|
[1] R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, R. O. Carlson, “Coherent Light Emission From GaAs Junctions,” Phys. Rev. Lett. 9, 366 (1962). [2] Kenichi Iga, “Vertical-Cavity Surface-Emitting Laser: Its Conception and Evolution,” Jpn. J. Appl. Phy. 47, 1 (2008). [3] H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP Surface Emitting Injection Lasers,” Jpn. J. Appl. Phy. 18, 2329 (1979). [4] J. Kasprzak, et al. “Bose-Einstein condensation of exciton polaritons,” Nature 443, 409 (2006). [5] R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, “Bose-Einstein Condensation of Microcavity Polaritons in a Trap,” Science 316, 1007 (2007). [6] A. Amo, et al. “Superfluidity of polaritons in semiconductor microcavities,” Nat. Phys. 5, 805 (2009). [7] D. Sanvitto, et al. “Persistent currents and quantized vortices in a polariton superfluid,” Nat. Phys. 6, 527 (2010). [8] KG Lagoudakis, et al. “Quantized vortices in an exciton-polariton condensate,” Nat. Phys. 4, 706 (2008). [9] KG Lagoudakis, et al. “Observation of Half-Quantum Vortices in an Exciton-Polariton Condensate,” Science 326, 974 (2009). [10] G. Roumpos, et al. “Single vortex-antivortex pair in an exciton-polariton condensate,” Nat. Phys. 7, 129 (2011). [11] G Nardin, et al. “Hydrodynamic nucleation of quantized vortex pairs in a polariton quantum fluid,” Nat. Phys. 7, 635 (2011). [12] KJ. Vahala, “Optical microcavities,” Nature 424, 839 (2003). [13] M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell, “Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor,” Science 269, 198 (1995). [14] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, “Observation of the Coupled Exciton-Photon Mode Splitting in a Semiconductor Quantum Microcavity,” Phys. Rev. Lett. 69, 3314 (1992). [15] D. Hui, et al. “Polariton lasing vs. photon lasing in a semiconductor microcavity,” Proc. Nat. Acad. Sci. 100, 15318 (2003). [16] R. Huang, et al. “Exciton-polariton lasing and amplification based on exciton-exciton scattering in CdTe microcavity quantum wells,” Phys. Rev. B 65, 165314 (2002). [17] S. I. Tsintzos, N. T. Pelekanos, G. Konstantinidis, Z. Hatzopoulos, &; P. G. Savvidis, “A GaAs polariton light-emitting diode operating near room temperature,” Nature 453, 372 (2008). [18] C. Schneider, et al. “An electrically pumped polariton laser,” Nature 497, 348 (2013). [19] P. Bhattacharya, B. Xiao, A. Das, S. Bhowmick, and J. Heo, “Solid State Electrically Injected Exciton-Polariton Laser,” Phy. Rev. Lett. 110, 206403 (2013). [20] G. Christmann, et al. “Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity,” Appl. Phys. Lett. 93, 051102 (2008). [21] Jacques Levrat, et al. “Condensation phase diagram of cavity polaritons in GaN-based microcavities: Experiment and theory,” Phys. Rev. B 81, 125305 (2010). [22] P. Corfdir, et al. “Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities,” Phys. Rev. B 85, 245308 (2012). [23] S. Christopoulos, et al. “Room-Temperature Polariton Lasing in Semiconductor Microcavities,” Phys. Rev. Lett. 98, 126405 (2007). [24] P. Bhattacharya, et al. “Room Temperature Electrically Injected Polariton Laser,” Phys. Rev. Lett. 112, 236802 (2014). [25] Joan M. Redwing, et al. “An optically pumped GaN–AlGaN vertical cavity surface emitting laser,” Appl. Phys. Lett. 69, 1 (1996). [26] T. Tawara, H. Gotoh, T. Akasaka, N. Kobayashi, and T. Saitoh, “Cavity Polaritons in InGaN Microcavities at Room Temperature,” Phys. Rev. Lett. 92, 256402 (2004). [27] T. C. Lu, et al. “Room Temperature Current Injection Polariton Light Emitting Diode with a Hybrid Microcavity,” Nano Lett. 11, 2791 (2011). [28] T. C. Lu, et al. “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008). [29] Takao Someya, et al. “Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities,” Science 285, 1905 (1999). [30] R. Shimada, et al. “Cavity polaritons in ZnO-based hybrid microcavities,” Appl. Phys. Lett. 92, 011127 (2008). [31] G. S. Huang, et al. “Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 88, 061904 (2006). [32] M. Asif Khan, J. N. Kuznia, J. M. Van Hove and D. T. Olson, “Reflective filters based on single-crystal GaN/AlxGa1-xN multilayers deposited using low-pressure metalorganic chemical vapor deposition,” Appl. Phys. Lett. 59, 1449 (1991). [33] M. A. Mastro, et al. “High-reflectance III-nitride distributed Bragg reflectors grown on Si substrates,” Appl. Phys. Lett. 87, 241103 (2005). [34] J.-F. Carlina and M. Ilegems, “High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN,” Appl. Phys. Lett. 83, 668 (2003). [35] E. F. Schubert, “Light-Emitting Diodes,” Cambridge, New York, 2006. [36] T. C. Lu, et al. “Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature,” Appl. Phys. Lett. 97, 071114 (2010). [37] Y. Higuchi, et al. “Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection,” Appl. Phys. Expr. 1, 121102 (2008). [38] K. Omae, et al. “Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate,” Appl. Phys. Expr. 2, 052101 (2009). [39] T. Onishi, et al. “Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature,” J. Quantum Electron. 48, 1107 (2012). [40] Casey Holder, et al. “Demonstration of Nonpolar GaN-Based Vertical-Cavity Surface-Emitting Lasers,” Appl. Phys. Expr. 5, 092104 (2012). [41] G. Ronald Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483 (1995). [42] B. S. Cheng, et al. “High Q microcavity light emitting diodes with buried AlN current apertures,” Appl. Phys. Lett. 99, 041101 (2011). [43] A. Castiglia, et al. “Efficient current injection scheme for nitride vertical cavity surface emitting lasers,” Appl. Phys. Lett. 90, 033514 (2007). [44] E. Hashemi, et al. “Engineering the Lateral Optical Guiding in Gallium Nitride-Based Vertical-Cavity Surface-Emitting Laser Cavities to Reach the Lowest Threshold Gain,” Jpn. J. Appl. Phys. 52, 08JG04 (2013). [45] E. Hashemi, et al. “Analysis of structurally sensitive loss in GaN-based VCSEL cavities and its effect on modal discrimination,” Opt. Expr. 22, 411 (2014). [46] T. Guillet, et al. “Polariton lasing in a hybrid bulk ZnO microcavity,” Appl. Phys. Lett. 99, 161104 (2011). [47] Chris Sturm, et al. “Observation of strong exciton–photon coupling at temperatures up to 410K,” New J. Phys. 11, 073044 (2009). [48] Helena Franke, et al. “Ballistic propagation of exciton–polariton condensates in a ZnO-based microcavity,” New J. Phys. 14, 013037 (2012). [49] S. Kalusniak, et al. “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett. 98, 011101 (2011). [50] S. Halm, et al. “Strong exciton-photon coupling in a monolithic ZnO/(Zn,Mg)O multiple quantum well microcavity,” Appl. Phys. Lett. 99, 181121 (2011). [51] Aoudé, P. Disseix, J. Leymarie, A. Vasson, E. Aujol, and B. Beaumont, "Femtosecond time-resolved interferences of resonantly excited excitons in bulk GaN," Superlattices and Microstructures 36, 607 (2004). [52] E. Mallet, P. Disseix, D. Lagarde, M. Mihailovic, F. Réveret, T. V. Shubina, and J. Leymarie, "Accurate determination of homogeneous and inhomogeneous excitonic broadening in ZnO by linear and nonlinear spectroscopies," Phys, Rev, B 87, 161202 (2013). [53] C. Wilmsen, H. Temkin, L. A. Corzine, Vertical-Cavity Surface-Emitting Lasers (Cambridge University Press, Cambridge, 1999). [54] J. J. Hopffeld, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev. 112, 1555 (1958). [55] J. R. Chen, et al, “Characteristics of exciton-polaritons in ZnO-based hybrid microcavities,” Opt. Expr. 19, 4101 (2011). [56] P. S. Yeh, et al. “GaN-Based Resonant-Cavity LEDs Featuring a Si-Diffusion-Defined Current Blocking Layer,” IEEE Photon. Technol. Lett. 26, 2488 (2014). [57] G. Cosendey, et al. “Blue monolithic AlInN-based vertical cavity surface emitting laser diode on free-standing GaN substrate,” Appl. Phys. Lett. 101, 151113 (2012). [58] PICS3D (Photonic Integrated Circuit Simulator in 3D) by Crosslight Software, Inc., Burnaby, Canada, 2005. [59] G. Ronald Hadley, “Effective index model for vertical-cavity surface-emitting lasers,” Opt. Lett. 20, 1483 (1995). [60] C. W. Tee, C. C. Tan, and S. F. Yu, “Design of antiresonant-reflecting optical waveguide-type vertical-cavity surface-emitting lasers using transfer matrix method,” IEEE Photon. Technol. Lett. 15, 1231 (2003). [61] J. Bengtsson, J. Gustavsson, Å. Haglund, A. Larsson, A. Bachmann, K. Kashani-Shirazi, and M.-C. Amann, “Diffraction loss in long-wavelength buried tunnel junction VCSELs analyzed with a hybrid coupled-cavity transfer-matrix model,” Opt. Expr. 16, 20789 (2008). [62] Y. Y. Lai, et al, “Numerical analysis on current and optical confinement of III-nitride vertical-cavity surface-emitting lasers,” Opt. Expr. 22, 9789 (2014). [63] T. Rivera, J.-P. Debray, J. M. Gérard, B. Legrand, L. Manin-Ferlazzo and J. L. Oudar, “Optical losses in plasma-etched AlGaAs microresonators using reflection spectroscopy,” Appl. Phys. Lett. 74, 911 (1999). [64] Y. Y. Lai, et al, “Fabrication and characteristics of a GaN-based microcavity laser with shallow etched mesa,” Appl. Phys. Expr. 7, 062101 (2014). [65] Y. Y. Lai, Y. P. Lan and T. C. Lu, “Strong light–matter interaction in ZnO microcavities,” Light: Science &; Applications 2, e76 (2013). [66] T. C. Lu, et al, “Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity,” Opt. Expr. 20, 5530 (2012). [67] Y. Y. Lai, Y. P. Lan and T. C. Lu, “High-Temperature Polariton Lasing in a Strongly Coupled ZnO Microcavity,” Appl. Phys. Expr. 5, 082801 (2012). [68] J. Levrat, et al. “Tailoring the strong coupling regime in III-nitride based microcavities for room temperature polariton laser applications,” Phys Status Solidi C 6, 2820 (2009). [69] S. Faure, T. Guillet, P. Lefebvre, T. Bretagnon, and B. Gil, “Comparison of strong coupling regimes in bulk GaAs, GaN, and ZnO semiconductor microcavities,” Phys. Rev. B 78, 235323 (2008). [70] F. Tassone, C. Piermarocchi, V. Savona, A. Quattropani, and P. Schwendimann, “Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons,” Phys. Rev. B 56, 7554-7563 (1997). [71] A. I. Tartakovskii , M. Emam-Ismail, R. M. Stevenson, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, J. J. Baumberg, and J. S. Roberts, “Relaxation bottleneck and its suppression in semiconductor microcavities,” Phys. Rev. B 62, R2283-2286 (2000). [72] R. Butté, J. Levrat, G. Christmann, E. Feltin, J.