跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/04 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭茲瑀
研究生(外文):Cheng, Tzu Yu
論文名稱:石墨烯系可撓式超電容複合電極之製備與性質研究
論文名稱(外文):Preparation and Characterization of Graphene-based Electrodes for Flexible Supercapacitors
指導教授:馬振基馬振基引用關係
指導教授(外文):Ma, Chen Chi M.
學位類別:碩士
校院名稱:國立清華大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:192
中文關鍵詞:可撓式超電容石墨烯纖維布
外文關鍵詞:Flexible supercapacitorsGrapheneCellulose fibers
相關次數:
  • 被引用被引用:1
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將奈米石墨烯片(Graphene nanosheets, GS)結合單壁奈米碳管(Single-walled carbon nanotube, SWCNT)或多壁奈米碳管(Multi-walled carbon nanotube, MWCNT),接著加入氧化錳或奈米銀線製成複材作為活性材料,並找尋最佳之基材與製程方法,製備出電極材料應用於儲能元件—可撓式超級電容器(Flexible supercapacitor)。分別依活性材料、基材、製程方法和添加擬電容材料/高導電材料進行探討。
活性材料的部分,利用CNT作為插層劑置入於GS的層間中,避免GS產生堆疊的現象並形成特殊的三維碳結構。由SEM圖觀察出8GS-2SWCNT和8GS-2MWCNT具有蓬鬆且多孔結構之表面形貌;由Raman測試可知兩個複合材料的石墨結構完整性良好,但8GS-2SWCNT的ID/IG ratio較小,表示其導電性較佳(2.1 S cm-1);CV測試結果顯示,在任何掃描速率下8GS-2SWCNT-PTFE(F) 的比電容值和電流響應圖形皆較為優異(掃描速率為5 mV/s時,比電容值為94.43 F g-1),因此選擇8GS-2SWCNT為活性材料。
基材的部分,由SEM圖可知以纖維布製備的8GS-2SWCNT-cel(F)薄膜,活性材料會滲入整個纖維布基材,薄膜會同時具有纖維布與活性材料的孔洞結構,比表面積較大,因此8GS-2SWCNT-cel(F)在掃描速率為5~100 mV/s時的比電容值皆較以PTFE製備的8GS-2SWCNT-PTFE(F)薄膜高(掃描速率為5 mV/s時,比電容值為127.18 F g-1) ,因此選擇纖維布為基材。
製程方法的部分,以抽氣過濾法製備的8GS-2SWCNT-cel(F)薄膜較緻密,活性材料除了包覆整體骨架結構並於骨架內成長,導電性良好(0.32 S cm-1);CV測試結果顯示8GS-2SWCNT-cel(F)的電流響應與比電容值皆比以浸泡-乾燥法製備的8GS-2SWCNT-cel(D)薄膜高許多,因為導電性佳、孔洞結構多且均勻與薄膜緻密度高所造成,因此選擇抽氣過濾法為較佳的製程方法。
接著將氧化錳沉積在最佳的電極材料8GS-2SWCNT-cel(F)上, 由SEM與EDS的鑑定得知MnO2會沿著8GS-2SWCNT-cel(F)的骨架成長和包覆,並均勻的在表面產生奈米顆粒的MnO2。藉由CV測試得知在掃描速率為5 mV/s時,MnO2-8GS-2SWCNT-cel(F)有較方正之電流響應圖形且優異的比電容值(318.59 F g-1),相較於8GS-2SWCNT-cel(F) (127.18 F g-1)約有2.5倍的提升;從可撓曲性測試得知,MnO2-8GS-2SWCNT-cel(F) 經過十次無摺痕的彎曲後,比電容的維持率為81.4 %;從循環壽命測試得知,其經過5000圈的循環伏安行為,比電容的維持率為83.7 %,由此可知,MnO2-8GS-2SWCNT
-cel(F)為良好之電極材料。
將MnO2-8GS-2SWCNT-cel(F) 組裝成可撓式超電容。由定電流充放電測試得知,此可撓式超電容充放電時間長,可以儲存的電量較多,於電流密度為 1 A/g時,功率密度為500 W/kg,能量密度可達4.28 Wh/kg;Ragone plot 結果顯示,MnO2-8GS-2SWCNT-cel(F)之可撓式超電容可達到目前超電容的水準,這表示本研究製備的MnO2-8GS-2SWCNT-cel(F)為良好之複合電極,組裝的超電容為優異之儲能元件。
With the growing demand of the portable and wearable energy storage systems, the flexible supercapacitors have been received great attention. This study demonstrates that the flexible graphene nanosheets/carbon nanotube hybrid film (GS-SWCNT, GS-MWCNT) as electrode for supercapacitors and discusses the substrates (e.g. cellulose fibers and PTFE membrane) and preparation method (e.g. vacuum filtration and dip-drying) of hybrid film.
