跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 21:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:賴映佑
研究生(外文):Lai, Ying-Yu
論文名稱:寬能隙材料半導體平面型微共振腔雷射之研究
論文名稱(外文):Study of wide-bandgap semiconductor planar microcavity laser devices
指導教授:盧廷昌盧廷昌引用關係
指導教授(外文):Lu, Tien-Chang
口試委員:林聖迪程育人李柏璁郭浩中李瑞光洪瑞華
口試委員(外文):Lin, Sheng-DiCheng, Yuh-JenLee, Po-TsungKuo, Hao-ChungLee, Ray-KuangHorng, Ray-Hua
口試日期:2015-06-04
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:英文
論文頁數:119
中文關鍵詞:氧化鋅氮化鎵微共振腔
外文關鍵詞:ZnOGaNMicrocavity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
平面型微共振腔雷射中,除了大家所熟知的垂直共振腔面射型雷射之外,也可以藉由光與物質強耦合產生的準粒子-極化子的玻色-愛因斯坦凝聚來產生極低閾值的同調光輸出,稱為極化子雷射。寬能隙半導體例如氮化鎵與氧化鋅由於具有與室溫熱擾動能量匹配的激子束縛能,在製作短波長的微共振腔雷射,包括垂直共振腔面射型雷射與極化子雷射上十分具有潛力。於此篇論文中,我們利用氮化鎵製作具有實用價值的電激發垂直共振腔面射型雷射更利用激子特性更強的氧化鋅材料以光激發的型式發展出極低閾值的極化子雷射。
透過數值分析,我們發現透明導電層與橫向的侷限孔徑在雷射閾值上扮演著很重要的角色。因此我們也提出了一個具有新型的回填式二氧化矽侷限孔徑的垂直面射型共振腔雷射設計,並以光激發的型式驗證了其雷射現象以及橫向光學侷限的效果。在電激發的元件中我們觀察到了二氧化矽孔徑的電流侷限效果,也在光譜上觀測到了橫模的產生。這兩個個現象都顯示了我們提出的結構可以有效的達成光學以及電流上的侷限。
接著我們利用氧化鋅微共振腔元件觀測到極化子的形成並觀測到極化子馳豫以及瓶頸效應的現象。接著利用高功率激發驅動極化子間的散射成功在室溫下觀察到極低閾值的極化子雷射。除此之外,我們亦發現藉由極化子可透過與光學聲子間的碰撞達到更有效率的馳豫並有效降低極化子雷射的閾值。這些研究成果對於未來設計氧化欣微共振腔極化子雷射提供了一個清楚的藍圖並驗證了氧化鋅在製作極低閾值的極化子雷射元件上的潛力。

In planar microcavities (MCs), beside the vertical-cavity surface-emitting laser (VCSEL) action, another low threshold laser could be generated by the Bose-Einstein condensation of cavity-polaritons, named polariton laser. Wide-bandgap materials including ZnO and GaN have a high potential on making VCSELs and polariton lasers due to their high exciton binding energies. In this thesis, we report an electrically injected GaN-based VCSEL and an optically pumped ZnO polariton laser.
Through simulation, we found that transparent conducting layer and lateral confinement aperture play important roles on reducing lasing threshold of the GaN VCSEL. We also proposed a new low index aperture design for GaN VCSEL and observed a transverse mode lasing behavior by an optical pumping experiment. For the electrically pumped VCSELs, the proposed low-index SiO2 aperture can confine both the current and optical mode simultaneously, which reveals its confinement capability.
For the ZnO-based MC, a clear formation of cavity polariton has been observed. And the corresponding poalriton relaxation and bottleneck effect were also verified. A low threshold polariton laser can be achieved by polariton self-interaction at room temperature. Besides, the polariton laser with a lower threshold can be achieved by assistant of longitudinal optical phonon-polariton scattering. These results provide a clear map for future designing of low threshold ZnO MC polarton lasers.

