跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 04:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡明璋
研究生(外文):Ming-Chang Tsai
論文名稱:具多孔性奈米結構之氣體微感測器
論文名稱(外文):Gas Microsensors Based on the Nanoporous Structures
指導教授:張興政
指導教授(外文):Hsing-Cheng Chang
口試委員:林祐仲陳雅惠
口試日期:2014-06-18
學位類別:碩士
校院名稱:逢甲大學
系所名稱:自動控制工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:91
中文關鍵詞:陽極氧化鈦微機電系統氣體感測器
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
本研究以陽極處理技術為基礎,成長多孔性奈米陽極氧化鈦(Anodic titanium oxide, ATO)感測薄膜,搭配微機電系統(Microelectromechanical system, MEMS)製程技術,開發多孔性整合型奈米陽極氧化鈦之具選擇性氣體感測器,可於常溫環境下檢測一氧化碳與三氯甲烷氣體。氣體感測元件整合多孔性奈米陽極氧化鈦感測薄膜、貴金屬指叉狀電極、加熱器與溫度感測器於同一晶片上,此氣體感測元件具有體積小、穩定性高、靈敏度佳、精確度高與重複性良好等優點。運用陽極處理技術成長之多孔性陽極氧化鈦感測薄膜,可藉由調變電壓與時間,控制陽極氧化鈦奈米管孔徑與管長,具有高孔隙率,可提高與氣體反應之總表面積,提升氣體感測響應之靈敏度;加熱器可提高局部氣體感測器溫度,使氣體感測器保持在最佳的操作溫度,並利用溫度感測器感測環境溫度,控制加熱器於不同環境溫度之輸出能量,使加熱器溫度穩定控制在最佳操作溫度下。感測電極設計成指叉狀並以貴金屬製作,可提升氣體感測之靈敏度。實驗探討不同一氧化碳與三氯甲烷氣體濃度、感測器靈敏度與溫度相關性。在一氧化碳濃度40-1000 ppm範圍,比較研發之元件與未使用氧化鈦多孔結構的感測器特性,本氧化鈦結構感測器之氣體感測導致的電阻變化率最高可提升146.1 %。在三氯甲烷濃度10000 -21000 ppm範圍,比較研發之元件與未使用氧化鈦多孔結構的感測器特性,本氧化鈦結構感測器之氣體感測導致的電阻變化率最高可提升2.99 %。
The research develops self-assembled anodic titanium oxide arrays fabricated by anodization and combines the microheater and temperature sensor manufactured by the photolithography and life-off process of the micro-electro-mechanical system technology to selectively detect the CO and CHCl3 gas in room temperature.
The advantages of the gas sensors combine anodic titanium oxide thin film, noble metal electrodes, microheater and temperature sensor in the chip have small volume, high stability, high sensitivity and accuracy. The TiO2 arrays fabricated by anodization can built different aspect ratio nanotubes, the inner diameter range is 22-110 nm and the length range is 1.21-1.91μm, by controlling the voltage and anodic time and have high porosity to promote the sensitivity of the gas sensing ability of the sensing film. The gas microsensor can keep the sensor in the best temperature by control the voltage of the microheater and detect the environment temperature by temperature sensor.
Experimental results are analyzed to find the relationship between the CO and CHCl3 gas concentrations, the characterization of sensitivity and operational temperatures. Compared to traditional gas sensors, the designed gas microsensors show higher sensitivity to detect CO gas by increasing variation of sensing resistance up to 146.1 % by sensing CO gas concentrations from 40 to 1000 ppm in 200 ℃ and to detect CHCl3 gas by increasing variation of sensing resistance up to 2.99 % by sensing CHCl3 gas concentrations from 10000 to 21000 ppm in room temperature.