The nanoarchitecture of carbon as active materials is important for energy storage. 8GS-2SWCNT exhibits much higher porosity and improves the electrical conductivities by using SWCNT as both the spacers and conductive linkers between individual graphene sheets, compared with bare graphene. Using cellulose fibers and vacuum filtration to support 8GS-2SWCNT (8GS-2SWCNT-cel(F)) which possesses 3D porous nanostructure due to the backbones of cellulose fibers and porous of carbon materials. The GS and SWCNT are strongly bound to cellulose fibers and fill the pores. This structure significantly enhances the specific surface area, improving both ionic and electronic transport kinetics. 8GS-2SWCNT-cel(F) exhibits the capacitive performance with a high specific capacitance of 127.2 F/g at 5 mV/s.
Upon further decoration with MnO2 by chemical co-deposition, the MnO2/GS/SWCNT hybrid film (MnO2-8GS-2SWCNT-cel(F)) reaches a specific capacitance as high as 318.6 F/g at 5 mV/s, demonstrating the introduction of MnO2 is feasible to improve the capacitance performance. MnO2-8GS-2SWCNT-cel(F) also shows good flexibility and cycle stability (83.7 % after 5000 cycles) causes them as a promising electrode material for supercapacitor applications. The symmetric flexible supercapacitor prepared with MnO2-8GS-2SWCNT-cel(F) exhibits high energe density of 4.28 Wh/kg at a power density of 500 W/kg. Consequently, it is found that as-prepared hybrid film shows high specific capacitance, excellent rate capability, and good stability which is a promising potential application as an effective electrode material for supercapacitors.
摘要 I
Abstract III
誌謝 V
目錄 VIII
圖目錄 XIII
表目錄 XXXI
第一章 緒論 1
第二章 基礎理論與文獻回顧 6
2-1 電化學原理 6
2-1-1 電化學反應系統 6
2-1-2 影響電化學反應系統之變數 10
2-1-3 法拉第反應與非法拉第反應 11
2-2 超級電容器 12
2-2-1 超級電容器之發展 12
2-2-2 超級電容器之簡介 13
2-2-3 超級電容器之種類與其運作機制 16
2-2-3-1 電雙層電容器(EDLCs) 18
2-2-3-2 擬電容器(Pseudocapacitor) 24
2-2-4 可撓式超級電容器 27
2-2-4-1 金屬基材 30
2-2-4-2 可撓式透明導電膜 31
2-2-4-3 纖維布型基材 33
2-2-5 電極材料 35
2-2-6 電容之量測方法 37
2-3 奈米石墨烯 39
2-3-1 奈米石墨烯之簡介 39
2-3-2奈米石墨烯之製備 42
