|
[1] R.C. Reed, The Superalloys: Fundamentals and Applications, Cambridge University Press, UK, 2006. [2] P. Caron, T. Khan, Evolution of Ni-based superalloys for single crystal gas turbine blade applications, Aerospace Science and Technology, 3 (1999) 513-523. [3] D. Furrer, H. Fecht, Ni-based superalloys for turbine discs, JOM, 51 (1999) 14-17. [4] T.M. Pollock, S. Tin, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties, Journal of Propulsion and Power, 22 (2006) 361-374. [5] J.B. Wahl, K. Harris, New Single Crystal Superalloys, CMSX®-7 and CMSX®-8, Superalloys, (2012) 177-188. [6] Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, Z.P. Lu, Microstructures and properties of high-entropy alloys, Progress in Materials Science, 61 (2014) 1-93. [7] M.H. Tsai, J.W. Yeh, High-entropy alloys: a critical review, Materials Research Letters, 2 (2014) 107-123. [8] M. Nathal, Effect of initial gamma prime size on the elevated temperature creep properties of single crystal nickel base superalloys, Metallurgical Transactions A, 18 (1987) 1961-1970. [9] A.C. Yeh, S. Tin, Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys, Scripta Materilia, 52 (2005) 519-524. [10] H.A. Roth, C.L. Davis, R.C. Thomson, Modeling solid solution strengthening in nickel alloys, Metallurgical and Materials Transactions A, 28 (1997) 1329-1335. [11] F.I. Versnyder, M. Shank, The development of columnar grain and single crystal high temperature materials through directional solidification, Materials Science and Engineering, 6 (1970) 213-247. [12] R. Reed, T. Tao, N. Warnken, Alloys-by-design: application to nickel-based single crystal superalloys, Acta Materialia, 57 (2009) 5898-5913. [13] R.A. MacKay, T.P. Gabb, J.L. Smialek, M.V. Nathal, Alloy design challenge: development of low density superalloys for turbine blade applications, (2009). [14] J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Advanced Engineering Materials, 6 (2004) 299-303. [15] Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, High-entropy alloy: challenges and prospects, Materials Today, 19 (2016) 349-362. [16] J.W. Yeh, Recent progress in high entropy alloys, annales de chimie-science des materiaux, 31 (2006) 633-648. [17] M.H. Tsai, Physical properties of high entropy alloys, Entropy, 15 (2013) 5338-5345. [18] C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements, Metallurgical and Materials Transactions A, 36 (2005) 881-893. [19] K.Y. Tsai, M.H. Tsai, J.W. Yeh, Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys, Acta Materialia, 61 (2013) 4887-4897. [20] H.S. Oh, D. Ma, G.P. Leyson, B. Grabowski, E.S. Park, F. Körmann, D. Raabe, Lattice Distortions in the FeCoNiCrMn High Entropy Alloy Studied by Theory and Experiment, Entropy, 18 (2016) 321. [21] J.W. Yeh, Alloy design strategies and future trends in high-entropy alloys, JOM, 65 (2013) 1759-1771. [22] E.J. Pickering, N.G. Jones, High-entropy alloys: a critical assessment of their founding principles and future prospects, International Materials Reviews, 61 (2016) 183-202. [23] D. Miracle, O. Senkov, A critical review of high entropy alloys and related concepts, Acta Materialia, 122 (2017) 448-511. [24] B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345 (2014) 1153-1158. [25] K. Youssef, A. Zaddach, C.N. Niu, D. Irving, C. Koch, A Novel Low-Density, High-Hardness, High entropy Alloy with Close-packed Single-phase Nanocrystalline Structures, Materials Research Letters, 3 (2015) 