誌謝 I
中文摘要 II
Abstract III
目錄 IV
圖目錄 V
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 文獻探討 3
1.3.1 多孔性奈米材料 3
1.3.2 多孔性奈米氣體感測器 6
1.4 研究流程與架構 9
第二章 多孔性奈米薄膜及氣體感測器原理 11
2.1 陽極處理技術與二氧化鈦晶體結構 11
2.2 多孔性奈米陽極氧化鈦 13
2.3 多孔性奈米氣體感測器 17
2.3.1 半導體金屬氧化物氣體感測器 18
2.3.2 蕭特基接觸 18
2.3.3 氣體感測器靈敏度影響因素 19
第三章 多孔性奈米薄膜成長與氣體感測器製程規劃 24
3.1 多孔性奈米薄膜成長 24
3.2 氣體感測器元件設計與製程規劃 28
3.2.1 氣體感測器元件設計 28
3.2.2 光罩與蔽蔭遮罩設計 29
3.2.3 多孔性奈米氣體感測器製程規劃 30
第四章 量測與分析 34
4.1 多孔性奈米薄膜製程與分析 34
4.1.1 陽極處理電解液種類對多孔性陽極氧化鈦結構之影響 34
4.1.2 一階段陽極處理電壓對多孔性陽極氧化鈦孔徑之影響 35
4.1.3 一階段陽極處理時間對多孔性陽極氧化鈦薄膜之影響 38
4.1.4 薄膜後處理對多孔性陽極氧化鈦薄膜之影響 42
4.1.5 多孔性陽極氧化鈦薄膜結晶性分析 45
4.2 加熱器、溫度感測器及指叉狀感測電極製程與分析 46
4.2.1 加熱器與溫度感測器微影製程 46
4.2.2 加熱器與溫度感測器特性分析 47
4.2.3 指叉狀感測電極製程與氣體感測元件整合. 53
4.3 多孔性奈米氣體感測器靈敏度量測與分析 54
4.3.1 氣體量測架構 54
4.3.2 多孔性奈米感測薄膜氣體量測特性分析 55
第五章 結論 69
5.1 結論 69
5.2 未來展望 70
參考文獻 72
附錄 78
[1]行政院勞工委員會,勞工作業環境空氣中有害物容許濃度標準,勞安3字第0990145030號公告,民國99年。
[2]D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation,” Journal of Materials Research, Vol. 16, pp. 3331-3334, 2001.
[3]Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation,” Journal of Materials Research, Vol. 20, pp. 230-236, 2005.
[4]J. M. Macak, H. Tsuchiya and P. Schmuki, “High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium,” Angewandte Chemie, Vol. 44, pp. 2100-2102, 2005.
[5]彭郁華,二氧化鈦奈米管氫能源製備系統之設計,臺灣大學材料科學與工程學系暨研究所,碩士論文,民國九七年。
[6]M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length,” Journal of physical chemistry B, Vol. 110, pp. 16179-16184, 2006.
[7]魏敏芝,以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究,中央大學能源工程研究所,碩士論文,民國九九年。
[8]陳仲緯,二段陽極處理法應用於鈦薄膜成長之研究,中央大學能源工程研究 所,碩士論文,民國一百年。
[9]C. A. Grimes and G. K. Mor, TiO2 Nanotube Arrays:Synthesis, Properties, and Applications, Springer Science &; Business Media, 2009.
[10]R. Hahn, J. M. Macak and P. Schmuki, “Rapid Anodic Growth of TiO2 and WO3 Nanotubes in Fluoride Free Electrolytes,” Electrochemistry Communications, Vol. 9, pp. 947-952, 2007.
[11]G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, “Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring,” Sensors, Vol. 10, pp. 5469-5502, 2010.
[12]K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, “Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases,” Sensors and Actuators B, Vol. 160, pp. 580-591, 2011.
[13]Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong and J. H. Liu, “Metal Oxide Nanostructures and their Gas Sensing Properties: a Review,” Sensors, Vol. 12, pp. 2610-2631, 2012.
[14]李筱菁,SnO2-based薄膜氣體感測靈敏度之研究,成功大學材料科學及工程學系,博士論文,民國九十五年。
[15]劉芳佐,以水熱法製備之氧化鋅奈米桿之氣體感測特性,台灣科技大學化學工程系,碩士論文,民國九十八年。
[16]C. Lu and Z. Chen, “High-Temperature Resistive Hydrogen Sensor Based on Thin Nanoporous Rutile TiO2 Film on Anodic Aluminum Oxide,” Sensors and Actuators B, Vol.140, pp. 109-115, 2009.
