跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/01 10:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳平宏
論文名稱:鈣鋯錳添加之鈦酸鋇陶瓷在還原氣氛低溫燒結及電性之研究
論文名稱(外文):Low Sintering Temperature Behavior and Dielectric Properties of (Ba,Ca)(Ti,Zr,Mn)O3 in a Reducing Atmosphere
指導教授:方滄澤
指導教授(外文):Tsang-Tse Fang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:材料科學及工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:1999
畢業學年度:87
語文別:中文
論文頁數:84
中文關鍵詞:低溫燒結鈦酸鋇還原氣氛
外文關鍵詞:low sintering temperature behaviorbarium titanatereducing atmosphere
相關次數:
  • 被引用被引用:1
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
添加鈣、鋯、錳之鈦酸鋇為一高介電材料,為配合鎳、銅內電極須在還原氣氛下燒結,並且降低燒結溫度以減低電極與陶瓷間介面的內應力。本實驗目的在於研究此材料和添加助燒結劑MST,在不同氣氛下的燒結行為及介電性質。
關於燒結行為的研究,實驗結果顯示在還原氣氛下可降低燒結溫度,並且阻止因富鈦所產生的液相形成,同時也延後鈦酸鈣擴散入鈦酸鋇中,但也使孔隙成長,密度因此下降。添加2%MST以上可降低燒結緻密溫度至1100℃,添加越多晶粒成長越均勻,但也使孔隙成長越嚴重。
關於介電性質的研究,實驗結果顯示在還原氣氛下燒結會提高介電常數,錳的價數會由+3變成+2,Tc點因此由65℃偏移至30℃,並且溫度越高使得氧空位越多,逐漸無法抵抗還原氣氛使得電阻降低和介電損增加。添加MST燒結,由於錳離子擴散入BCTZM中而降低介電損,並且會使介電常數降低、Tc點往低溫偏移。
關於MnSiO3和MnTiO3方面,MnO2與SiO2在空氣中先合成MnMn6SiO12,但在1200℃尚未完全合成MnSiO3之前已熔解,在還原氣氛下1100℃持溫八小時即可完全合成;MnO2與TiO2在還原氣氛下1250℃持溫八小時即可完全合成MnTiO3。另外MST在不同氣氛下熱處理,其粉末的顏色也會不同。
(Ba,Ca)(Ti,Zr,Mn)O3 would possess high dielectric constant. Because of the utilization of the base metals such as Ni and Cu, the multilayer capacitor must be sintered in a reducing environment and at lower temperature to reduce the stress of interface. The purposes of this study were to evaluate the effect of flux additive of MST on the sintering behavior and the dielectric properties in the different atmospheres.
It was found that the reducing environment could enhance the sintering rate. It prevents the formation of the liquid phase and delays the diffusion of calcium ions into barium titanate. But it will be dedensified owing to the pore growth. The sintering temperature could be lowered to 1100℃ when more than 2% MST were added . The more MST was added, the more uniform the grains were but the more the pore growth was.
Reducing atmosphere would enhance dielectric constant, in which Mn+3 would become Mn+2 and the Curie temperature would shift from 65℃ to 30℃. Higher sintering temperature would develop more oxygen vacancies which in turn would lower resistance and enhance dielectric loss. Mn would diffuse in BCTZM when MST was added, which would reduce dielectric loss and dielectric constant and make Curie temperature shift to lower temperatures.
For preparing MnSiO3 and MnTiO3, the mixture of MnO2 and SiO2 was calcined in air to form MnMn6SiO12 first. At 1200℃, it melted and did not form MnSiO3 completely. However, when it was calcined at 1100℃ for 8 hours in the reducing atmosphere, more pure MnSiO3 could be obtained. MnTiO3 could be synthesized at 1250℃ for 4 hours in a reducing atmosphere. MST calcined in different atmospheres would possess different colors, which might be due to the different oxidation states of Mn.
