跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.82) 您好!臺灣時間:2026/02/20 08:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉韋良
研究生(外文):Wei-Liang Liu
論文名稱:超微粒Ag-Fe,Ag-Co,Ag-Ni固溶體之低溫磁特性研究
論文名稱(外文):Low Temperature Magnetic Proterties of Ag-Fe,Ag-Co,Ag-Ni Nanocrystalline Solid Solutions
指導教授:林鴻明林鴻明引用關係
指導教授(外文):Hong-Ming Lin
學位類別:碩士
校院名稱:大同工學院
系所名稱:材料工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:英文
論文頁數:90
中文關鍵詞:超微粒氣體蒸著法穿透式電子顯微鏡延伸X光微細結構
外文關鍵詞:NanoparticlesGas condensation MethodTEMEXAFS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:238
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究擬採氣體蒸著法合成 Ag-Fe,Ag-Co,Ag-Ni 超微粒固溶體,由此系列在相圖得知,不僅在固相中幾乎完全不互溶,甚至於在液相中亦不互溶,本實驗藉熱蒸發源將兩種金屬蒸發,在成為氣相時相互碰撞,急速冷卻至液態氮溫度後形成超微粒固溶體。
首先控制反應室之氣體壓力可改變超微粒固溶體之粒徑,探討粒徑大小對固溶量變化之影響;另一方面可控制元素之莫耳比,探討成份改變與固溶量變化之相互關係;並對超微粒固溶體做不同條件之熱處理。
此系列均為鐵磁性材料,合成後可藉此研究超微粒磁性材料,其磁特性與粒徑、磁特性與固溶量之相互關係;及觀察不同溫度下之微結構變化,探討超微粒固溶體對溫度之穩定性,與不同固溶量時其晶格常數之變化情形。利用XRD,TEM,EDS,DSC,SQUID,EXAFS對於超微粒固溶體之特性加以分析。
由SEM之EDS分析得知超微粒組成近似於蒸發前依原子量比調製成分。依DSC資料所得之熱處理溫度Ag-Fe固溶體約為580℃,Ag-Co固溶體約為400℃而Ag-Ni固溶體約為320℃。將此3種系統固溶體作常溫到低溫其飽和磁矩對溫度變化情形與常溫和低溫殘留磁矩與矯頑磁之熱處理前後來比較。另外由EXAFS分析得知Ag-Fe固溶體具有不同於Ag與Fe之電子結構。

The nanocrystalline Ag-Fe, Ag-Co and Ag-Ni solid solutions are prepared by the gas condensation method. The liquid quenching method cannot be used to form a nanocrystalline solid solution, because these systems are immiscible not only in the solid state, but also in the liquid state. In this study evaporate two elements to gas phases by heating source and then quench to liquid nitrogen temperature to form nanocrystalline solid solutions.
The particle’s sizes of nanocrystalline solid solutions will be controlling by the chamber pressure. The solubility of nanocrystalline solid solution depends on that controlling the mean particle's sizes and the mole percentage of evaporating source elements. All of these nanocrystallines solid solutions will heating by different thermal treatment.
The ferromagnetic materials systems magnetism is depend on the mean particle's sizes and solubility that will be discussed. Also, the temperature dependence of the magnetic properties will be analyzed and related to the microstuuctural changes produced during the thermal treatments. The change of lattice constant with the solubility will be discussion. The nanocrystallines solid solutions were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), differential scanning calorimetry (DSC), superconducting quantum interference devices (SQUID) and extended X-ray Absorption Fine Structure (EXAFS).
The average compositions of the NC Ag-M (Fe, Co, Ni) system are analyzed by SEM/EDS is closed to the gross composition of the raw materials. From the data of DSC, we can obtain the temperature of Ag-M system. The NC Ag-Fe system is about 580℃, the NC Ag-Co system is about 400℃ and the NC Ag-Ni system is about 320℃. To realize the change of the magnetization (Ms) from room temperature to 5 k in these three NC solid solution and the change of remanence (Mr) and coercivity (Hc) in room temperature and 5k by SQUID. The data of EXAFS show that there are not different electronic states between NC Ag-Fe soilid solution and Fe.