[17]K. S. Kim, W. H. Baek, J. M. Kim, T. S. Yoon, H. H. Lee, C. J. Kang and Y. S. Kim, “A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method,” Sensors, Vol. 10, pp. 765-774, 2010.
[18]O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, “Hydrogen Sensing Using Titania Nanotubes,” Sensors and Actuators B, Vol. 93, pp. 338-344, 2003.
[19]E. Maciak and Z. Opilski, “Transition Metal Oxides Covered Pd Film for Optical H2 Gas Detection,” Thin Solid Films, Vol. 515, pp. 8351-8355, 2007.
[20]J. A. Park, J. Moon, S. J. Lee, S. H. Kim, T. Zyung and H. Y. Chu, “Structure and CO Gas Sensing Properties of Electrospun TiO2 Nanofibers,” Materials Letters, Vol. 64, pp. 255-257, 2010.
[21]K. Chen, K. Xie, X. Feng, S. Wang, R. Hu, H. Gu and Y. Li, “An Excellent Room-Temperature Hydrogen Sensor Based on Titania Nanotube-Arrays,” International Journal of Hydrogen Energy, Vol. 37, pp. 13602-13609, 2012.
[22]P. M. Perillo and D. F. Rodriguez, “A Room Temperature Chloroform Sensor Using TiO2 Nanotubes,”Sensors and Actuators B, Vol. 193, pp. 263- 266, 2014.
[23]M. M. Jani, D. Losic and N. H. Voelcker, “Nanoporous Anodic Aluminium Oxide: Advances in Surface Engineering and Emerging Applications,” Progress in Materials Science, Vol. 58, pp. 636-704, 2013.
[24]陳雅惠,以奈米結構為基礎發展多功能奈微米動態微流感測元件,逢甲大學電機與通訊工程博士學位學程,博士論文,民國一百零一年。
[25]羅安婷,以多孔奈米陽極氧化鋁基礎發展化妝品重金屬檢測裝置,逢甲大學自動控制工程學系碩士班,碩士論文,民國一百零二年。
[26]D. Kowalski, D. Kim and P. Schmuki, “TiO2 Nanotubes, Nanochannels and Mesosponge: Self-Organized Formation and Applications,” Nano Today, Vol. 8, pp. 235-264, 2013.
[27]C. W. Lai and S. Sreekantan, “Fabrication of WO3 Nanostructures by AnodizationMethod for Visible-Light Driven Water Splitting and Photodegradation of Methyl Orange,” Materials Science in Semiconductor Processing, Vol. 16, pp. 303-310, 2013.
[28]S. Berger, F. Jakubka and P. Schmuki, “Formation of Hexagonally Ordered Nanoporous Anodic Zirconia,” Electrochemistry Communications, Vol. 10, pp. 1916-1919, 2008.
[29]H. Tsuchiya and P. Schmuki, “Self-Organized High Aspect Ratio Porous Hafnium Oxide Prepared by Electrochemical Anodization,” Electrochemistry Communications, Vol. 7, pp. 49-52, 2005.
[30]I. Sieber, H. Hildebrand, A. Friedrich and P. Schmuki, “Formation of Self-Organized Niobium Porous Oxide on Niobium,” Electrochemistry Communications, Vol. 7, pp. 97-100, 2005.
[31]鄭哲岳,在含氟甘油電解液中陽極氧化鈦箔製備二氧化鈦奈米管,臺灣大學材料科學與工程學系暨研究所,碩士論文,民國九八年。
[32]G. D. Sulka, Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing, Nanostructured materials in electrochemistry, 2008.
[33]U. Diebold, “The Surface Science of Titanium Dioxide,” Surface Science Reports, Vol. 48, pp. 53-229, 2003.
[34]E. Sennik, Zeliha Colak, N. Kilinc and Z. Z. Ozturk, “Synthesis of Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor,” International Journal of Hydrogen Energy, Vol. 35, pp. 4420-4427, 2010.