2-3-2-1氧化石墨烯片-熱還原法 45
2-3-2-2 氧化石墨烯片-化學還原法 47
2-3-2-3 碳氫前驅物化學氣相沉積法 50
2-3-3 奈米石墨烯之特性 51
2-3-3-1 奈米石墨烯之電性質 51
2-3-3-2 奈米石墨烯之熱性質 53
2-3-3-3 奈米石墨烯之機械性質 54
2-3-3-4 奈米石墨烯之其他性質 55
2-4 過渡金屬氧化物(Transition Metal Oxide, TMO) 56
2-5 可撓式超級電容器電極材料之文獻回顧 58
2-5-1 奈米碳材作為電極材料之文獻回顧 58
2-5-2 奈米碳材/擬電容材料作為電極材料之文獻回顧 74
第三章 研究目的與內容 92
3-1 研究目的 92
3-2 研究內容與實驗流程 94
第四章 實驗方法 97
4-1 實驗藥品 97
4-2 實驗設備 99
4-3 檢測儀器 100
4-4 實驗步驟 101
4-4-1 製備GS-SWCNT和GS-MWCNT複合薄膜 101
4-4-2以化學共沉積法製備MnO2-8GS-2SWCNT複合薄膜 104
4-4-3 製備Ag-8GS-2SWCNT複合薄膜 105
4-4-4 樣品命名整理 105
4-4-5 製備可撓式複合電極 108
4-4-6 將複合電極組裝成可撓式對稱超級電容器 109
4-5 分析測試方法 110
4-5-1 結構、表面形態與物性分析 110
4-5-1-1 拉曼光譜儀 110
4-5-1-2 X光繞射光譜儀 112
4-5-1-3 X光光電子光譜 113
4-5-1-4 場發射掃描式電子顯微鏡 114
4-5-1-5 四點探針量測儀 116
4-5-2 電化學分析 116
4-5-2-1 循環伏安法 116
4-5-2-2定電流充放電測試 118
第五章 結果與討論 120
5-1 選擇活性材料-GS-SWCNT與GS-MWCNT結構性質、表面型態與電化學表現之鑑定 120
5-1-1以拉曼光譜鑑定活性材料之結構性質 120
5-1-2以XPS鑑定活性材料之表面化學組成 123
5-1-3以XRD鑑定活性材料之晶體結構與層間距 125
5-1-4 以SEM鑑定薄膜之表面形貌 127
5-1-5以CV和四點探針分析薄膜之電化學性質 130
5-2 不同的基材-8GS-2SWCNT-PTFE(F)與8GS-2SWCNT-cel(F)結構形貌與電化學表現之鑑定 136
5-2-1 以SEM鑑定薄膜之表面形貌 137
5-2-2 以CV和四點探針分析薄膜之電化學表現 139
5-3不同的製程方法-8GS-2SWCNT-cel(F)與8GS-2SWCNT-cel(D)結構形貌與電化學表現之鑑定 143
5-3-1 以SEM鑑定薄膜之表面形貌 143
5-3-2 以CV和四點探針分析薄膜之電化學表現 146
5-4 沉積擬電容材料-MnO2-8GS-2SWCNT-cel(F)結構形貌之鑑定與電化學、可撓曲性之測試 148
5-4-1 以XPS鑑定活性材料之表面化學組成 148
5-4-2 以XRD鑑定活性材料之晶體結構 150
5-4-3 以SEM與EDS鑑定薄膜之表面形貌與元素分布 151
5-4-4 以CV分析薄膜之電化學表現 153
5-4-5 MnO2-8GS-2SWCNT-cel(F)之可撓曲性測試 156
5-4-6 MnO2-8GS-2SWCNT-cel(F)之cycle life測試 160
5-5 添加高導電材料-Ag-8GS-2SWCNT-cel(F)與Ag-8GS-2SWCNT-cel(D)結構形貌與電化學表現之鑑定 162
5-5-1以XPS與XRD鑑定活性材料之表面化學組成與結構 162
5-5-2以CV與四點探針分析薄膜之電化學表現 164
5-6 組裝超電容- MnO2-8GS-2SWCNT-cel(F)對稱式雙極系統之電化學分析 168
5-6-1以CV分析超電容之電化學表現 169
5-6-2 以定電流充放電評估超電容的儲能效果 171
5-6-3 超電容之Ragone plot 173
第六章 結論 177
第七章 參考文獻 182
[1] BP-Global, http://www.bp.com.
[2] REN21 2015, http://www.ren21.net.
[3]PBL-Netherlands-Environmental-Assessment-Agency, http://www.pbl.nl.
[4] NOAA http://www.ncdc.noaa.gov/temp-and-precip/state-temps/.
[5] 能源資訊網, http://emis.erl.itri.org.tw/news/news/upt.asp?p0=3951.
[6] Knowledge TRIWo. http://apps.webofknowledge.com.