95-99. [26] Y. Zhang, T. Zuo, Y. Cheng, P.K. Liaw, High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability, Scientific reports, 3 (2013). [27] C. Lee, Y. Chen, C. Hsu, J. Yeh, H. Shih, The Effect of Boron on the Corrosion Resistance of the High Entropy Alloys Al0.5CoCrCuFeNiBx, Journal of The Electrochemical Society, 154 (2007) 424-430. [28] H.M. Daoud, A.M. Manzoni, R. Völkl, N. Wanderka, U. Glatzel, Oxidation Behavior of Al8Co17Cr17Cu8Fe17Ni33, Al23Co15Cr23Cu8Fe15Ni15, and Al17Co17Cr17Cu17Fe17Ni17 Compositionally Complex Alloys (High‐Entropy Alloys) at Elevated Temperatures in Air, Advanced Engineering Materials, 17 (2015) 1134-1141. [29] D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, J. Tiley, Exploration and development of high entropy alloys for structural applications, Entropy, 16 (2014) 494-525. [30] M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Materialia, 59 (2011) 6308-6317. [31] P. Li, A. Wang, C. Liu, A ductile high entropy alloy with attractive magnetic properties, Journal of Alloys and Compounds, 694 (2017) 55-60. [32] C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Wear resistance and high-temperature compression strength of FCC CuCoNiCrAl0.5Fe alloy with boron addition, Metallurgical and Materials Transactions A, 35 (2004) 1465-1469. [33] C.W. Tsai, M.H. Tsai, J.W. Yeh, C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, Journal of Alloys and Compounds, 490 (2010) 160-165. [34] C.Y. Hsu, C.C. Juan, W.R. Wang, T.S. Sheu, J.W. Yeh, S.K. Chen, On the superior hot hardness and softening resistance of AlCoCrxFeMo0.5Ni high-entropy alloys, Materials Science and Engineering: A, 528 (2011) 3581-3588. [35] F. Otto, A. Dlouhý, C. Somsen, H. Bei, G. Eggeler, E.P. George, The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Materialia, 61 (2013) 5743-5755. [36] Z. Wu, H. Bei, G.M. Pharr, E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Materialia, 81 (2014) 428-441. [37] J. He, C. Zhu, D. Zhou, W. Liu, T. Nieh, Z. Lu, Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures, Intermetallics, 55 (2014) 9-14. [38] T.S. Cao, J.L. Shang, J. Zhao, C.Q. Cheng, R. Wang, H. Wang, The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys, Materials Letters, 164 (2016) 344-347. [39] A. Gali, E.P. George, Tensile properties of high- and medium-entropy alloys, Intermetallics, 39 (2013) 74-78. [40] Z. Lu, H. Wang, M. Chen, I. Baker, J. Yeh, C. Liu, T. Nieh, An assessment on the future development of high-entropy alloys: summary from a recent workshop, Intermetallics, 66 (2015) 67-76. [41] W.H. Liu, J.Y. He, H.L. Huang, H. Wang, Z.P. Lu, C.T. Liu, Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys, Intermetallics, 60 (2015) 1-8. [42] F. He, Z.J. Wang, S.Z. Niu, Q.F. Wu, J.J. Li, J.C. Wang, C.T. Liu, Y.Y. Dang, Strengthening the CoCrFeNiNb0.25 high entropy alloy by FCC precipitate, Journal of Alloys and Compounds, 667 (2016) 53-57. [43] W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, J.W. Yeh, Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys, Intermetallics, 26 (2012) 44-51. [44] J. Joseph, T. Jarvis, X. Wu, N. Stanford, P. Hodgson, D.M. Fabijanic, Comparative study of the microstructures and mechanical properties of direct laser fabricated and arc-melted AlxCoCrFeNi high entropy alloys, Materials Science and Engineering: A, 633 (2015) 184-193. [45] W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, C.T. Liu, Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases, Acta