[35]K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat and C. A. Grimes, “Highly Efficient Solar Cells using TiO2 Nanotube Arrays Sensitized with a Donor-Antenna Dye,” Nano Letters, Vol. 8, pp. 1654-1659, 2008.
[36]Z. Zhang, M. F. Hossain and T. Takahashi, “Photoelectrochemical Water Splitting on Highly Smooth and Ordered TiO2 Nanotube Arrays for Hydrogen Generation,” International Journal of Hydrogen Energy, Vol. 35, pp. 8528-8535, 2010.
[37]P. Kar, A. Pandey, J. J. Greera and K. Shankar, “Ultrahigh Sensitivity Assays for Human Cardiac Troponin I Using TiO2 Nanotube Arrays,” Lab on A Chip, Vol. 12, pp. 821-828, 2012.
[38]H. Wender, A. F. Feil, L. B. Diaz, C. S. Ribeiro, G. J. Machado, P. Migowski, D. E. Weibel, J. Dupont and S. R. Teixeira, “Self-Organized TiO2 Nanotube Arrays: Synthesis by Anodization in an Ionic Liquid and Assessment of Photocatalytic Properties,” Applied Material &; Interfaces, Vol. 3, pp. 1359-1365, 2011.
[39]G. K. Mor , O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimesa, “Fabrication of Tapered, Conical-Shaped Titania Nanotubes,” Journal of Materials Research, Vol. 18, pp. 2588-2593, 2003.
[40]J. M. Macak, H. Tsuchiya , A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, “TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications,” Current Opinion in Solid State and Materials Science, Vol. 11, pp. 3-18, 2007.
[41]Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation,” Journal of Materials Research, Vol. 20, pp. 230-236, 2005.
[42]S. P. Albu, D. Kim and P. Schmuki, “Growth of Aligned TiO2 Bamboo-Type Nanotubes and Highly Ordered Nanolace,” Angewandte Chemie, Vol. 120, pp.1916-1919, 2008.
[43]K. S. Raja, M. Misra and K. Paramguru, “Formation of Self-Ordered Nano-Tubular Structure of Anodic Oxide Layer on Titanium,” Electrochemica Acta , Vol. 51, pp. 154-165, 2005.
[44]T. Seiyama, A. Kato, K. Fulishi and M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films,” Analytical Chemistry, Vol. 34, pp. 1502-1503, 1962.
[45]G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, “Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring,” Sensors, Vol. 10, pp. 5469-5502, 2010.
[46]P. B. Weisz, “Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis,” Journal of Chemical Physics, Vol. 21, pp. 1531-1538, 1953.
[47]B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani and E. K. Suh, “TiO2 Thin Gilm Gas Sensor for Monitoring Ammonia,” Materials Characterization, Vol. 58, pp. 680-684, 2007.
[48]X. Wang, N. Miura and N. Yamazoe, “Study of WO3-Based Sensing Materials for NH3 and NO Detection,” Sensors and Actuators B, Vol. 66, pp. 74-76, 2000.
[49]J. Moon, J. A. Park, S. J. Lee, T. Zyung and I. D. Kim, “Pd-Doped TiO2 Nanofiber Networks for Gas Sensor Applications,” Sensors and Actuators B, Vol. 149, pp. 301-305, 2010.
[50]A. Rothschild and Y. Komem, “The Effect of Grain Size on the Sensitivity of Nanocrystalline Metal-Oxide Gas Sensors,” Journal of Applied Physics, Vol. 95, pp. 6374-6380, 2004.
[51]劉澤鈞,具多孔性奈米陽極氧化鋁之氣體微感測器,逢甲大學自動控制工程學系碩士班,碩士論文,民國一百年。
[52]S. L. Lim, Y. Liu, J. Li, E. T. Kang and C. K. Ong, “Transparent Titania Nanotubes of Micrometer Length Prepared by Anodization of Titanium Thin Film Deposited on ITO,” Applied Surface Science, Vol. 257, pp. 6612-6617, 2011.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