CHINESE ABSTACT Ⅰ
ENGLISH ABSTACT Ⅱ
TABLE OF CONTENTS Ⅳ
LIST OF TABLES AND FIGURES Ⅵ
1. INTRODUCTION 1
2. LITERATURE REVIEW 3
1.1 Nanocrystalline Materials 3
1.2 Gas Condensation 5
1.3 Immisible Ag-M (Fe, Co, Ni) Solid Solution System 6
2.3.1 Immisible Ag-Fe Solid Solution System 8
2.3.2 Immisible Ag-Co Solid Solution System 8
2.3.3Immisible Ag-Ni Solid Solution System 9
2.4 Magnetic Properties of Nanocrystalline 10
2.5 Extended X-ray Absorption Fine Structure (EXAFS) 13
2.5.1 Fourier Transform of EXAFS Data 14
2.5.2 X-ray Absorption Study of Local Structure in Nanophase 16
3 EXPERIMENT 21
3.1 Sample Preparation 21
3.2 Apparatus of Gas Evaporater 21
3.3 X-ray Diffractometer 22
3.4Transmission Electron Microscopy 22
3.5Energy Dispersive Spectrum of X-ray 23
3.6 Differential Scanning Calorimetry 23
3.7 Superconducting Quantum Interference Devices 23
3.8 Extended X-ray Absorption Fine Structure 23
4 RESUKTS AND DISCUSSION 27
4.1 EDS Analysis 27
4.2 DSC Analysis 29
4.3 X-ray Analysis 33
4.4 EXAFS Analysis 40
4.5 TEM Analysis 63
4.6 Magnetic Properties Analysis 68
4.6.1 Ag-Fe system 68
4.6.2 Ag-Co system 68
4.6.3 Ag-Ni system 69
5 CONCLUSION 80
6 REFERENCE 82

1. S. Komarneni, J. C. Parker and Thomas, eds, “Nanophase and Nanocomposite Materials”, MRS Conf. Proc. vol. 86 (1993)
2. R. Schulz, J. Y. Huot, M. L. Trudeau, L. Dignard-Bailey, Z. H. Yan, S. Jin, A. Lamarre, E. Ghali, and A. Van Neste, “Nanocrystalline Ni-Mo alloy and theirapplication,” J. Mater. Res., Vol. 9 No. 11, Nov (1994) 2998-3008.
3. E. Matijevic, MRS Bulletin, Vol. XIV, (1989) 19.
4. M. Ozaki, MRS Bulletin, Vol. XIV, (1989) 35.
5. A. H. Morrish, K. Haneda and P. J. Schurrer, "Surface Magnetic Structure of Small γ-Fe2O3 Particles", J. de Physique, , C6-301 (1976)37.
6. A. E. Berkowitz, W. J. Schuele and P. J. Flanders, J. Appl. Phys., 39, (1968) 1261.
7. A. Tasaki, M. Takao and H. Tokunaga, J. J. Appl. Phys., 13, (1974) 271.
8. A. E. Berkowitz and J. L. Walters, Mat. Sci. Eng., 55, (1982) 175.
9. C. L. Chien, Science and Technology of Nanostructured Magnetic Materials, New York, (1991) 477-496.
10. L. Yiping, G. C. Hadjipanayis, C. M. Sorensen and K. L. Klabunde, J. Mag. Magn. Mat., 79, (1989) 321.
11. G. Xiao, C.L. Chien, J. Appl. Phys., 51, (1987) 1280.
12. K. Kimoto, Y. Kamiya, M. Nonoyama and R. Uyeda : Japan J. Appl. Phys. 2, (1963) 702.
13. K. Kimoto and I. Nishida : Japan. J. Appl. Phys., 6, (1967) 1047.
14. A. Tasaki, S. Tomiyama, S. Iida, N. Wada and R. Uyeda : Japan. J. Appl. Phys., 4, (1965) 707.
15. N.Y.A. Gen, I.V. Yeremina and Y.E.A. Fedorrova : Fiz. Metal. Metalloyed, 22, (1966) 721.
16. N. Wada : Japan. J. Appl. Phys., 6, (1967) 553.
17. N. Wada : Japan. J. Appl. Phys., 7, (1968) 1287.
18. C. Kittel, Phys. Rev. 70, (1946) 965.
19. W.F. Brown, J. Appl. Phys. 30, (1959)130.
20. Akira Tasaki, Masatoshi Takao and Hideaki Tokunaga : Japan. J. Appl. Phys., 13, (1974) 271.
21. Wei Gong, Hua Li, Zhongren Zhao and Jinchang Chen : J. Appl. Phys., 69, (1991) 5119.
22. S. Gangopadhyay, G.C. Hadjipanayis, C.M. Sorensen and K.J. Klabunde, Mat. Rev. Soc. Symp. Proc., Vol 206, (1991).}
23.S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen and K.J. Klabunde, "Magnetism of ultrafine particles", Nano Structured Mat., 1, (1992) 77.