Materialia, 116 (2016) 332-342. [46] T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, R. Banerjee, A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties, Acta Materialia, 116 (2016) 63-76. [47] X.D. Xu, P. Liu, S. Guo, A. Hirata, T. Fujita, T.G. Nieh, C.T. Liu, M.W. Chen, Nanoscale phase separation in a fcc-based CoCrCuFeNiAl0.5 high-entropy alloy, Acta Materialia, 84 (2015) 145-152. [48] E.J. Pickering, H.J. Stone, N.G. Jones, Fine-scale precipitation in the high-entropy alloy Al0.5CrFeCoNiCu, Materials Science and Engineering: A, 645 (2015) 65-71. [49] N.G. Jones, K.A. Christofidou, H.J. Stone, Rapid precipitation in an Al0.5CrFeCoNiCu high entropy alloy, Materials Science and Technology, 31 (2015) 1171-1177. [50] H.M. Daoud, A. Manzoni, R. Volkl, N. Wanderka, U. Glatzel, Microstructure and Tensile Behavior of Al8Co17Cr17Cu8Fe17Ni33 (at.%) High-Entropy Alloy, JOM, 65 (2013) 1805-1814. [51] H. Daoud, A. Manzoni, N. Wanderka, U. Glatzel, High-Temperature Tensile Strength of Al10Co25Cr8Fe15Ni36Ti6 Compositionally Complex Alloy (High-Entropy Alloy), JOM, 67 (2015) 2271-2277. [52] Special Metals Company. http://www.specialmetals.com/documents/Inconel%20alloy%20617.pdf. [53] Sandmeyer Steel Company. http://www.sandmeyersteel.com/images/Alloy800H-800HT-APR2013.pdf. [54] A.V. Kuznetsov, D.G. Shaysultnov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Tensile properties of an AlCrCuNiFeCo high-entropy alloy in as-cast and wrought conditions, Materials Science and Engineering A, 533 (2012) 107–118. [55] J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, A precipitation-hardened high-entropy alloy with outstanding tensile properties, Acta Materialia, 102 (2016) 187-196. [56] J.Y. He, H. Wang, Y. Wu, X.J. Liu, H.H. Mao, T.G. Nieh, Z.P. Lu, Precipitation behavior and its effects on tensile properties of FeCoNiCr high-entropy alloys, Intermetallics, 79 (2016) 41-52. [57] B. Gwalani, V. Soni, D. Choudhuri, M. Lee, J. Hwang, S. Nam, H. Ryu, S. Hong, R. Banerjee, Stability of ordered L12 and B2 precipitates in face centered cubic based high entropy alloys-Al0.3CoFeCrNi and Al0.3CuFeCrNi2, Scripta Materialia, 123 (2016) 130-134. [58] S. Ochiai, Y. Oya, T. Suzuki, Alloying Behavior of Ni3Al, Ni3Ga, Ni3Si and Ni3Ge, Acta Metallurgica, 32 (1984) 289-298. [59] Y. Mishima, S. Ochiai, T. Suzuki, Lattice-Parameters of Ni(Gamma), Ni3Al (Gamma') and Ni3Ga (Gamma') Solid-Solutions with Additions of Transition and B-Subgroup Elements, Acta Metallurgica, 33 (1985) 1161-1169. [60] A.J. Bradley, A. Taylor, An X-Ray Analysis of the Nickel-Aluminium System, Proceedings of the Royal Society of London A, 159 (1937) 56-72. [61] A. Taylor, R.W. Floyd, The Constitution of Nickel-Rich Alloys of the Nickel Chromium Titanium System, Journal of the Institute of Metals, 80 (1952) 577. [62] R.W. Guard, J.H. Westbrook, Alloying Behavior of Ni3Al (Gamma-Phase), Transactions of the American Institute of Mining and Metallurgical Engineers, 215 (1959) 807-814. [63] K. Aoki, O. Izumi, Relation between Defect Hardening and Substitutional Solid-Solution Hardening in an Intermetallic Compound Ni3Al, Physica Status Solidi A, 38 (1976) 587-594. [64] P.V.M. Rao, K.S. Murthy, S.V. Suryanarayana, S.V.N. Naidu, Effect of Ternary Additions on the Room-Temperature Lattice-Parameter of Ni3Al, Physica Status Solidi A, 133 (1992) 231-235. [65] A.C. Yeh, K.C. Yang, J.W. Yeh, C.M. Kuo, Developing an advanced Si-bearing DS Ni-base superalloy, Journal of