第一章 序 論……………………………………………………………1
1.1 前言………………………………………………………………….1
1.2 研究目的…………………………………………………………….2
第二章 理論基礎與文獻回顧…………………………………………..3
2.1 鈦酸鋇的性質……………………………………………………….3
2.1.1 晶體結構與基本特性…………………………………………….3
2.1.2 BaTiO3的相平衡圖………………………………………………...6
2.2 影響鈦酸鋇陶瓷介電的因素……………………………………….6
2.2.1 粉末與晶粒的大小……………………………………………….6
2.2.2 孔隙及混合相…………………………………………………….8
2.2.3 鈣添加對介電性質的影響……………………………………...10
2.2.4 鋯添加對介電性質的影響……………………………………...10
2.2.5 錳添加對介電性質的影響……………………………………...12
2.2.6 添加物的均勻度與擴散相變…………………………………...12
2.3 影響燒結的因素…………………………………………………...13
2.3.1 起始粉末粒徑大小及粒徑分佈………………………………...13
2.3.2 促進晶格擴散…………………………………………………...15
2.4 液相燒結…………………………………………………………...15
2.4.1 液相燒結理論…………………………………………………...15
2.4.2 MST(MnSiO3&MnTiO3)……………………………………………...19
第三章 實驗步驟與方法………………………………………………22
3.1 實驗藥品…………………………………………………………...22
3.2 實驗流程…………………………………………………………...22
3.2.1 BCTZM粉末性質……………………………………….…………22
3.2.2 MnSiO3和MnTiO3的固態反應合成…………………..…………...24
3.2.3 BCTZM粉末添加MST燒結………………………………………...24
3.3 X-ray繞射分析…………………………………………………….24
3.3.1 測量BCTZM的理論密度………………………………………….25
3.3.2 合成相分析……………………………………………………...25
3.4 SEM顯微結構觀察………………………………………………….25
3.4.1 粉末的SEM試片製備……………………………………………25
3.4.2 燒結體的SEM試片製備…………………………………………25
3.5 燒結密度的量測…………………………………………………...26
3.6 電性的量測………………………………………………………...27
3.6.1 介電的量測……………………………………………………...27
3.6.2 電阻的量測……………………………………………………...27
3.7 其他實驗…………………………………………………………...27
3.7.1 EPR分析………………………………………………………….27
3.7.2 熱重分析(TGA)…………………………………………………..28
第四章 結果與討論……………………………………………………29
4.1 BCTZM粉末的性質……...…………………………………………..29
4.1.1 BCTZM粉末……………………………………………………….29
4.1.2 燒結行為………………………………………………………...29
4.1.3 顯微結構………………………………………………………...33
4.1.4 電性分析………………………………………………………...39
4.2 MnSiO3和MnTiO3…………………….…………………………...51
4.2.1 MnSiO3和MnTiO3的合成……...……..……………………………51
4.2.2 MST的物性………….……………………………………………51
4.3 BCTZM粉末添加MST燒結…………………………………………..55
4.3.1 MST添加量對BCTZM的影響……..………………………………55
4.3.2 氣氛對添加MST的影響……………………...………………….63
第五章 結 論…………………………………………………………..78
5.1 BCTZM的性質………………………………………………………78
5.2 MnSiO3和MnTiO3……….…………………………..……………….78
5.3 BCTZM添加MST的影響…………...………………………………...79
第六章 參考文獻………………………………………………………80
1. A. J. Moulson, and J. M. Herbert, "Electroceramics",
Chapman & Hall (1990)
2. Bruce D. Begg, Eric R. Vance, and Janusz Nowotny, "Effect
of Particle Size on the Room-Temperature Crystal Structure
of Barium Titanate", J. Am. Ceram. Soc., v77[12], p3186-92
(1994)
3. Kenji Uchino, Eiji Sadanaga, and Terukiyo Hirose,
"Dependence of the Crystal Structure on Particle Size in
Barium Titanate", J. Am. Ceram. Soc., v72[8], p1555-58
(1989)
4. Xiaoping Li, and Wei-Heng shih, "Size Effect in Barium
Titanate Particles and Clusters", J. Am. Ceram. Soc.,
v80[11], p2844-52 (1997)
5. Hiroyuki Ikawa, "Size Dependent Behavior for Pervskite
Ferroelectrics", Ceram. Trans. v32, p19-28 (1993)
6. R. P. S. M. Lobo, Nelcy D. S. Mohallem, and Roberto L.
Moreira, "Grain-Size Effects on Diffuse Phase Transitions
of Sol-Gel Prepared Barium Titanate Ceramics", J. Am.
Ceram. Soc., v78[5], p1343-46 (1995)
7. R. P. S. M. Lobo, R. L. Moreira, and N. D. S. Mohallem,
"Grain-Size Effect on Diffuse Phase Transitions of BaTiO3
Ceramics Obained by Alkoxide Precursors", Mat. Res. Soc.
