[1]行政院勞工委員會,勞工作業環境空氣中有害物容許濃度標準,勞安3字第0990145030號公告,民國99年。
[2]D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen and E. C. Dickey, “Titanium Oxide Nanotube Arrays Prepared by Anodic Oxidation,” Journal of Materials Research, Vol. 16, pp. 3331-3334, 2001.
[3]Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation,” Journal of Materials Research, Vol. 20, pp. 230-236, 2005.
[4]J. M. Macak, H. Tsuchiya and P. Schmuki, “High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium,” Angewandte Chemie, Vol. 44, pp. 2100-2102, 2005.
[5]彭郁華,二氧化鈦奈米管氫能源製備系統之設計,臺灣大學材料科學與工程學系暨研究所,碩士論文,民國九七年。[6]M. Paulose, K. Shankar, S. Yoriya, H. E. Prakasam, O. K. Varghese, G. K. Mor, T. A. Latempa, A. Fitzgerald and C. A. Grimes, “Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length,” Journal of physical chemistry B, Vol. 110, pp. 16179-16184, 2006.
[7]魏敏芝,以陽極處理法生長二氧化鈦奈米管於玻璃基板上之研究,中央大學能源工程研究所,碩士論文,民國九九年。[8]陳仲緯,二段陽極處理法應用於鈦薄膜成長之研究,中央大學能源工程研究 所,碩士論文,民國一百年。[9]C. A. Grimes and G. K. Mor, TiO2 Nanotube Arrays:Synthesis, Properties, and Applications, Springer Science &; Business Media, 2009.
[10]R. Hahn, J. M. Macak and P. Schmuki, “Rapid Anodic Growth of TiO2 and WO3 Nanotubes in Fluoride Free Electrolytes,” Electrochemistry Communications, Vol. 9, pp. 947-952, 2007.
[11]G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, “Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring,” Sensors, Vol. 10, pp. 5469-5502, 2010.
[12]K. Wetchakun, T. Samerjai, N. Tamaekong, C. Liewhiran, C. Siriwong, V. Kruefu, A. Wisitsoraat, A. Tuantranont and S. Phanichphant, “Semiconducting Metal Oxides as Sensors for Environmentally Hazardous Gases,” Sensors and Actuators B, Vol. 160, pp. 580-591, 2011.
[13]Y. F. Sun, S. B. Liu, F. L. Meng, J. Y. Liu, Z. Jin, L. T. Kong and J. H. Liu, “Metal Oxide Nanostructures and their Gas Sensing Properties: a Review,” Sensors, Vol. 12, pp. 2610-2631, 2012.
[14]李筱菁,SnO2-based薄膜氣體感測靈敏度之研究,成功大學材料科學及工程學系,博士論文,民國九十五年。[15]劉芳佐,以水熱法製備之氧化鋅奈米桿之氣體感測特性,台灣科技大學化學工程系,碩士論文,民國九十八年。
[16]C. Lu and Z. Chen, “High-Temperature Resistive Hydrogen Sensor Based on Thin Nanoporous Rutile TiO2 Film on Anodic Aluminum Oxide,” Sensors and Actuators B, Vol.140, pp. 109-115, 2009.
[17]K. S. Kim, W. H. Baek, J. M. Kim, T. S. Yoon, H. H. Lee, C. J. Kang and Y. S. Kim, “A Nanopore Structured High Performance Toluene Gas Sensor Made by Nanoimprinting Method,” Sensors, Vol. 10, pp. 765-774, 2010.
[18]O. K. Varghese, D. Gong, M. Paulose, K. G. Ong and C. A. Grimes, “Hydrogen Sensing Using Titania Nanotubes,” Sensors and Actuators B, Vol. 93, pp. 338-344, 2003.
[19]E. Maciak and Z. Opilski, “Transition Metal Oxides Covered Pd Film for Optical H2 Gas Detection,” Thin Solid Films, Vol. 515, pp. 8351-8355, 2007.