Alloys and Compounds, 585 (2014) 614-621. [66] Y. Amouyal, D.N. Seidman, An atom-probe tomographic study of freckle formation in a nickel-based superalloy, Acta Materialia, 59 (2011) 6729-6742. [67] R.C. Reed, A.C. Yeh, S. Tin, S.S. Babu, M.K. Miller, Identification of the partitioning characteristics of ruthenium in single crystal superalloys using atom probe tomography, Scripta Materialia, 51 (2004) 327-331. [68] R.W. Cahn, P.A. Siemers, J.E. Geiger, P. Bardhan, The Order-Disorder Transformation in Ni3Al and Ni3Al-Fe Alloys - 1. Determination of the Transition-Temperatures and Their Relation to Ductility, Acta Metallurgica, 35 (1987) 2737-2751. [69] F.J. Bremer, M. Beyss, H. Wenzl, The Order-Disorder Transition of the Intermetallic Phase Ni3Al, Physica Status Solidi A, 110 (1988) 77-82. [70] T.T. Shun, C.H. Hung, C.F. Lee, Formation of ordered/disordered nanoparticles in FCC high entropy alloys, Journal of Alloys and Compounds, 493 (2010) 105-109. [71] A. Takeuchi, A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Materials Transactions, 46 (2005) 2817-2829. [72] N. Saunders, Z. Guo, X. Li, A.P. Miodownik, J.P. Schille, Using JMatPro to model materials properties and behavior, JOM, 55 (2003) 60-65. [73] S. Guo, Q. Hu, C. Ng, C.T. Liu, More than entropy in high-entropy alloys: Forming solid solutions or amorphous phase, Intermetallics, 41 (2013) 96-103. [74] M. Chandran, S. Sondhi, First-principle calculation of APB energy in Ni-based binary and ternary alloys, Modelling and Simulation in Materials Science and Engineering, 19 (2011) 025008. [75] Y.J. Chang, A.C. Yeh, The evolution of microstructures and high temperature properties of AlxCo1.5CrFeNi1.5Ti y high entropy alloys, Journal of Alloys and Compounds, 653 (2015) 379-385. [76] J.M. Oblak, Owczarsk.Wa, Cellular Recrystallization in a Nickel-Base Superalloy, Transactions of the Metallurgical Society of AIME, 242 (1968) 1563. [77] M. Veron, Y. Brechet, F. Louchet, Directional coarsening of Ni-based superalloys: Computer simulation at the mesoscopic level, Acta Materialia, 44 (1996) 3633-3641. [78] M. Veron, Y. Brechet, F. Louchet, Directional coarsening of nickel based superalloys: Driving force and kinetics, Superalloys, (1996) 181-190. [79] S. Neumeier, M. Dinkel, F. Pyczak, M. Goken, Nanoindentation and XRD investigations of single crystalline Ni-Ge brazed nickel-base superalloys PWA 1483 and Rene' N5, Materials Science and Engineering A, 528 (2011) 815-822. [80] A.C. Yeh, S. Tin, Effects of Ru on the high-temperature phase stability of Ni-base single-crystal superalloys, Metallurgical and Materials Transactions A, 37A (2006) 2621-2631. [81] T.K. Tsao, A.C. Yeh, The Thermal Stability and Strength of Highly Alloyed Ni3Al, Materials Transactions, 56 (2015) 1905-1910. [82] J.C. Zhao, M. Larsen, V. Ravikumar, Phase precipitation and time-temperature-transformation diagram of Hastelloy X, Materials Science and Engineering A, 293 (2000) 112-119. [83] J.C. Zhao, M.F. Henry, The thermodynamic prediction of phase stability in multicomponent superalloys, JOM, 54 (2002) 37-41. [84] M.S.A. Karunaratne, C.M.F. Rae, R.C. Reed, On the microstructural instability of an experimental nickel-based single-crystal superalloy, Metallurgical and Materials Transactions A, 32 (2001) 2409-2421. [85] M. Göken, M. Kempf, Microstructural properties of superalloys investigated by nanoindentations in an atomic force microscope, Acta Materialia, 47 (1999) 