24. F. H. Froes and C. Suryanarayana, JOM, June, (1989) 12.
25. R. W. Siegel, NanoStruct. Mater., Vol. 4 (1993) 1-18.
26. B. Y. Tsaur, S. s. Lau, Z. L. Liau and J. W. Mayer, Thin Solid Films., Vol. 63 (1979) 31.
27. J. M. Phoate, J. Vac. Sci. Technol., Vol. 15 (1978) 1636.
28. B. Y. Tsaur, S. s. Lau, Z. L. Liau and J. W. Mayer, Appl. Phys. Lett., Vol. 36 (1980) 823.
29. K. Uenishi, K. F. Kobayashi, W. N. Ishihara and P. H. Shingu, Mater. Sci. Eng. A., Vol. 134 (1991) 1342.
30. R. Najafabadi, D.J. Srolovizt, E. Ma and M. Atzmon, J. Appl. Phys., Vol. 74 (1993) 3144.
31. J Kuyama, H. Inui, S. Imaoka, S. Nasu, K. N. Ishihara and P. H. Shingu, Jpn. J. Appl. Phys., Vol. 30 (1991) L854.
32. J. Xu, U. Herr, T. Klassen, and R. S. Averback, J. Appl. Phys., Vol. 79 (1996) 3935-3945.
33. A. R. Yavari, P. J. Desre and T. Benameur, Phys. Rev. Lett., Vol. 79 (1992) 2235.
34. J. Eckert, J. C. Holzer, C. E. Krill Third and W. L. Johnson, J. Appl. Phys., Vol. 73 (1993) 2794.
35. J. Eckert, J. C. Holzer and W. L. Johnson, J. Appl. Phys., Vol. 73 (1993) 131.
36. E. Ma, M. Atzmon and F. E. Pinkerton, J. Appl. Phys., Vol. 74 (1993) 955.
37. E. Gaffet, M. Harmelin and F. Faudot, J. Alloys Compounds, Vol. 194 (1993)23.
38. J. G. Gabanas-Moreno, V. M. Lopez, H. H. A. Calderon and J. C. Rendon-Angeles, Scr. Metall. Mater., Vol. 28 (1993) 645.
39. C. Gente, M. Oehring and R. Bormann, Phys. Rev. B, Vol. 48 (1993) 13244.
40. E. Gaffet, C. Louison, M. Harmelin and F. Faudot, Mater. Sci. Eng. A, Vol. 134 (1991) 1380.
41. F. Fukunaga, M. Mori, K. Inou and U. Mizutani, Mater. Sci. Eng. A, Vol. 134 (1991) 863.
42. K. Sakurai, Y. Yamada, C. H. Lee, T. Fukunaga and U. Mizutani, Mater. Sci. Eng. A, Vol. 134 (1991) 1414.
43. G. Velttl, B. Scholz, and H. D. Kunze, Mater. Sci. Eng. A, Vol. 134 (1991)1410.
44. C. Suryanaya and F. H. Froes, J. Mater. Res., Vol. 5 (1990) 1880.
45. E. Zhou, C. Suryanaya and F. H. Froes, J. Mater. Lett., Vol. 23 (1995) 27.
46. K. Sumiyama, K. Yanai, E. Ivanov, H. Yamauchi and K. Suzuki, Mater. Sci. Eng. A., Vol. 181-182 (1994)1268.
47. A Crespo-Sosa, P. Schaaf, W. Bolse, K. Lieb, M. Gimbrl, U Geyer and C. Tosello, Phys. Rev. B., Vol. 53 (1996) 14795-14805.
48. K. Sumiyama, K. Suzuki, S. A. Makhlouf, K. Wakoh, T. Kamiyama, S. Yamamuro, T. J. Konno, Y. F. Xu, M. Sakurai and T. Hihara, J. Noncrystalline Solids., Vol. 192-193 (1995) 539-545.