Chapter 1 Introduction…………………………………………………1
1.1 Overview of wide bandgap semiconductor planar microcavities…………………3
1.1.1 Basic properties of planar microcavities…………………………………...4
1.1.2 Strong and weak exciton-photon coupling in planar microcavities………..7
1.1.3 Planar microcavity lasers - Polariton lasers vs. VCSELs…………………..9
1.1.4 Historical review of non-wide bandgap materials based microcavity lasers…………………………………………………………………………...11
1.1.5 Motivation of using wide-bandgap materials based microcavities……….15
1.2 Weakly coupled GaN-based planar microcavity lasers-VCSELs………………..18
1.2.1 GaN-based VCSELs: Historical review before this thesis………………..18
1.2.2 Lateral confinement in GaN-based VCSELs……………………………..27
1.3 Strongly coupled ZnO-based microcavity polariton lasers……………………....31
1.3.1 ZnO-based MC polariton lasers: Historical review before this thesis…….31
1.3.2 Short conclusion of polariton lasers in ZnO-based MCs before this thesis..35
1.4 Outline of thesis………………………………………………………………….37
Chapter 2 Simulation models exciton-photon coupling in planar microcavities……………………………………………………………39
2.1 Exciton oscillator model………………………………………………………….40
2.2 Transfer matrix method (TMM)………………………………………………….42
2.3 Basic design of DBR mirrors…………………………………………………….45
2.4 Properties of planar MCs without excitonic oscillation-weakly coupled MC…...48
2.5 Properties of planar MCs with excitonic oscillation-strongly coupled MC……...50
Chapter 3 Weakly coupled GaN-based planar microcavity lasers…54
3.1 Numerical simulation of lateral confinement in GaN-based VCSELs…………..55
3.1.1 Simulation model and device structures………………………………….56
3.1.2 Current flows and gain distributions in GaN-based VCSELs…………….59
3.1.3 Analysis of gain-optical mode overlapping and threshold evaluation……61
3.1.4 L-I-V Characteristics……………………………………………………...65
3.2 Optically pumped GaN-based VCSELs with lateral optical confinement……….67
3.2.1 Sample fabrication………………………………………………………...67
3.2.2 Output properties of devices with different aperture sizes………………..68
3.3 Electrically pumped GaN-based RCLEDs with lateral confinement…………….72
3.3.1 Sample fabrication………………………………………………………..72
3.3.2 Basic properties of electrically pumped GaN MC………………………..74
3.3.3 Spectra analysis of electrically pumped GaN MC……………………..…77
Chapter 4 Strongly coupled ZnO-based planar microcavity lasers...82
4.1 Fabrication of ZnO-based microcavity…………………………………………...83
4.2 Basic optical properties of ZnO-based microcavity……………………………...84
4.3 Polariton relaxation bottleneck effect…………………………………………….85
4.3.1 Detuning-dependent polariton relaxation……………………………..86
4.3.2 Temperature-dependent polariton relaxation……………………...………87
4.4 Polariton lasing at room temperature and 353K………………………………….88
4.4.1 Power-dependent angular-resolved photoluminescence at RT…………...88
4.4.2 Power-dependent angular-resolved photoluminescence at 353 K………94
4.4.3 Coherence properties of polariton lasing at RT………………………….96
4.5 LO-phonon assisted polariton lasing at different temperature………………….101
Chapter 5 Conclusion and future work…………………………..…104
5.1 Conclusion………………………………………………………………………104
5.2 Future work……………………………………………………………………..106
Reference………………………………………………………...108
Publication list………………………………………………………...117

[1] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, R. O. Carlson, “Coherent Light Emission From GaAs Junctions,” Phys. Rev. Lett. 9, 366 (1962).
[2] Kenichi Iga, “Vertical-Cavity Surface-Emitting Laser: Its Conception and Evolution,” Jpn. J. Appl. Phy. 47, 1 (2008).
[3] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP Surface Emitting Injection Lasers,” Jpn. J. Appl. Phy. 18, 2329 (1979).
[4] J. Kasprzak, et al. “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409 (2006).
[5] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein Condensation of Microcavity Polaritons in a Trap,” Science 316, 1007 (2007).
[6] A. Amo, et al. “Superfluidity of polaritons in semiconductor microcavities,” Nat. Phys. 5, 805 (2009).
[7] D. Sanvitto, et al. “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys. 6, 527 (2010).
[8] KG Lagoudakis, et al. “Quantized vortices in an exciton-polariton condensate,” Nat. Phys. 4, 706 (2008).
[9] KG Lagoudakis, et al. “Observation of Half-Quantum Vortices in an Exciton-Polariton Condensate,” Science 326, 974 (2009).
[10] G. Roumpos, et al. “Single vortex-antivortex pair in an exciton-polariton condensate,” Nat. Phys. 7, 129 (2011).
[11] G Nardin, et al. “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7, 635 (2011).
[12] KJ. Vahala, “Optical microcavities,” Nature 424, 839 (2003).
[13] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198 (1995).
[14] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity,” Phys. Rev. Lett. 69, 3314 (1992).