Symp. Proc., v346, p309-14 (1994)
8. R. J. Brandmayr, A. E. Brown, and A. M. Dunlap, USA ECOM
Technical Report 2614, May (1965)
9. W. R. Buessem, "Phenomenological Theory of High Permittivity in
Fine-Grained Barium Titante", J. Am. Ceram. Soc., v49, p33-36 (1966)
10. A. J. Bell, A. J. Moulson, and L. E. Cross, Ferroelectrics,
v54, p147-50 (1984)
11. G. Arlt, D. Hennings, and G. de With, J. Apll. Phys., v58,
p1619-25 (1985)
12. T. T. Fang, H. L. Hsieh, and F. S. Shiau, "Effects of Pore
Morphology and Grain Size on the Dielectric Properties and
Tetragonal-Cubic Phase Transition of High Purity Barium
Titanate", J. Am. Ceram. Soc., v76[5], p1205-11 (1993)
13. R. C. de Vries, R. Roy, "Phase Equilibrium in the System
BaTiO3-CaTiO3", J. Am. Ceram. Soc., v38[4], p142-46 (1955)
14. B. Jaffe, W. R. Coot, et al., "Piezoelectric Ceramics",
p91-99, Academic-Press (1971)
15. Yukio Sakabe, "Dielectric Materials for Base-metal
Muiltilayer Ceramic Capacitors", Ceramic Bull., v66[9],
p1338-41 (1987)
16. Z. Q. Zhuang, M. P. Harmer, and D. M. Smyth, "The Effect
of Octahedrally-Coordinated Calcium on Ferroelectric
Transition of BaTiO3", Mat. Res. Bull., v22, p1329-35
(1987)
17. J. G. Park, T. S.Oh, and Y. H. Kim, "Dielectric Properties
and Microstructural Behavior of B-site Calcium-doped
Barium Titanate Ceramics", J. Mater. Sci., v27, p5713-
19 (1992)
18. D. F. K. Hennings, H. Schreinemacher, "Ca-acceptors in
Dielectric Ceramics Sintered in Reducive Atmospheres", J.
of the Europ. Ceram. Soc., v15, p795-800 (1995)
19. Tsai-Fa Lin, Jien-Lun Lin, and Chen-Ti Hu, "The
Microstructure Developments and Electrical Properties of
Calcium-modified Barium Titanate Ceramics", J. Mat. Sci.,
v26, p491-96 (1991)
20. Young Ho Han, John B. Appleby, and Donald M. Smyth, "Calcium
as an Acceptor Impurty in BaTiO3", J. Am. Ceram. Soc.,
v70[2], p96-100 (1987)
21. D. Voltzke, H-P. Abich, "Investigations Related to the
Incorporation of Ca2+ Ions into the BaTiO3 Lattice", J. Mat.
Sci., v30, p4896-4900 (1995)
22. Tsai-Fa Lin, and Chen-Ti Hu, "Influence of CaO Addition
on the Electrical Properties of BaTiO3 Ceramics", J. Appl.
Phys., v67[2], p1042-47 (1990)
23. M. Ceh, and D. Kolar, "Solubility of Calcium Oxide in Barium
Titanate", Mat. Res. Bull., v29[3], p269-75 (1994)
24. 薛志宗,碩士論文,國立成功大學材料科學與工程研究所,民85 (1996)
25. Stephen M. Neirman, "The Curie Point Temperature of
Ba(Ti1-xZrx)O3 Solid Solutions", J. Mater. Sci., v23,
p3973-80 (1988)
26. Timothy R. Armstrong, Laurie E. Morgens, Alena K. Maurice,
and Relva C. Buchanan, "Effects of Zirconia on
Microstructure and Dielectric Properties of Barium
Titanate Ceramics", J. Am. Ceram. Soc., v72[4], p605-11
(1989)
27. R. Vivekanandan, Sam Philip, and T. R. N. Kutty,
"Hydrothermal Preparation of Ba(Ti,Zr)O3 Fine Powders",
Mat. Res. Bull., v22, p99-108 (1986)
28. Clement Saucy, Ian M. Reaney, and Andrew J. Bell,
"Microstructure and Electromechanical Properties of
BaTiO3-ZrO2 ''Core-Shell'' Ceramics", British Ceramic
Proceedings Nano Ceramics, Issue 51 (1993)
29. Timpthy R. Armstrong, "Influence of Core-Shell Grains on
the Internal Stress State and Permittivity Response of
Zirconia-Modified Barium Titanate", J. Am. Ceram. Soc.,
v73[5], p1268-73 (1990)
30. Hong-Yang Lu, "Core-Shell Structure in ZrO2-Modified