49. J. A. Ruud, T. R. Jervis and F. Spaepen, J. Appl. Phys., Vol. 75 No. 10 (1994) 4969-4974.
50. J. J. Hauser, Phys. Rev. B, Vol. 12 (1975) 5160-5165.
51. A. Munoz, H. Miranda, F. L. Cumbrera, A. Conde, And R. Marquez, Thin Solid Films., Vol., 88 (1982) 211.
52. R. Ricci Bitti and J. Dixmier, Solid State Communications., Vol 7, (1969) 1345-1346.
53. B. Y. Tsaur and J. W. Mayer, Appl. Phys. Lett., Vol. 37 (1980) 389-392.
54. K. Kimoto, Y. Kamiya, M. Nonoyama and R. Uyeda : Japan J. Appl. Phys. 2, (1963) 702.
55. A. Tasaki, S. Tomiyama, S. Iida, N. Wada and R. Uyeda : Japan. J. Appl. Phys., 4, (1965) 707.
56. N. Wada : Japan. J. Appl. Phys., 6, (1967) 553.
57. N. Wada : Japan. J. Appl. Phys., 7, (1968) 1287.
58. F. H. Froes and C. Suryanarayana, JOM, June, (1989) 12.
59. Shigeki Yatsuya, Susumu Kasukabe and Ryozi Uyeda, Japan. J. of Appl. Phys., 12, (1973) 1675.
60. H. Shen, B. Gunther, H. Schafer, Z. Li and Zh. Qi, Sci. Metal. Mater., Vol. 32 (1995) 1677-1681.
61. A. Kumpmann, B. Gunther and H. D. Kunze, Mat. Sci. Eng. A., Vol. 168 (1993) 165.
62. J. Miyake, G. Ghosh and M. E. Fine, Mater. Res. Soc. Bull., June (1996) 13-18.
63. Derek Craik, Magnrtism Principles and Application (Wiley, New York 1995) 81.
64. Jian-Qing Wang and Gang Xiao, Phys. Rev. B, Vol. 49 (1994) 3982-3996.
65. H. Fricke, Phys. Rev., 16, (1920) 202.
66.R. de L. Kronig, Z. Phys., 70, (1932) 317.
67.F.W. Lytle, in "Physics of Non-Crystalline Solids", J.A. Prins, ed., North-Holland, Amsterdam, pp. 12-30, 1965; Adv. In X-ray Analysis 9, (1966) 398.
68. D.E. Sayers, E.A. Stern and F.W. Lytle, Phys. Rev. Lett., 27, (1971) 1204.
69. P. Debye, Ann. Phys., 46, (1915) 809.
70. P. Debye and P. Scherrer, Mach. Der Gott. Ges., 1, (1916) 16.
71. F. Zernicke and J.A. Prins, Z. Phys., 41, (1927) 184.
72. H. Gleiter, in Proc. Second Ris. int. symp. On metallurgy and materials scinece, eds. N. Hansen, T. Leffers and H. Lilholt, (1981).
73. H. Gleiter, Progress Mat. Sci., 33, (1989) 223.
74. X. Zhu, R. Birringer, U. Herr and H. Gleiter, Phys. Rev., 35, (1987) 9085.
75. E. Jorra, H. Franz, J. Peisl, G. Wallner, W. Petry, R. Birringer, H. Gleiter and T. Haubold, Phil. Mag., 60, (1989) 159.
76. U. Herr, J. Jing, U. Gonser and H. Gleiter, Solid State Commun., 76, (1990) 197.
77. H.E. Schaefer, in Mechanical properties and deformation behavior of materials having ultrafine microstructure, eds. M. Nastasi, D.M. Parkin & H. Gleiter, (1993).
78. C.A. Melendres, J. Mater. Res., 4, (1989) 1246.
79. M.R. Fitzsimmons, J.A. Eastman, M. Muller-Stach and G. Wallner, Phys. Rev., 44, (1991) 2452.
80. J.A. Eastman, M.R. Fitzsimmons and L.J. Thompson, Phil. Mag., 66, (1992) 667.
81. P.G. Sanders, J.R. Weertman, J.G. Barker and R.W. Siegel, Scripta. Metall. Et Mater., 29, (1993) 91.
82. T.M. Hayes and J.B. Boyce, Solid State Phys., 37, (1981) 173.
83. F. Boscherini, in Fundamental properties of nanostructured materials, eds. D. Fiorani and G. Sberveglieri, (1994).
84. T. Haubold, R. Birringer, B. Lengeler and H. Gleiter, Phys. Lett., A 135, (1989) 461.
85. T. Haubold, W. Krauss and H. Gleiter, Phil. Mag. Lett., 63, (1991) 245.
86. T. Haubold, F. Boscherini, S. Pascarelli, S. Mobilio and H. Gleiter, Phil. Mag., A 66, (1992) 591.
87. T. Haubold, Acta. Metall. Mater., 41, (1993) 1769.
88. J.A. Eastman, M.R. Fitzsimmons, M. Muller-Stach, G. Wallner and W.T. Elam, Nanostruct. Mater., 1, (1992) 47.
89. A. Di Cicco, M. Berrettoni, S. Stizza, E. Bonetti and G. Cocco, Phys. Rev., B50, (1994).
90. H. Shen, B. Gunther, H. Schafer, Z. Li and Zh. Qi, Scr. Metall. Mater., Vol. 32, (1995) 1677-1681.
91.C.Y.Tung, Synthesis and Charaterization of Ag-Fe, Ag-Co and Ag-Ni Nanocrystalline Solid Solution (1997).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top