[7] Lu X, Yu M, Wang G, Tong Y, Li Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy & Environmental Science. 2014;7:2160-81.
[8] Zhang J, Zhao X. On the configuration of supercapacitors for maximizing electrochemical performance. ChemSusChem. 2012;5:818-41.
[9] Shao Y, El-Kady MF, Wang LJ, Zhang Q, Li Y, Wang H, et al. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews. 2015;44:3639-65.
[10] Geim AK, Novoselov KS. The rise of graphene. Nature materials. 2007;6:183-91.
[11] Cai X, Peng M, Yu X, Fu Y, Zou D. Flexible planar/fiber-architectured supercapacitors for wearable energy storage. Journal of Materials Chemistry C. 2014;2:1184-200.
[12] 胡啟章. 電化學原理與方法(二版): 五南圖書出版股份有限公司; 2011.
[13] Faulkner AJBaLR. Electochemical Methods Fundamentals and Applications. in John Wiley & Sonic, Inc 2001.
[14] 陳奕勳. 陽極沈積錳系水合氧化物於電化學超級電容器之應用: 撰者; 2003.
[15] 電化學教室 http://catchfrog.myweb.hinet.net/system.html.
[16] Pandolfo A, Hollenkamp A. Carbon properties and their role in supercapacitors. Journal of power sources. 2006;157:11-27.
[17] Davies A, Yu A. Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene. The Canadian Journal of Chemical Engineering. 2011;89:1342-57.
[18] Zhang LL, Zhou R, Zhao X. Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry. 2010;20:5983-92.
[19] H.I.Becker. Low voltage electrolytic capacitor. United States Patent 2,800,616. 1957.
[20] R.A.Rightmire. Electrical energy storage apparatus. United States Patent 3,288,641. 1966.
[21] D.L.Boos. Electrolytic capacitor having carbon paste electrodes. United States Patent 3,536,963. 1970.
[22] Zhang Y, Feng H, Wu X, Wang L, Zhang A, Xia T, et al. Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy. 2009;34:4889-99.
[23] Zhang LL, Zhao X. Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews. 2009;38:2520-31.
[24] Conway BE. Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer Science & Business Media; 2013.
[25] Park J-W, Lee E-S, Moon Y-H. New development of combined electrochemical processes for mirror-like micro grooves. Proceedings of the 17th annual ASPE meeting2002. p. 671-6.
[26] Frackowiak E. Carbon materials for supercapacitor application. Physical chemistry chemical physics. 2007;9:1774-85.
[27] Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nature materials. 2008;7:845-54.
[28] Huang Y, Liang J, Chen Y. An Overview of the Applications of Graphene‐Based Materials in Supercapacitors. Small. 2012;8:1805-34.
[29] Yu P, Zhang X, Wang D, Wang L, Ma Y. Shape-controlled synthesis of 3D hierarchical MnO2 nanostructures for electrochemical supercapacitors. Crystal Growth and Design. 2008;9:528-33.
[30] Gao H, Xiao F, Ching CB, Duan H. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2. ACS applied materials & interfaces. 2012;4:2801-10.
[31] http://www.maxwell.com/.
[32] LS Mtron Hi-tech center hwuckuih.
[33] Pasta M, La Mantia F, Hu L, Deshazer HD, Cui Y. Aqueous supercapacitors on conductive cotton. Nano Research. 2010;3:452-8.
[34] Pushparaj VL, Shaijumon MM, Kumar A, Murugesan S, Ci L, Vajtai R, et al. Flexible energy storage devices based on nanocomposite paper. Proceedings of the National Academy of Sciences. 2007;104:13574-7.
[35] Chang T. Potential Substrates for Low-Cost Flexible Supercapacitors. Low-Cost Flexible Supercapacitors. Spring 2012.
[36] Zhao X, Johnston C, Grant PS. A novel hybrid supercapacitor with a carbon nanotube cathode and an iron oxide/carbon nanotube composite anode. JMCh. 2009;19:8755-60.
[37] Yoo JJ, Balakrishnan K, Huang J, Meunier V, Sumpter BG, Srivastava A, et al. Ultrathin planar graphene supercapacitors. Nano letters. 2011;11:1423-7.