[15] D. Hui, et al. “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Nat. Acad. Sci. 100, 15318 (2003).
[16] R. Huang, et al. “Exciton-polariton lasing and amplification based on exciton-exciton scattering in CdTe microcavity quantum wells,” Phys. Rev. B 65, 165314 (2002).
[17] S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, &; P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372 (2008).
[18] C. Schneider, et al. “An electrically pumped polariton laser,” Nature 497, 348 (2013).
[19] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phy. Rev. Lett. 110, 206403 (2013).
[20] G. Christmann, et al. “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93, 051102 (2008).
[21] Jacques Levrat, et al. “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81, 125305 (2010).
[22] P. Corfdir, et al. “Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities,” Phys. Rev. B 85, 245308 (2012).
[23] S. Christopoulos, et al. “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98, 126405 (2007).
[24] P. Bhattacharya, et al. “Room Temperature Electrically Injected Polariton Laser,” Phys. Rev. Lett. 112, 236802 (2014).
[25] Joan M. Redwing, et al. “An optically pumped GaN–AlGaN vertical cavity surface emitting laser,” Appl. Phys. Lett. 69, 1 (1996).
[26] T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, and T. Saitoh, “Cavity Polaritons in InGaN Microcavities at Room Temperature,” Phys. Rev. Lett. 92, 256402 (2004).
[27] T. C. Lu, et al. “Room Temperature Current Injection Polariton Light Emitting Diode with a Hybrid Microcavity,” Nano Lett. 11, 2791 (2011).
[28] T. C. Lu, et al. “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[29] Takao Someya, et al. “Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities,” Science 285, 1905 (1999).
[30] R. Shimada, et al. “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92, 011127 (2008).
[31] G. S. Huang, et al. “Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88, 061904 (2006).
[32] M. Asif Khan, J. N. Kuznia, J. M. Van Hove and D. T. Olson, “Reflective filters based on single-crystal GaN/AlxGa1-xN multilayers deposited using low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 59, 1449 (1991).
[33] M. A. Mastro, et al. “High-reflectance III-nitride distributed Bragg reflectors grown on Si substrates,” Appl. Phys. Lett. 87, 241103 (2005).
[34] J.-F. Carlina and M. Ilegems, “High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN,” Appl. Phys. Lett. 83, 668 (2003).
[35] E. F. Schubert, “Light-Emitting Diodes,” Cambridge, New York, 2006.
[36] T. C. Lu, et al. “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97, 071114 (2010).
[37] Y. Higuchi, et al. “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Expr. 1, 121102 (2008).
[38] K. Omae, et al. “Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate,” Appl. Phys. Expr. 2, 052101 (2009).
[39] T. Onishi, et al. “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” J. Quantum Electron. 48, 1107 (2012).
[40] Casey Holder, et al. “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Expr. 5, 092104 (2012).
[41] G. Ronald Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483 (1995).
[42] B. S. Cheng, et al. “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99, 041101 (2011).
[43] A. Castiglia, et al. “Efficient current injection scheme for nitride vertical cavity surface emitting lasers,” Appl. Phys. Lett. 90, 033514 (2007).
[44] E. Hashemi, et al. “Engineering the Lateral Optical Guiding in Gallium Nitride-Based Vertical-Cavity Surface-Emitting Laser Cavities to Reach the Lowest Threshold Gain,” Jpn. J. Appl. Phys. 52, 08JG04 (2013).
[45] E. Hashemi, et al. “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Expr. 22, 411 (2014).
[46] T. Guillet, et al. “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99, 161104 (2011).
[47] Chris Sturm, et al. “Observation of strong exciton–photon coupling at temperatures up to 410K,” New J. Phys. 11, 073044 (2009).
[48] Helena Franke, et al. “Ballistic propagation of exciton–polariton condensates in a ZnO-based microcavity,” New J. Phys. 14, 013037 (2012).
[49] S. Kalusniak, et al. “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett. 98, 011101 (2011).
[50] S. Halm, et al. “Strong exciton-photon coupling in a monolithic ZnO/(Zn,Mg)O multiple quantum well microcavity,” Appl. Phys. Lett. 99, 181121 (2011).
[51] Aoudé, P. Disseix, J. Leymarie, A. Vasson, E. Aujol, and B. Beaumont, "Femtosecond time-resolved interferences of resonantly excited excitons in bulk GaN," Superlattices and Microstructures 36, 607 (2004).