1043-1052. [86] T. Schöberl, H. Gupta, P. Fratzl, Measurements of mechanical properties in Ni-base superalloys using nanoindentation and atomic force microscopy, Materials Science and Engineering: A, 363 (2003) 211-220. [87] J.H. Oh, I.C. Choi, Y.J. Kim, B.G. Yoo, J.i. Jang, Variations in overall-and phase-hardness of a new Ni-based superalloy during isothermal aging, Materials Science and Engineering: A, 528 (2011) 6121-6127. [88] W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, Journal of Materials Research, 7 (1992) 1564-1583. [89] H. Bibring, T. Khan, M. Rabinovitch, J. Stohr, Development and Evaluation of New Industrial DS Monocarbide Reinforced Composites for turbine Blades, Superalloys, 1976, pp. 331-340. [90] C.T. Sims, N.S. Stoloff, W.C. Hagel, Superalloys II, Wiley-Interscience, United States, 1987. [91] R. MacKay, T. Gabb, J. Smialek, M. Nathal, A new approach of designing superalloys for low density, JOM, 62 (2010) 48-54. [92] http://www.metalprices.com/. [93] G.A. Webster, C.P. Sullivan, Some Effects of Temperature Cycling on Creep Behaviour of a Nickel-Base Alloy, Journal of the Institute of Metals, 95 (1967) 138-142. [94] R.A. Mackay, L.J. Ebert, The Development of Directional Coarsening of the Gamma'-Precipitate in Super-Alloy Single-Crystals, Scripta Metallurgica, 17 (1983) 1217-1222. [95] T. Ichitsubo, D. Koumoto, M. Hirao, K. Tanaka, M. Osawa, T. Yokokawa, H. Harada, Rafting mechanism for Ni-base superalloy under external stress: elastic or elastic–plastic phenomena?, Acta materialia, 51 (2003) 4033-4044. [96] T.K. Tsao, A.C. Yeh, C.M. Kuo, H. Murakami, On The Superior High Temperature Hardness of Precipitation Strengthened High Entropy Ni‐Based Alloys, Advanced Engineering Materials, (2016). [97] D.H. Lee, M.Y. Seok, Y. Zhao, I.C. Choi, J. He, Z.P. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, J.I. Jang, Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys, Acta Materialia, 109 (2016) 314-322. [98] L. Zhang, P. Yu, H. Cheng, H. Zhang, H. Diao, Y. Shi, B. Chen, P. Chen, R. Feng, J. Bai, Nanoindentation Creep Behavior of an Al0.3CoCrFeNi High-Entropy Alloy, Metallurgical and Materials Transactions A, (2016) 1-5. [99] D. Blavette, A. Bostel, Phase composition and long range order in γ′ phase of a nickel base single crystal superalloy CMSX2: An atom probe study, Acta Metallurgica, 32 (1984) 811-816. [100] R. Völkl, U. Glatzel, M. Feller-Kniepmeier, Measurement of the lattice misfit in the single crystal nickel based superalloys CMSX-4, SRR99 and SC16 by convergent beam electron diffraction, Acta materialia, 46 (1998) 4395-4404. [101] C.W. Tsai, M.H. Tsai, J.W. Yeh, C.C. Yang, Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy, Journal of Alloys and Compounds, 490 (2010) 160-165. [102] T. Khan, P. Caron, D. Fournier, K. Harris, Single Crystal Superalloys for Turbine Blades. Characterization and Optimization of CMSX-2 Alloy, Materials Technology, 73 (1985) 567-578. [103] P. Gallagher, The influence of alloying, temperature, and related effects on the stacking fault energy, Metallurgical Transactions, 1 (1970) 2429-2461. [104] M.A. Howes, Additional thermal fatigue data on nickel and cobalt-base superalloys, (1973). [105] Y. Nakagawa, A. Ohtomo, Y. Saiga, Directional solidification of Rene' 80, Transactions of the Japan Institute of Metals, 17 (1976) 323-329. [106] G. Hoppin III, M. Fujii, L. Sink, Development of low-cost directionally-solidified turbine blades, Superalloys, (1980) 225-234. [107] U. Tetzlaff, H. Mughrabi, Enhancement