BaTiO3 Ceramic", J. Am. Ceram. Soc., v73[12], p3562-68
(1990)
31. Michelle M. Hedges, "The Ba(Ti,Zr)O3-(Zr,Ti)O2 Field in
the Phase System BaO-TiO2-ZrO2", J. Am. Ceram. Soc., v74
[9], p2318-20 (1991)
32. D. Hennings, and A. Schnell, "Diffuse Ferroelectric Phase
Transitions in Ba(Ti1-yZry)O3 Ceramics", J. Am. Ceram. Soc.,
v65[11], p539-44 (1982)
33. S. B. Desu, and E. C. Subbarao, "Effect of Oxidation States
of Mn on the Phase Stability of Mn-doped BaTiO3",
Ferroelectrics, v37, p665-68 (1981)
34. H. Ikushima, and S. Hayakawa, J. Phys. Soc. Japan (1964)
35. T. Miki, A. Fujimoto, and S. Jida, "An Evidence of Trap
Activation for Positive Temperature Coefficient of
Resistivity in BaTiO3 Ceramics with Substitutional Nb and
Mn as Impurities", J. Appl. Phys., v83[3], p1592-1603
(1998)
36. G. A. Smolensky, "Physical Phenomena in Ferroelectrics
with Diffused Phase Transition", J. J. Phys. Soc., v28,
p26-37 (1970)
37. G. A. Smolensky, and A. I. Agrenovuskaya, Sov. Phys. Solid
State 1, p1429 (1959)
38. L. Eric Cross, "Relaxor Ferroelectrics", Ferroelectrics,
v76, p241-67 (1987)
39. Dhananjai Pandey, V. S. Tiwari, T. B. Singh, Lakshman
Pandey,OM Parkash, and P. Ramachandrarao, "Diffuse Phase
Transition in (Ba,Ca)TiO3 Ceramics", Phase Transitions,
v9, p11-22 (1987)
40. R. L. Moreira, and R. P. S. M. Lobo, "Phenomenological
Study of Diffuse Phase Transitions", J. J. Phys. Soc.,
v61[6], p1992-95 (1992)
41. M. Kuwabara, K. Goda, and K. Oshima, "Coexistence of Normal
and Diffuse Ferroelectric-paraelectric Phase Transitions
in (Pb,La)TiO3 Ceramics", Physical Review B, v42[16],
p10012-15 (1990)
42. C. G. F. Stenger, F. L. Scholten, and A. J. Burggraaf,
"Ordering and Diffuse Phase Transitions in Pb(Sc0.5Ta0.5)O3
Ceramics", Solid State Commun., v32, p989-92 (1979)
43. N. Setter, and L. E. Cross, "The Role of B-site Cation
Disorder in Diffuse Phase Transition Behavior of
Perovskite Ferroelectrics", J. Appl. Phys., v51[8],
p4356-60 (1980)
44. V. A. Isupovm, "Some Problems of Diffuse Ferroelectric
Phase Transitions", Ferroelectrics, v91, p113-18 (1989)
45. I-Wei Chen, Ping Li, and Ying Wang, "Structural Origin
of Relaxor Pervoskites", J. Phys. Chem. Solids, v57[10],
p1525-36 (1996)
46. A. A. Bokov, and I. P. Rayevsky, "Compositional Ordering in
Ferroelectrics with Diffuse Phase Transition", Ferroelectrics, v90,
p125-33 (1989)
47. Jun Kuwata, Kenji Uchino, and Shoichiro Nomura, "Diffuse
Phase Transition in Lead Zinc Niobate", Ferroelectrics,
v22, p863-67 (1979)
48. V. V. Kirillov, and V. A. Isupov, "Relaxation Polarization
of PbMg1/3Nb2/3O3 (PMN)-a Ferroelectric with a Diffuse Phase
Transition", Ferroelectrics, v5, p3-9 (1973)
49. G. C. Kuczynski, J. Appl. Phys., v20, p1160 (1949)
50. R. L. Coble, J. Am. Ceram. Soc., v41, p55 (1958)
51. G. C. Kuczynski, D. P. Uskokovic, and H. Palmour III, p3,
in Sintering''85 (1985)
52. C. Herring, J. Appl. Phys., v21, p31 (1950)
53. W. H. Rhodes, J. Am. Ceram. Soc., v64, p19 (1981)
54. F. W. Dynys, and J. W. Halloran, J. Am. Ceram. Soc., v67,
p596 (1984)
55. R. M. German, "Liguid Phase Sintering", Plenum press
(1985)
56. M. N. Rahaman, "Ceramic Processing and Sintering", Marcel
Dekker (1995)
57. C. F. Yang, "The Influence of CuO-BaO Mixtures Addition
on the Grain Growth of BaTiO3 Ceramics", Jpn. J. Appl.