[38] Kavian R, Vicenzo A, Bestetti M. Growth of carbon nanotubes on aluminium foil for supercapacitors electrodes. Journal of materials science. 2011;46:1487-93.
[39] Wang K, Zou W, Quan B, Yu A, Wu H, Jiang P, et al. An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip. Advanced Energy Materials. 2011;1:1068-72.
[40] Lu X, Dou H, Gao B, Yuan C, Yang S, Hao L, et al. A flexible graphene/multiwalled carbon nanotube film as a high performance electrode material for supercapacitors. Electrochimica Acta. 2011;56:5115-21.
[41] Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C. Continuous, Highly Flexible, and Transparent Graphene Films by Chemical Vapor Deposition for Organic Photovoltaics. ACS Nano. 2010;4:2865-73.
[42] Cao Y, Treacy GM, Smith P, Heeger AJ. Solution‐cast films of polyaniline: Optical‐quality transparent electrodes. Applied physics letters. 1992;60:2711-3.
[43] Diaz AF, Castillo JI, Logan JA, Lee W-Y. Electrochemistry of conducting polypyrrole films. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 1981;129:115-32.
[44] Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, et al. Transparent, conductive carbon nanotube films. Science. 2004;305:1273-6.
[45] Higashitani K, McNamee CE, Nakayama M. Formation of large-scale flexible transparent conductive films using evaporative migration characteristics of Au nanoparticles. Langmuir. 2011;27:2080-3.
[46] Jost K, Stenger D, Perez CR, McDonough JK, Lian K, Gogotsi Y, et al. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy & Environmental Science. 2013;6:2698-705.
[47] TTRI紡織綜合所 http://www.ttri.org.tw/content/news/news01_01.aspx?sid=1340.
[48] Zhamu A. NGPs—an emerging class of nanomaterials. Reinforced Plastics. 2008;52:30-1.
[49] Baughman RH, Zakhidov AA, de Heer WA. Carbon nanotubes--the route toward applications. Science. 2002;297:787-92.
[50] 林瑋寧. 碳奈米管/奈米石墨烯片/環氧樹脂複合材料之製備及其性質之研究. 清華大學化學工程學系學位論文. 2010:1-231.
[51] Soldano C, Mahmood A, Dujardin E. Production, properties and potential of graphene. Carbon. 2010;48:2127-50.
[52] Chen D, Tang L, Li J. Graphene-based materials in electrochemistry. Chemical Society Reviews. 2010;39:3157-80.
[53] Dreyer DR, Park S, Bielawski CW, Ruoff RS. The chemistry of graphene oxide. Chemical Society Reviews. 2010;39:228-40.
[54] McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, et al. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chemistry of Materials. 2007;19:4396-404.
[55] Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y. Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS nano. 2008;2:463-70.
[56] Steurer P, Wissert R, Thomann R, Mülhaupt R. Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromolecular rapid communications. 2009;30:316-27.
[57] Paredes J, Villar-Rodil S, Fernandez-Merino M, Guardia L, Martínez-Alonso A, Tascon J. Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide. Journal of Materials Chemistry. 2011;21:298-306.
[58] Fan X, Peng W, Li Y, Li X, Wang S, Zhang G, et al. Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Advanced Materials. 2008;20:4490-3.
[59] Arco D, Gomez L, Zhang Y, Kumar A, Zhou C. Synthesis, transfer, and devices of single-and few-layer graphene by chemical vapor deposition. Nanotechnology, IEEE Transactions on. 2009;8:135-8.
[60] Novoselov KS, Geim AK, Morozov S, Jiang D, Zhang Y, Dubonos Sa, et al. Electric field effect in atomically thin carbon films. science. 2004;306:666-9.
[61] Morozov S, Novoselov K, Katsnelson M, Schedin F, Elias D, Jaszczak J, et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Physical review letters. 2008;100:016602.
[62] Novoselov K, Geim AK, Morozov S, Jiang D, Katsnelson M, Grigorieva I, et al. Two-dimensional gas of massless Dirac fermions in graphene. nature. 2005;438:197-200.