of the high-temperature tensile creep strength of monocrystalline nickel-base superalloys by pre-rafting in compression, Superalloys, (2000) 273-282. [108] H. Rouault-Rogez, M. Dupeux, M. Ignat, High temperature tensile creep of CMSX-2 nickel base superalloy single crystals, Acta Metallurgica et Materialia, 42 (1994) 3137-3148. [109] F. R. N. Nabarro, Rafting in Superalloys, Metallurgical and Materials Transactions A, 27 (1996) 513-530. [110] F.R.N. Nabarro, F. De Villiers, Physics of creep and creep-resistant alloys, CRC press, 1995. [111] Y.K. Kim, D. Kim, H.K. Kim, C.S. Oh, B.J. Lee, An intermediate temperature creep model for Ni-based superalloys, International Journal of Plasticity, 79 (2016) 153-175. [112] A. J. Zaddach, C. Niu, C. C. Koch and D. L. Irving, Mechanical Properties and Stacking Fault Energies of NiFeCrCoMn High-Entropy Alloy, JOM, 65 (2013) 1780-1789. [113] S. Huang, W. Li, S. Lu, F.Y. Tian, J. Shen, E. Holmström and L. Vitos, Temperature dependent stacking fault energy of FeCrCoNiMn highentropy alloy, Sripta Materialia, 108 (2015) 44-47. [114] T.M. Pollock, A.S. Argon, Creep Resistance of CMSX-3 Nickel-Base Superalloy Single-Crystals, Acta Metallurgica et Materialia, 40 (1992) 1-30. [115] T.K. Tsao, A.C. Yeh, J.W. Yeh, M.S. Chiou, C.M. Kuo, H. Murakami, K. Kakehi, HIGH TEMPERATURE PROPERTIES OF ADVANCED DIRECTIONALLY-SOLIDIFIED HIGH ENTROPY SUPERALLOYS, Superalloys, (2016) 1001-1009. [116] Y. Koizumi, T. Kobayashi, T. Yokokawa, J.X. Zhang, M. Osawa, H. Harada, Y. Aoki, M. Arai, Development of next-generation Ni-base single crystal superalloys, Superalloys, (2004) 35-43. [117] K. Kawagishi, H. Harada, A. Sato, A. Sato, T. Kobayashi, The oxidation properties of fourth generation single-crystal nickel-based superalloys, JOM, 58 (2006) 43-46. [118] A. Sato, Y.-L. Chiu, R. Reed, Oxidation of nickel-based single-crystal superalloys for industrial gas turbine applications, Acta Materialia, 59 (2011) 225-240. [119] A. Evans, M. He, A. Suzuki, M. Gigliotti, B. Hazel, T. Pollock, A mechanism governing oxidation-assisted low-cycle fatigue of superalloys, Acta Materialia, 57 (2009) 2969-2983. [120] D. Deb, S.R. Iyer, V. Radhakrishnan, A comparative study of oxidation and hot corrosion of a cast nickel base superalloy in different corrosive environments, Materials Letters, 29 (1996) 19-23. [121] J. Tong, S. Dalby, J. Byrne, M. Henderson, M. Hardy, Creep, fatigue and oxidation in crack growth in advanced nickel base superalloys, International Journal of Fatigue, 23 (2001) 897-902. [122] N. Eliaz, G. Shemesh, R. Latanision, Hot corrosion in gas turbine components, Engineering failure analysis, 9 (2002) 31-43. [123] K. Harris, G. Erickson, R. Schwer, MAR-M247 derivations—CM247 LC DS alloy, CMSX single crystal alloys, properties and performance, Superalloys, (1984) 221-230. [124] O. Cryosystems, Crystallographica Search-Match, Journal of Applied Crystallography, 32 (1999) 379-380. [125] D. Das, V. Singh, S.V. Joshi, High temperature oxidation behaviour of directionally solidified nickel base superalloy CM–247LC, Materials science and technology, 19 (2003) 695-708. [126] M.S. Chiou, S.R. Jian, A.C. Yeh, C.M. Kuo, Effects of Aluminum Addition on the High Temperature Oxidation Behavior of CM-247LC Ni-based Superalloy, International Journal of Electrochemical Science, 10 (2015) 5981-5993. [127] S. Seal, S. Kuiry, L.A. Bracho, Studies on the surface chemistry of oxide films formed on IN-738LC