[52] E. Mallet, P. Disseix, D. Lagarde, M. Mihailovic, F. Réveret, T. V. Shubina, and J. Leymarie, "Accurate determination of homogeneous and inhomogeneous excitonic broadening in ZnO by linear and nonlinear spectroscopies," Phys, Rev, B 87, 161202 (2013).
[53] C. Wilmsen, H. Temkin, L. A. Corzine, Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, Cambridge, 1999).
[54] J. J. Hopffeld, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555 (1958).
[55] J. R. Chen, et al, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Expr. 19, 4101 (2011).
[56] P. S. Yeh, et al. “GaN-Based Resonant-Cavity LEDs Featuring a Si-Diffusion-Defined Current Blocking Layer,” IEEE Photon. Technol. Lett. 26, 2488 (2014).
[57] G. Cosendey, et al. “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101, 151113 (2012).
[58] PICS3D (Photonic Integrated Circuit Simulator in 3D) by Crosslight Software, Inc., Burnaby, Canada, 2005.
[59] G. Ronald Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483 (1995).
[60] C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15, 1231 (2003).
[61] J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Expr. 16, 20789 (2008).
[62] Y. Y. Lai, et al, “Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers,” Opt. Expr. 22, 9789 (2014).
[63] T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999).
[64] Y. Y. Lai, et al, “Fabrication and characteristics of a GaN-based microcavity laser with shallow etched mesa,” Appl. Phys. Expr. 7, 062101 (2014).
[65] Y. Y. Lai, Y. P. Lan and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Science &; Applications 2, e76 (2013).
[66] T. C. Lu, et al, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Expr. 20, 5530 (2012).
[67] Y. Y. Lai, Y. P. Lan and T. C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Expr. 5, 082801 (2012).
[68] J. Levrat, et al. “Tailoring the strong coupling regime in III-nitride based microcavities for room temperature polariton laser applications,” Phys Status Solidi C 6, 2820 (2009).
[69] S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78, 235323 (2008).
[70] F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann, “Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons,” Phys. Rev. B 56, 7554-7563 (1997).
[71] A. I. Tartakovskii , M. Emam-Ismail, R. M. Stevenson, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, J. J. Baumberg, and J. S. Roberts, “Relaxation bottleneck and its suppression in semiconductor microcavities,” Phys. Rev. B 62, R2283-2286 (2000).
[72] R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009).
[73] P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, G. Malpuech, and A. Kavokin, “Coexistence of low threshold lasing and strong coupling in microcavities,” J. Appl. Phys. 95, 2487 (2004).
[74] S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett. 98, 011101 (2011)
[75] J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009).
[76] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897 (2001).
[77] V. M. Markushev, V.V. Ursaki, M.V. Ryzhkov, C.M. Briskina, I.M. Tiginyanu, E.V. Rusu, and A. A. Zakhidov, “ZnO lasing in complex systems with tetrapods,” Appl. Phys. B 93, 231 (2008).
[78] C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt , “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007)
[79] C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. QE-18, 259 (1982).
[80] A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. André, and L. S. Dang, “Intrinsic Decoherence Mechanisms in the Microcavity Polariton Condensate,” Phys. Rev. Lett. 101, 067404 (2008).
[81] D. M. Whittaker and P. R. Eastham, “Coherence properties of the microcavity polariton condensate,” Euro. phys. Lett. 87, 27002 (2009).
[82] H. Haug and S. Koch, “On the Theory of Laser Action in Dense Exciton System,” Phys. Stat. Sol. (b) 82, 531 (1977).
[83] J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, “Spontaneous Polarization Buildup in a Room-Temperature Polariton Laser,” Phys. Rev. Lett. 101, 136409 (2008).
[84] D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B 67, 161310 (2003).
[85] H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99, 126403 (2007).
[86] C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton–polariton condensate array,” Nature 450, 529 (2007).
[87] S. Pau, et al. “LO-phonon-enhanced microcavity polariton emission,” Phys. Rev. B 55, 1942 (1997).
[88] M. Maragkou, et al. “Longitudinal optical phonon assisted polariton laser,” Appl. Phys. Lett. 97, 111110 (2010).
[89] D. Porras, C. Ciuti, J. J. Baumberg, and C. Tejedor, “Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities,” Phys. Rev. B 66, 085304 (2002).
[90] Ying-Yu Lai, Jee-Wei Chen, Tsu-Chi Chang, Yu-Hsun Chou, and Tien-Chang Lu, “Manipulation of exciton and photon lasing in a membrane-type ZnO microcavity,” Appl. Phys. Lett. 106, 131106 (2015).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