[20]J. A. Park, J. Moon, S. J. Lee, S. H. Kim, T. Zyung and H. Y. Chu, “Structure and CO Gas Sensing Properties of Electrospun TiO2 Nanofibers,” Materials Letters, Vol. 64, pp. 255-257, 2010.
[21]K. Chen, K. Xie, X. Feng, S. Wang, R. Hu, H. Gu and Y. Li, “An Excellent Room-Temperature Hydrogen Sensor Based on Titania Nanotube-Arrays,” International Journal of Hydrogen Energy, Vol. 37, pp. 13602-13609, 2012.
[22]P. M. Perillo and D. F. Rodriguez, “A Room Temperature Chloroform Sensor Using TiO2 Nanotubes,”Sensors and Actuators B, Vol. 193, pp. 263- 266, 2014.
[23]M. M. Jani, D. Losic and N. H. Voelcker, “Nanoporous Anodic Aluminium Oxide: Advances in Surface Engineering and Emerging Applications,” Progress in Materials Science, Vol. 58, pp. 636-704, 2013.
[24]陳雅惠,以奈米結構為基礎發展多功能奈微米動態微流感測元件,逢甲大學電機與通訊工程博士學位學程,博士論文,民國一百零一年。[25]羅安婷,以多孔奈米陽極氧化鋁基礎發展化妝品重金屬檢測裝置,逢甲大學自動控制工程學系碩士班,碩士論文,民國一百零二年。[26]D. Kowalski, D. Kim and P. Schmuki, “TiO2 Nanotubes, Nanochannels and Mesosponge: Self-Organized Formation and Applications,” Nano Today, Vol. 8, pp. 235-264, 2013.
[27]C. W. Lai and S. Sreekantan, “Fabrication of WO3 Nanostructures by AnodizationMethod for Visible-Light Driven Water Splitting and Photodegradation of Methyl Orange,” Materials Science in Semiconductor Processing, Vol. 16, pp. 303-310, 2013.
[28]S. Berger, F. Jakubka and P. Schmuki, “Formation of Hexagonally Ordered Nanoporous Anodic Zirconia,” Electrochemistry Communications, Vol. 10, pp. 1916-1919, 2008.
[29]H. Tsuchiya and P. Schmuki, “Self-Organized High Aspect Ratio Porous Hafnium Oxide Prepared by Electrochemical Anodization,” Electrochemistry Communications, Vol. 7, pp. 49-52, 2005.
[30]I. Sieber, H. Hildebrand, A. Friedrich and P. Schmuki, “Formation of Self-Organized Niobium Porous Oxide on Niobium,” Electrochemistry Communications, Vol. 7, pp. 97-100, 2005.
[31]鄭哲岳,在含氟甘油電解液中陽極氧化鈦箔製備二氧化鈦奈米管,臺灣大學材料科學與工程學系暨研究所,碩士論文,民國九八年。
[32]G. D. Sulka, Highly Ordered Anodic Porous Alumina Formation by Self-Organized Anodizing, Nanostructured materials in electrochemistry, 2008.
[33]U. Diebold, “The Surface Science of Titanium Dioxide,” Surface Science Reports, Vol. 48, pp. 53-229, 2003.
[34]E. Sennik, Zeliha Colak, N. Kilinc and Z. Z. Ozturk, “Synthesis of Highly-Ordered TiO2 Nanotubes for a Hydrogen Sensor,” International Journal of Hydrogen Energy, Vol. 35, pp. 4420-4427, 2010.
[35]K. Shankar, J. Bandara, M. Paulose, H. Wietasch, O. K. Varghese, G. K. Mor, T. J. LaTempa, M. Thelakkat and C. A. Grimes, “Highly Efficient Solar Cells using TiO2 Nanotube Arrays Sensitized with a Donor-Antenna Dye,” Nano Letters, Vol. 8, pp. 1654-1659, 2008.
[36]Z. Zhang, M. F. Hossain and T. Takahashi, “Photoelectrochemical Water Splitting on Highly Smooth and Ordered TiO2 Nanotube Arrays for Hydrogen Generation,” International Journal of Hydrogen Energy, Vol. 35, pp. 8528-8535, 2010.
