|
[1] BP-Global, http://www.bp.com. [2] REN21 2015, http://www.ren21.net. [3]PBL-Netherlands-Environmental-Assessment-Agency, http://www.pbl.nl. [4] NOAA http://www.ncdc.noaa.gov/temp-and-precip/state-temps/. [5] 能源資訊網, http://emis.erl.itri.org.tw/news/news/upt.asp?p0=3951. [6] Knowledge TRIWo. http://apps.webofknowledge.com. [7] Lu X, Yu M, Wang G, Tong Y, Li Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy & Environmental Science. 2014;7:2160-81. [8] Zhang J, Zhao X. On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem. 2012;5:818-41. [9] Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, et al. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews. 2015;44:3639-65. [10] Geim AK, Novoselov KS. The rise of graphene. Nature materials. 2007;6:183-91. [11] Cai X, Peng M, Yu X, Fu Y, Zou D. Flexible planar/fiber-architectured supercapacitors for wearable energy storage. Journal of Materials Chemistry C. 2014;2:1184-200. [12] 胡啟章. 電化學原理與方法(二版): 五南圖書出版股份有限公司; 2011. [13] Faulkner AJBaLR. Electochemical Methods Fundamentals and Applications. in John Wiley & Sonic, Inc 2001. [14] 陳奕勳. 陽極沈積錳系水合氧化物於電化學超級電容器之應用: 撰者; 2003. [15] 電化學教室 http://catchfrog.myweb.hinet.net/system.html. [16] Pandolfo A, Hollenkamp A. Carbon properties and their role in supercapacitors. Journal of power sources. 2006;157:11-27. [17] Davies A, Yu A. Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. The Canadian Journal of Chemical Engineering. 2011;89:1342-57. [18] Zhang LL, Zhou R, Zhao X. Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry. 2010;20:5983-92. [19] H.I.Becker. Low voltage electrolytic capacitor. United States Patent 2,800,616. 1957. [20] R.A.Rightmire. Electrical energy storage apparatus. United States Patent 3,288,641. 1966. [21] D.L.Boos. Electrolytic capacitor having carbon paste electrodes. United States Patent 3,536,963. 1970. [22] Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, et al. Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy. 2009;34:4889-99. [23] Zhang LL, Zhao X. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews. 2009;38:2520-31. [24] Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer Science & Business Media; 2013. [25] Park J-W, Lee E-S, Moon Y-H. New development of combined electrochemical processes for mirror-like micro grooves. Proceedings of the 17th annual ASPE meeting2002. p. 671-6. [26] Frackowiak E. Carbon materials for supercapacitor application. Physical chemistry chemical physics. 2007;9:1774-85. [27] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature materials. 2008;7:845-54. [28] Huang Y, Liang J, Chen Y. An Overview of the Applications of Graphene‐Based Materials in Supercapacitors. Small. 2012;8:1805-34. [29] Yu P, Zhang X, Wang D, Wang L, Ma Y. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Crystal Growth and Design. 2008;9:528-33. [30] Gao H, Xiao F, Ching CB, Duan H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS applied materials & interfaces. 2012;4:2801-10. [31] http://www.maxwell.com/. [32] LS Mtron Hi-tech center hwuckuih. [33] Pasta M, La Mantia F, Hu L, Deshazer HD, Cui Y. Aqueous supercapacitors on conductive cotton. Nano Research. 2010;3:452-8. [34] Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, et al. Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences. 2007;104:13574-7. [35] Chang T. Potential Substrates for Low-Cost Flexible Supercapacitors. Low-Cost Flexible Supercapacitors. Spring 2012. [36] Zhao X, Johnston C, Grant PS. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. JMCh. 2009;19:8755-60. [37] Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, et al. Ultrathin planar graphene supercapacitors. Nano letters. 2011;11:1423-7. [38] Kavian R, Vicenzo A, Bestetti M. Growth of carbon nanotubes on aluminium foil for supercapacitors electrodes. Journal of materials science. 2011;46:1487-93. [39] Wang K, Zou W, Quan B, Yu A, Wu H, Jiang P, et al. An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip. Advanced Energy Materials. 2011;1:1068-72. [40] Lu X, Dou H, Gao B, Yuan C, Yang S, Hao L, et al. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta. 2011;56:5115-21. [41] Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano. 2010;4:2865-73. [42] Cao Y, Treacy GM, Smith P, Heeger AJ. Solution‐cast films of polyaniline: Optical‐quality transparent electrodes. Applied physics letters. 1992;60:2711-3. [43] Diaz AF, Castillo JI, Logan JA, Lee W-Y. Electrochemistry of conducting polypyrrole films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1981;129:115-32. [44] Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, et al. Transparent, conductive carbon nanotube films. Science. 2004;305:1273-6. [45] Higashitani K, McNamee CE, Nakayama M. Formation of large-scale flexible transparent conductive films using evaporative migration characteristics of Au nanoparticles. Langmuir. 2011;27:2080-3. [46] Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, et al. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy & Environmental Science. 2013;6:2698-705. [47] TTRI紡織綜合所 http://www.ttri.org.tw/content/news/news01_01.aspx?sid=1340. [48] Zhamu A. NGPs—an emerging class of nanomaterials. Reinforced Plastics. 2008;52:30-1. [49] Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science. 2002;297:787-92. [50] 林瑋寧. 碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究. 清華大學化學工程學系學位論文. 2010:1-231. [51] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48:2127-50. [52] Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chemical Society Reviews. 2010;39:3157-80. [53] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chemical Society Reviews. 2010;39:228-40. [54] McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials. 2007;19:4396-404. [55] Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano. 2008;2:463-70. [56] Steurer P, Wissert R, Thomann R, Mülhaupt R. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromolecular rapid communications. 2009;30:316-27. [57] Paredes J, Villar-Rodil S, Fernandez-Merino M, Guardia L, Martínez-Alonso A, Tascon J. Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. Journal of Materials Chemistry. 2011;21:298-306. [58] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Advanced Materials. 2008;20:4490-3. [59] Arco D, Gomez L, Zhang Y, Kumar A, Zhou C. Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. Nanotechnology, IEEE Transactions on. 2009;8:135-8. [60] Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos Sa, et al. Electric field effect in atomically thin carbon films. science. 2004;306:666-9. [61] Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D, Jaszczak J, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters. 2008;100:016602. [62] Novoselov K, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, et al. Two-dimensional gas of massless Dirac fermions in graphene. nature. 2005;438:197-200. [63] Zhang Y, Brar VW, Wang F, Girit C, Yayon Y, Panlasigui M, et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nature Physics. 2008;4:627-30. [64] Balandin A, Ghosh S, Teweldebrhan D, Calizo I, Bao W, Mia F, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics. Silicon Nanoelectronics Workshop, 2008 SNW 2008 IEEE: IEEE; 2008. p. 1-2. [65] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. science. 2008;321:385-8. [66] 梁智翔. 水熱電化學法製備超高電容器用錳氧化物電極材料之研究. 成功大學材料科學及工程學系學位論文. 2008:1-176. [67] Zheng J, Jow T. A new charge storage mechanism for electrochemical capacitors. Journal of The Electrochemical Society. 1995;142:L6-L8. [68] Jow T, Zheng J. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide. Journal of the Electrochemical Society. 1998;145:49-52. [69] Subramanian V, Zhu H, Vajtai R, Ajayan P, Wei B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B. 2005;109:20207-14. [70] Subramanian V, Zhu H, Wei B. Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. Journal of Power Sources. 2006;159:361-4. [71] Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F. Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. Journal of the Electrochemical Society. 2005;152:A229-A35. [72] Deng M, Yang B, Shang S, Hu Y. Studies on CNTs–MnO2 nanocomposite for supercapacitors. Journal of materials science. 