[63] Zhang Y, Brar VW, Wang F, Girit C, Yayon Y, Panlasigui M, et al. Giant phonon-induced conductance in scanning tunnelling spectroscopy of gate-tunable graphene. Nature Physics. 2008;4:627-30.
[64] Balandin A, Ghosh S, Teweldebrhan D, Calizo I, Bao W, Mia F, et al. Extremely high thermal conductivity of graphene: Prospects for thermal management applications in silicon nanoelectronics. Silicon Nanoelectronics Workshop, 2008 SNW 2008 IEEE: IEEE; 2008. p. 1-2.
[65] Lee C, Wei X, Kysar JW, Hone J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. science. 2008;321:385-8.
[66] 梁智翔. 水熱電化學法製備超高電容器用錳氧化物電極材料之研究. 成功大學材料科學及工程學系學位論文. 2008:1-176.
[67] Zheng J, Jow T. A new charge storage mechanism for electrochemical capacitors. Journal of The Electrochemical Society. 1995;142:L6-L8.
[68] Jow T, Zheng J. Electrochemical capacitors using hydrous ruthenium oxide and hydrogen inserted ruthenium oxide. Journal of the Electrochemical Society. 1998;145:49-52.
[69] Subramanian V, Zhu H, Vajtai R, Ajayan P, Wei B. Hydrothermal synthesis and pseudocapacitance properties of MnO2 nanostructures. The Journal of Physical Chemistry B. 2005;109:20207-14.
[70] Subramanian V, Zhu H, Wei B. Nanostructured MnO2: hydrothermal synthesis and electrochemical properties as a supercapacitor electrode material. Journal of Power Sources. 2006;159:361-4.
[71] Raymundo-Pinero E, Khomenko V, Frackowiak E, Beguin F. Performance of manganese oxide/CNTs composites as electrode materials for electrochemical capacitors. Journal of the Electrochemical Society. 2005;152:A229-A35.
[72] Deng M, Yang B, Shang S, Hu Y. Studies on CNTs–MnO2 nanocomposite for supercapacitors. Journal of materials science. 2005;40:1017-8.
[73] Hu C-C, Wang C-C. Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition. Journal of the Electrochemical Society. 2003;150:A1079-A84.
[74] Zhang Z, Xiao F, Qian L, Xiao J, Wang S, Liu Y. Facile Synthesis of 3D MnO2–Graphene and Carbon Nanotube–Graphene Composite Networks for High‐Performance, Flexible, All‐Solid‐State Asymmetric Supercapacitors. Advanced Energy Materials. 2014;4.
[75] Hu L, Choi JW, Yang Y, Jeong S, La Mantia F, Cui L-F, et al. Highly conductive paper for energy-storage devices. Proceedings of the National Academy of Sciences. 2009;106:21490-4.
[76] Hu L, Pasta M, Mantia FL, Cui L, Jeong S, Deshazer HD, et al. Stretchable, porous, and conductive energy textiles. Nano letters. 2010;10:708-14.
[77] Weng Z, Su Y, Wang DW, Li F, Du J, Cheng HM. Graphene–cellulose paper flexible supercapacitors. Advanced Energy Materials. 2011;1:917-22.
[78] Kang Y-R, Li Y-L, Hou F, Wen Y-Y, Su D. Fabrication of electric papers of graphene nanosheet shelled cellulose fibres by dispersion and infiltration as flexible electrodes for energy storage. Nanoscale. 2012;4:3248-53.
[79] Xu J, Wei X, Cao J, Dong Y, Wang G, Xue Y, et al. Facile synthesis and electrochemical performances of binder-free flexible graphene/acetylene black sandwich film. Electrochimica Acta. 2015;152:391-7.
[80] Yu G, Hu L, Vosgueritchian M, Wang H, Xie X, McDonough JR, et al. Solution-Processed Graphene/MnO2 Nanostructured Textiles for High-Performance Electrochemical Capacitors. Nano Lett. 2011;11:2905-11.
[81] He Y, Chen W, Li X, Zhang Z, Fu J, Zhao C, et al. Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS nano. 2012;7:174-82.
[82] Liu L, Niu Z, Zhang L, Zhou W, Chen X, Xie S. Nanostructured graphene composite papers for highly flexible and foldable supercapacitors. Advanced Materials. 2014;26:4855-62.