Phys., v36, p3548-52 (1997)
58. C. F. Yang, "Effect of CuO-BaO Mixture Content on the Grain
Growth of BaTiO3", J. Mater. Sci.: Mater. in Electr., v9,
p167-72 (1998)
59. T. R. Armstrong, K. A. Young, and R. C. Buchanan,
"Dielectric Properties of Fluxed Barium Titanate Ceramics
with Zirconia Additions", J. Am. Ceram. Soc., v73[3],
p700-06 (1990)
60. I. Burn, "Flux-Sintered BaTiO3 Dielectrics", J. Mater.
Sci., v17[5], p1398-1408 (1982)
61. L. M. Castellize, and R. J. Routil, "The Effect of Boric
Oxide on the Properties of Barium Titanate Based Ceramics",
J. Can. Ceram. Soc., v35, p69-74 (1969)
62. S. L. Fu, C. C. Wei, S. Y. Cheng, and T. P. Yeh, "Low
Temperature Firing of Ceramics", ISHM Proc., v8[1], p1-5
(1985)
63. J. M. Haussone, G. Gesgardin, Ph. Bajolet, and B. Raveau,
"Barium Titanate Sintered with Lithium Fluoride", J. Am.
Ceram. Soc., v66[11], p801-07 (1983)
64. B. E. Walker, Jr., R. W. Rice, R. C. Pohanka, and J. R.
Spann, "Densification and Strength of BaTiO3 with LiF and
MgO Additives", Am. Ceram. Soc. Bull., v55[5], p274-85
(1971)
65. S. Smolensky, Z. anorg. Chem., v73, p299 (1912)
66. See also J. White, D. D. Howatt, and R. Hay, J. Roy. Tech.
Coll. (Glasgow), v3, p239 (1933-36)
67. J. Grieve, and J. White, J. Roy. Tech. Coll. (Glasgow),
v4, p661 (1940)
68. Cyrus Klingsberg, and Rustum Roy, J. Am. Ceram. Soc.,
v43[12], p623 (1960)
69. Dashed curve after data of J. P. Coughlin, U. S. Bur. Mines
Bull., No. 542, XII (1954)
70. D.Hennings, "Liguid Phase Sintering of Barium Titanate",
Ber. Dtsch. Keram. Ges., v55[7], p359-60 (1978)
71. D. F. K. Hennings, R. Janssen, and P. J. L. Reynen, "Control
of Liguid-Phase-Enhanced Discontinuous Grain Growth in
Barium Titanate", J. Am. Ceram. Soc., v70[1], p23-27 (1987)
72. H. Schmelz, and A. Meyer, "The Evidence for Abnormal Grain
Growth Below the Eutectic Temperature in BaTiO3 Ceramics",
Ber. Dtsch. Keram. Ges., v59[8/9], p436-40 (1982)
73. H. Schmelz, "Anomalous Grain Growth in BaTiO3 Ceramics",
Sci. Ceram., v12, p341-47 (1984)
74. C. H''erard, A. Faivre, and J. Lemaitre, "Surface
Decontamination Treatments of Undoped BaTiO3-Part I :
Powder and Green Body Properties", J. Eur. Ceram. Soc.,
v15, p135-43 (1995)
75. J. Lemaitre, C. H''erard, and D. Vogel, "Microstructure
and Piezoelectric Properties of Slip Cast Barium Titanate
Ceramics", p59-64 in 3rd European Ceramic Society
Conference, v2 (Madrid, Spain) (1993)
76. M. Demartin, C. H''erard, C. Carry, and J. Lemaitre,
"Dedensification and Anomalous Grain Growth during
Sintering of Undoped Barium Titanate", J. Am. Ceram. Soc.,
v80[5], p1079-84 (1997)
77. K. H. Hardtl, and R. Wernicke, "Lowering the Curie Temperature in Reduced
BaTiO3", Solid State Comm., v10, p153-57 (1972)
78. Bursian, E. V., Sov. Phys.-Solid State, v11, p2423 (1970)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top