跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉宏毅
研究生(外文):LIOU HORNG-YITH
論文名稱:金屬受隨機負載作用下之疲勞分析模式與探討
論文名稱(外文):Analysis and Research of Metal Fatigue Under Random Loading
指導教授:吳文方
指導教授(外文):WU WEN-FANG
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:機械工程學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:1998
畢業學年度:87
語文別:中文
中文關鍵詞:疲勞隨機負載
外文關鍵詞:FatigueRandom Loading
相關次數:
  • 被引用被引用:11
  • 點閱點閱:345
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係針對金屬材料在隨機負載(Random Loading)作用下之一些疲勞分析與探討,內容朝兩大方向著手,其一乃著眼於數學模式之建立,其二則是對於裂紋延伸之電腦模擬與探討。文中首先結合S-N疲勞曲線、疲勞損傷法則及隨機赴載理論推導出一評估疲勞損傷與壽命之核心數學公式,根據此核心數學公式,再分別應用Lambert理論與Gumbel的極值漸近理論(Asymptotic Theory of Extremes)考慮截斷應力的情形,衍生出一系列相關的數學公式以探討其對於疲勞損傷與壽命評估之適用性,其中在低周次疲勞方面另引用7075-T651鋁合金材料之實驗數據以為驗證。關於此部分之重要結果如下:(1)此核心數學公式配合兩種截斷應力決定的方法可以涵蓋以往相關學者所推導之數學公式,(2)此核心數學公式結合Lambert決定截斷應力的方法確實可改善對於低周次疲勞損傷與壽命評估之準確性,(3)推導出一新的數學公式適用於高周次疲勞損傷與壽命之預測。本論文第二部分則是採用Elber修正式並以逐周次法模擬裂紋隨周次延伸之情形並探討其隨機特性,其中對於影響裂紋延伸之不同變因如負荷、材料常數等或以隨機變數(Random Variable)或以隨機程序(Random Process)來處理,以探討其對裂紋延伸之影響,為了斷定模擬結果的準確性,本論文採用一批4340鉻鉬合金鋼之實驗數據以為驗證。其重要結論如下:(1)以材料常數c為隨機變數之模擬方式為最佳者,且其對於等效負荷之型態並不敏感;(2)以其他變數為隨機程序之模擬方式均使模擬曲線呈集束狀,並不符合實際情況。本文對於上述之疲勞研究結果更進一步應用機率理論來進行相關之可靠度(Reliability)評估。
Some problems related to the metallic fatigue under random loading are studied in the present dissertation. The content of the dissertation is divided into two major parts. The first part focuses on the derivation of mathematical formulas that can be used for the prediction of fatigue damage and fatigue life of a component under random loading. The second part investigates the randomness of the parameters, which result in the scatter of the fatigue crack growth curves. In the first part of the dissertation, a key mathematical formula is derived based on random vibration theory in which Morrow*s nonlinear damage rule and the traditional S-N curve concept are both taken into consideration. Lambert*s empirical assumption or Gumbel*s asymptotic theory of statistical extremes is used to determine the maximum stress needed in applying the key mathematical formula. Computational algorithms for the prediction of fatigue damage and fatigue life under random for the prediction of fatigue damage and fatigue life under random loading are proposed and their accuracy is verified by the experimental data of 7075-T651 aluminum alloy. The following conclusions are made after the study. (1) The aforementioned key formula is general enough to cover other formulas derived by other researchers. (2) The key formula combined with Lambert*s assumption predicts the low-cycle fatigue damage and fatigue life very well. (3) A new derived formula can be used to predict the high-cycle fatigue damage and fatigue life. In the second part of the dissertation, Elber*s law is adopted for the cycle-by-cycle fatigue crack growth simulation. For each run of the simulation, various factors such as the applied load and the material constants are considered random factors. For each random factor, either a random variable or a random process is assumed, and its effect on the scatter of the crack growth curves is investigated. Experimental crack growth data of Type 4340 steel alloy are used for comparison. It is found that if one considers a certain material constant a random variable, the simulation result agrees rather well with the experimental result. It is also found that if one considers any one of the considered parameters as a random process, the scatter among different growth curves is smaller than the real experimental result. A random process with certain correlation length may be appropriate to account for the scatter of the real crack growth curves.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top