[83] Fan H, Zhao N, Wang H, Xu J, Pan F. 3D conductive network-based free-standing PANI–RGO–MWNTs hybrid film for high-performance flexible supercapacitor. Journal of Materials Chemistry A. 2014;2:12340-7.
[84] Ge D, Yang L, Fan L, Zhang C, Xiao X, Gogotsi Y, et al. Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons. Nano Energy. 2015;11:568-78.
[85] Zheng Q, Cai Z, Ma Z, Gong S. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. ACS applied materials & interfaces. 2015;7:3263-71.
[86] Zang X, Li X, Zhu M, Li X, Zhen Z, He Y, et al. Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes. Nanoscale. 2015;7:7318-22.
[87] Dresselhaus MS, Jorio A, Hofmann M, Dresselhaus G, Saito R. Perspectives on carbon nanotubes and graphene Raman spectroscopy. Nano letters. 2010;10:751-8.
[88] Li Z, Lu C, Xia Z, Zhou Y, Luo Z. X-ray diffraction patterns of graphite and turbostratic carbon. Carbon. 2007;45:1686-95.
[89] X-ray Diffraction — II. Institute of Physics http://physik2.uni-goettingen.de/research/2_hofs/methods/XRD.
[90] Yang D, Velamakanni A, Bozoklu G, Park S, Stoller M, Piner RD, et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon. 2009;47:145-52.
[91] Wagner C, Riggs W, Davis L, Moulder J, Muilenberg G. Handbook of X-ray photoelectron spectroscopy, physical electronics division. Perkin-Elmer Corporation, Eden Prairie, Minnesota. 1979;68.
[92] Bonard J-M, Dean KA, Coll BF, Klinke C. Field emission of individual carbon nanotubes in the scanning electron microscope. Physical review letters. 2002;89:197602.
[93] Gupta A, Chen G, Joshi P, Tadigadapa S, Eklund P. Raman scattering from high-frequency phonons in supported n-graphene layer films. Nano letters. 2006;6:2667-73.
[94] Costa S, Borowiak-Palen E, Kruszynska M, Bachmatiuk A, Kalenczuk R. Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci-Poland. 2008;26:433-41.
[95] Hodkiewicz J. Characterizing carbon materials with raman spectroscopy. Thermo Scientific Application Note. 2010;51901.
[96] Yan J, Fan Z, Wei T, Qian W, Zhang M, Wei F. Fast and reversible surface redox reaction of graphene–MnO2 composites as supercapacitor electrodes. Carbon. 2010;48:3825-33.
[97] 劉佳宏. 氧化錳/石墨烯系超電容複合電極材料之製備與性質研究. 清華大學化學工程學系學位論文. 2012:1-208.
[98] 陳柏翔. 石墨烯片/靜電紡絲聚醯胺6,6纖維可撓式超級電容複合電極材料之製備與性質研究. 清華大學化學工程學系學位論文. 2013:1-199.
[99] 蔡秀苹. 應用於超電容之氮摻雜石墨烯電極材料之製備與性質研究. 清華大學化學工程學系學位論文. 2013:1-175.
[100] 藍珮瑜. 應用於鋰離子超電容之氮摻雜石墨烯/奈米碳管複合材料之製備與性質研究. 清華大學化學工程學系學位論文. 2015:1-273.
[101] Cottineau T, Toupin M, Delahaye T, Brousse T, Belanger D. Nanostructured transition metal oxides for aqueous hybrid electrochemical supercapacitors. Applied Physics A. 2006;82:599-606.
[102] Cheng Y, Lu S, Zhang H, Varanasi CV, Liu J. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Nano letters. 2012;12:4206-11.
[103] Chen P-C, Shen G, Shi Y, Chen H, Zhou C. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS nano. 2010;4:4403-11.
[104] Wu Y, Liu S, Zhao K, He Z, Yuan H, Lv K, et al. Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors. Ionics. 2016:1-11.
[105] Wu Z-S, Ren W, Wang D-W, Li F, Liu B, Cheng H-M. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS nano. 2010;4:5835-42.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top