[37]P. Kar, A. Pandey, J. J. Greera and K. Shankar, “Ultrahigh Sensitivity Assays for Human Cardiac Troponin I Using TiO2 Nanotube Arrays,” Lab on A Chip, Vol. 12, pp. 821-828, 2012.
[38]H. Wender, A. F. Feil, L. B. Diaz, C. S. Ribeiro, G. J. Machado, P. Migowski, D. E. Weibel, J. Dupont and S. R. Teixeira, “Self-Organized TiO2 Nanotube Arrays: Synthesis by Anodization in an Ionic Liquid and Assessment of Photocatalytic Properties,” Applied Material &; Interfaces, Vol. 3, pp. 1359-1365, 2011.
[39]G. K. Mor , O. K. Varghese, M. Paulose, N. Mukherjee and C. A. Grimesa, “Fabrication of Tapered, Conical-Shaped Titania Nanotubes,” Journal of Materials Research, Vol. 18, pp. 2588-2593, 2003.
[40]J. M. Macak, H. Tsuchiya , A. Ghicov, K. Yasuda, R. Hahn, S. Bauer and P. Schmuki, “TiO2 Nanotubes: Self-Organized Electrochemical Formation, Properties and Applications,” Current Opinion in Solid State and Materials Science, Vol. 11, pp. 3-18, 2007.
[41]Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation,” Journal of Materials Research, Vol. 20, pp. 230-236, 2005.
[42]S. P. Albu, D. Kim and P. Schmuki, “Growth of Aligned TiO2 Bamboo-Type Nanotubes and Highly Ordered Nanolace,” Angewandte Chemie, Vol. 120, pp.1916-1919, 2008.
[43]K. S. Raja, M. Misra and K. Paramguru, “Formation of Self-Ordered Nano-Tubular Structure of Anodic Oxide Layer on Titanium,” Electrochemica Acta , Vol. 51, pp. 154-165, 2005.
[44]T. Seiyama, A. Kato, K. Fulishi and M. Nagatani, “A New Detector for Gaseous Components Using Semiconductive Thin Films,” Analytical Chemistry, Vol. 34, pp. 1502-1503, 1962.
[45]G. F. Fine, L. M. Cavanagh, A. Afonja and R. Binions, “Metal Oxide Semi-Conductor Gas Sensors in Environmental Monitoring,” Sensors, Vol. 10, pp. 5469-5502, 2010.
[46]P. B. Weisz, “Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis,” Journal of Chemical Physics, Vol. 21, pp. 1531-1538, 1953.
[47]B. Karunagaran, P. Uthirakumar, S. J. Chung, S. Velumani and E. K. Suh, “TiO2 Thin Gilm Gas Sensor for Monitoring Ammonia,” Materials Characterization, Vol. 58, pp. 680-684, 2007.
[48]X. Wang, N. Miura and N. Yamazoe, “Study of WO3-Based Sensing Materials for NH3 and NO Detection,” Sensors and Actuators B, Vol. 66, pp. 74-76, 2000.
[49]J. Moon, J. A. Park, S. J. Lee, T. Zyung and I. D. Kim, “Pd-Doped TiO2 Nanofiber Networks for Gas Sensor Applications,” Sensors and Actuators B, Vol. 149, pp. 301-305, 2010.
[50]A. Rothschild and Y. Komem, “The Effect of Grain Size on the Sensitivity of Nanocrystalline Metal-Oxide Gas Sensors,” Journal of Applied Physics, Vol. 95, pp. 6374-6380, 2004.
[51]劉澤鈞,具多孔性奈米陽極氧化鋁之氣體微感測器,逢甲大學自動控制工程學系碩士班,碩士論文,民國一百年。[52]S. L. Lim, Y. Liu, J. Li, E. T. Kang and C. K. Ong, “Transparent Titania Nanotubes of Micrometer Length Prepared by Anodization of Titanium Thin Film Deposited on ITO,” Applied Surface Science, Vol. 257, pp. 6612-6617, 2011.