2005;40:1017-8. [73] Hu C-C, Wang C-C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. Journal of the Electrochemical Society. 2003;150:A1079-A84. [74] Zhang Z, Xiao F, Qian L, Xiao J, Wang S, Liu Y. Facile Synthesis of 3D MnO2–Graphene and Carbon Nanotube–Graphene Composite Networks for High‐Performance, Flexible, All‐Solid‐State Asymmetric Supercapacitors. Advanced Energy Materials. 2014;4. [75] Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, et al. Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences. 2009;106:21490-4. [76] Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, et al. Stretchable, porous, and conductive energy textiles. Nano letters. 2010;10:708-14. [77] Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM. Graphene–cellulose paper flexible supercapacitors. Advanced Energy Materials. 2011;1:917-22. [78] Kang Y-R, Li Y-L, Hou F, Wen Y-Y, Su D. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale. 2012;4:3248-53. [79] Xu J, Wei X, Cao J, Dong Y, Wang G, Xue Y, et al. Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film. Electrochimica Acta. 2015;152:391-7. [80] Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, et al. Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Lett. 2011;11:2905-11. [81] He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS nano. 2012;7:174-82. [82] Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Advanced Materials. 2014;26:4855-62. [83] Fan H, Zhao N, Wang H, Xu J, Pan F. 3D conductive network-based free-standing PANI–RGO–MWNTs hybrid film for high-performance flexible supercapacitor. Journal of Materials Chemistry A. 2014;2:12340-7. [84] Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, et al. Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy. 2015;11:568-78. [85] Zheng Q, Cai Z, Ma Z, Gong S. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS applied materials & interfaces. 2015;7:3263-71. [86] Zang X, Li X, Zhu M, Li X, Zhen Z, He Y, et al. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale. 2015;7:7318-22. [87] Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano letters. 2010;10:751-8. [88] Li Z, Lu C, Xia Z, Zhou Y, Luo Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon. 2007;45:1686-95. [89] X-ray Diffraction — II. Institute of Physics http://physik2.uni-goettingen.de/research/2_hofs/methods/XRD. [90] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47:145-52. [91] Wagner C, Riggs W, Davis L, Moulder J, Muilenberg G. Handbook of X-ray photoelectron spectroscopy, physical electronics division. Perkin-Elmer Corporation, Eden Prairie, Minnesota. 1979;68. [92] Bonard J-M, Dean KA, Coll BF, Klinke C. Field emission of individual carbon nanotubes in the scanning electron microscope. Physical review letters. 2002;89:197602. [93] Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano letters. 2006;6:2667-73. [94] Costa S, Borowiak-Palen E, Kruszynska M, Bachmatiuk A, Kalenczuk R. Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci-Poland. 2008;26:433-41. [95] Hodkiewicz J. Characterizing carbon materials with raman spectroscopy. Thermo Scientific Application Note. 2010;51901. [96] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon. 2010;48:3825-33. [97] 劉佳宏. 氧化錳/石墨烯系超電容複合電極材料之製備與性質研究. 清華大學化學工程學系學位論文. 2012:1-208. [98] 陳柏翔. 石墨烯片/靜電紡絲聚醯胺6,6纖維可撓式超級電容複合電極材料之製備與性質研究. 清華大學化學工程學系學位論文. 2013:1-199. [99] 蔡秀苹. 應用於超電容之氮摻雜石墨烯電極材料之製備與性質研究. 清華大學化學工程學系學位論文. 2013:1-175. [100] 藍珮瑜. 應用於鋰離子超電容之氮摻雜石墨烯/奈米碳管複合材料之製備與性質研究. 清華大學化學工程學系學位論文. 2015:1-273. [101] Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics A. 2006;82:599-606. [102] Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano letters. 2012;12:4206-11. [103] Chen P-C, Shen G, Shi Y, Chen H, Zhou C. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS nano. 2010;4:4403-11. [104] Wu Y, Liu S, Zhao K, He Z, Yuan H, Lv K, et al. Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors. Ionics. 2016:1-11. [105] Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS nano. 2010;4:5835-42.
|