw. Theory Tech., vol. 53, no. 12, pp. 3697–3703, Dec. 2005.
[4] W.-M. Zhang, R. P. Hsia, C. Liang, G. Song, C. W. Domier, and N. C. Luhmann, Jr., “Novel low-loss delay line for broadband phased antenna array applications,” IEEE Microw. Guided Wave Lett., vol. 6, pp. 395–397, Nov. 1996.
[5] R. W. Ziolkowsky“Properties of electromagnetic beams generated by ultra-width bandwidth pulse-driven arrays,”IEEE Trans. Antennas Propag., vol. 40, no. 8, pp. 888–905, Aug. 1992.
[6] J. S. McLean, H. Foltz, and R. Sutton, “Pattern descriptors for UWB antennas,”IEEE Trans. Antennas Propag., vol. 53, pp. 553-559, Jan. 2005.
[7] L. Zhu and H. Wang, “Ultra-wideband (UWB) bandpass filter on aperture-backed microstrip line,” Electron. Lett., vol. 41, no. 18, pp. 1015–1016, Sept. 2005.
[8] N. Thomson and J. S. Hong, “Compact ultra-wideband microstrip/coplanar waveguide bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 184–186, Mar. 2007.
[9] J. Gao, L. Zhu, W. Menzel, and F. Bogelsack, “Short-circuited CPW multiple-mode resonator for ultra-wideband (UWB) bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 3, pp. 104–106, Mar. 2006.
[10] H. Wang, L. Zhu, and W. Menzel,“Ultra-wideband bandpass filter with hybrid microstrip/CPW structure,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 12, pp. 844–846, Dec. 2005.
[11] R. Li, L. Zhu, “Ultra-wideband (UWB) bandpass filters with hybrid microstrip/slotline structures,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 778–780, Nov. 2007.
[12] K. Ma, K. C. B. Liang, R. M. Jayasuriya, and K. S Yeo, “A wideband and high rejection multimode bandpass filter using stub perturbation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 1, pp. 24–26, Jan. 2009.
[13] A. Miller, J.-S. Hong, “Wideband bandpass filter with reconfigurable bandwidth,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 28–30, Jan. 2010.
[14] C.-H. Liang, C.-Y. Chang, ”Compact wideband bandpass filters using stepped- impedance resonators and interdigital coupling structures,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 551–553, Sep. 2009.
[15] C.-H. Lee, C.-I G. Hsu, and L.-Y. Chen, ”Band-notched UWB BPF design using combined modified quarter-wavelength TSSIR,” IET Microwaves, Antennas & Propagation, vol. 3, Iss. 8, pp. 1232–1236, Dec. 2009.
[16] Y.-C. Chen, C.-H. Lee, and C.-I. G. Hsu, “A compact CPW-fed UWB BPF using combined microstrip SIR,” Microwave and Optical Technology Lett., vol. 51, no.4, pp. 918–921, Apr. 2009.
[17] R. Li, S. Sun, L. Zhu, “Synthesis design of ultra-wideband bandpass filters with composite series and shunt stubs,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 3, pp. 684–692, Mar. 2009.
[18] R. Li, L. Zhu, “Ultra-wideband (UWB) bandpass filters with hybrid microstrip and slotline structures,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 778–780, Nov. 2007.
[19] R. Li, S. Sun, L. Zhu, “Compact UWB bandpass filter on hybrid microstrip/slotline structure with improved out-of-band performances,” Microwave and millimeter wave technology, vol. 1, pp. 6–9, Jun. 2008.
[20] Y.-S. Lin and C. H. Chen, “Novel balanced microstrip coupled-line bandpass filters,” in Proc. URSI Int. Electromag. Theory Symp., pp. 567–569, 2004.
[21] C.-H. Wu, C.-H. Wang, and C. H. Chen, “Novel balanced coupled-line bandpass filters with common-mode noise suppression,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 2, pp. 287–295, Feb. 2007.
[22] C.-H. Wu, C.-H. Wang, and C. H. Chen, “Balanced coupled-resonator bandpass filters using multisection resonators for common-mode suppression and stopband extension,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1756–1763, Aug. 2007.
[23] X., G. Chen, Han, R. Ma, J. Gao, and W. Zhang, "Design of balanced dual-band bandpass filter with self-feedback structure," ETRI Journal, vol. 31, no. 3, pp. 475–477, Aug. 2009.
[24] J. Shi and Q. Xue, "Novel balanced dual-band bandpass filter using coupled stepped-impedance resonators," IEEE Microw. Wireless Compon. Lett., vol. 20, no. 1, pp. 19-21, Jan. 2010.
[25] C.-H. Lee, C.-I G. Hsu, and C.-C. Hsu, “Balanced dual-band BPF with stub-loaded SIRs for common-mode suppression,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 2, pp. 70–72, Feb. 2010.
[26] C.-H. Lee, I-C. Wang, and C.-I G. Hsu, ”Dual-band balanced BPF using /4 stepped-impedance resonators and folded feed lines,” Journal of Electromagnetic Waves and Applications, vol. 23, no. 17/18, pp. 2441–2449, Oct. 2009.
[27] T. B. Lim and L. Zhu, “Differential-mode ultra-wideband bandpass filter on microstrip line,” Electronics Lett., vol. 45, Issue 22, pp. 1124–1125, Oct. 2009.
[28] T.B. Lim and L. Zhu, “A differential-mode wideband bandpass filter on microstrip line for UWB application,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 10, pp. 632–634 Oct. 2009.
[29] T.B. Lim and L. Zhu, “Differential-mode wideband bandpass filter with three transmission zeros under common-mode operation,” Proc. 2009 Asia-Pacific Microw. Conf., pp. 159–162, Dec. 2009.
[30] T.B. Lim and L. Zhu, “Highly selective differential-mode wideband bandpass filter for UWB application,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 3, pp. 133–135 Mar. 2011.
[31] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. 28, no. 12, Dec. 1980.
[32] J. Gao, L. Zhu, W. Menzel, and F. Bogelsack, “Short-circuited CPW multiple-mode resonator for ultra-wideband (UWB) bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 3, pp. 104–106, Mar. 2006.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top