superalloy at elevated temperatures in dry air, Oxidation of metals, 56 (2001) 583-603. [128] M.J. Donachie, S.J. Donachie, Superalloys: a technical guide, ASM international, 2002. [129] M. Li, X. Sun, T. Jin, H. Guan, Z. Hu, Oxidation Behavior of a Single-Crystal Ni-Base Superalloy in Air—II: At 1000, 1100, and 1150 °C, Oxidation of Metals, 60 (2003) 195-210. [130] S. Kumar, D. Mudgal, S. Singh, S. Prakash, Cyclic oxidation behavior of bare and Cr3C2-25(NiCr) coated super alloy at elevated temperature, Advanced Materials Letters, 4 (2013) 754-761. [131] L. Liu, S. Wu, Y. Dong, S. Lü, Effects of alloyed Mn on oxidation behaviour of a Co–Ni–Cr–Fe alloy between 1050 and 1250 °C, Corrosion Science, 104 (2016) 236-247. [132] S. Bose, "High-Temperature Corrosion" In High Temperature Coatings, Butterworth-Heinemann: Burlington, 2007. [133] N.S. BORNSTEIN, M.A. DeCRESCENTE, The role of sodium and sulfur in the accelerated oxidation phenomena-sulfidation, Corrosion, 26 (1970) 309-314. [134] F. Pettit, G. Meier, M. Gell, C. Kartovich, R. Bricknel, W. Kent, J. Radovich, Oxidation and hot corrosion of superalloys, The Metal Society AIME, Warrendale, PA, 651 (1984). [135] C.S. Giggins, F.S. Pettit, Oxidation of Ni-Cr-Al Alloys between 1000 Degrees and 1200 Degrees C, Journal of The Electrochemical Society, 118 (1971) 1782-1790. [136] S.L. Chen, S. Daniel, F. Zhang, Y. Chang, X.Y. Yan, F.-Y. Xie, R. Schmid-Fetzer, W. Oates, The PANDAT software package and its applications, Calphad, 26 (2002) 175-188. [137] F. Stott, G. Wood, J. Stringer, The influence of alloying elements on the development and maintenance of protective scales, Oxidation of metals, 44 (1995) 113-145. [138] N. Birks, G. Meier, F. Pettit, Forming continuous alumina scales to protect superalloys, JOM, 46 (1994) 42-46. [139] A.P. Gordon, M.D. Trexler, R.W. Neu, T.J. Sanders, D.L. McDowell, Corrosion kinetics of a directionally solidified Ni-base superalloy, Acta materialia, 55 (2007) 3375-3385. [140] A.S. Suzuki, K. Kawagishi, T. Yokokawa, H. Harada, T. Kobayashi, A New Oxide Morphology Map: Initial Oxidation Behavior of Ni-Base Single-Crystal Superalloys, Metallurgical and Materials Transactions A, 43 (2012) 155-162. [141] S. Mrowec, T. Werber, M. Zastawnik, The mechanism of high temperature sulphur corrosion of nickel-chromium alloys, Corrosion Science, 6 (1966) 47-68. [142] R.A. Rapp, K. Goto, The hot corrosion of metals by molten salts, in: Proceedings of the Second International Symposium on Molten Salts, Physical Electrochemistry Division, Electrochemical Society, 1981, pp. 159. [143] R.A. Rapp, Chemistry and electrochemistry of hot corrosion of metals, Materials Science and Engineering, 87 (1987) 319-327. [144] A. Beltran, D. Shores, Superalloys, Wiley Interscience, New York, (1972) 317-339. [145] M. Qiao, C. Zhou, Hot corrosion behavior of Co modified NiAl coating on nickel base superalloys, Corrosion Science, 63 (2012) 239-245. [146] T.K. Tsao, A.C. Yeh, C.M. Kuo, H. Murakami, High Temperature Oxidation and Corrosion Properties of High Entropy Superalloys, Entropy, 18 (2016) 62. [147] A. Sengupta, S. K. Putatunda, L. Bartosiewicz, J. Hangas, P. J. Nailos, M. Peputapeck, F. E. Alberts, Tensile behavior of a new single-crystal nickel-based superalloy (CMSX-4) at room and elevated temperatures, Journal of Materials Engineering and Performance, 3 (1994) 73-81. [148] G. L. Erickson, THE DEVELOPMENT AND APPLICATION OF CMSX@-10, Superalloys, (1996) 35-44.
|