-F. Carlin, and N. Grandjean, “Phase diagram of a polariton laser from cryogenic to room temperature,” Phys. Rev. B 80, 233301 (2009). [73] P. G. Lagoudakis, M. D. Martin, J. J. Baumberg, G. Malpuech, and A. Kavokin, “Coexistence of low threshold lasing and strong coupling in microcavities,” J. Appl. Phys. 95, 2487 (2004). [74] S. Kalusniak, S. Sadofev, S. Halm, and F. Henneberger, “Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity,” Appl. Phys. Lett. 98, 011101 (2011) [75] J. Dai, C. X. Xu, K. Zheng, C. G. Lv, and Y. P. Cui, “Whispering gallery-mode lasing in ZnO microrods at room temperature,” Appl. Phys. Lett. 95, 241110 (2009). [76] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science 292, 1897 (2001). [77] V. M. Markushev, V.V. Ursaki, M.V. Ryzhkov, C.M. Briskina, I.M. Tiginyanu, E.V. Rusu, and A. A. Zakhidov, “ZnO lasing in complex systems with tetrapods,” Appl. Phys. B 93, 231 (2008). [78] C. Klingshirn, R. Hauschild, J. Fallert, and H. Kalt , “Room-temperature stimulated emission of ZnO: Alternatives to excitonic lasing,” Phys. Rev. B 75, 115203 (2007) [79] C. H. Henry, “Theory of the Linewidth of Semiconductor Lasers,” IEEE J. Quantum Electron. QE-18, 259 (1982). [80] A. P. D. Love, D. N. Krizhanovskii, D. M. Whittaker, R. Bouchekioua, D. Sanvitto, S. Al Rizeiqi, R. Bradley, M. S. Skolnick, P. R. Eastham, R. André, and L. S. Dang, “Intrinsic Decoherence Mechanisms in the Microcavity Polariton Condensate,” Phys. Rev. Lett. 101, 067404 (2008). [81] D. M. Whittaker and P. R. Eastham, “Coherence properties of the microcavity polariton condensate,” Euro. phys. Lett. 87, 27002 (2009). [82] H. Haug and S. Koch, “On the Theory of Laser Action in Dense Exciton System,” Phys. Stat. Sol. (b) 82, 531 (1977). [83] J. J. Baumberg, A. V. Kavokin, S. Christopoulos, A. J. D. Grundy, R. Butté, G. Christmann, D. D. Solnyshkov, G. Malpuech, G. Baldassarri Höger von Högersthal, E. Feltin, J.-F. Carlin, and N. Grandjean, “Spontaneous Polarization Buildup in a Room-Temperature Polariton Laser,” Phys. Rev. Lett. 101, 136409 (2008). [84] D. Porras and C. Tejedor, “Linewidth of a polariton laser: Theoretical analysis of self-interaction effects,” Phys. Rev. B 67, 161310 (2003). [85] H. Deng, G. S. Solomon, R. Hey, K. H. Ploog, and Y. Yamamoto, “Spatial Coherence of a Polariton Condensate,” Phys. Rev. Lett. 99, 126403 (2007). [86] C. W. Lai, N. Y. Kim, S. Utsunomiya, G. Roumpos, H. Deng, M. D. Fraser, T. Byrnes, P. Recher, N. Kumada, T. Fujisawa, and Y. Yamamoto, “Coherent zero-state and π-state in an exciton–polariton condensate array,” Nature 450, 529 (2007). [87] S. Pau, et al. “LO-phonon-enhanced microcavity polariton emission,” Phys. Rev. B 55, 1942 (1997). [88] M. Maragkou, et al. “Longitudinal optical phonon assisted polariton laser,” Appl. Phys. Lett. 97, 111110 (2010). [89] D. Porras, C. Ciuti, J. J. Baumberg, and C. Tejedor, “Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities,” Phys. Rev. B 66, 085304 (2002). [90] Ying-Yu Lai, Jee-Wei Chen, Tsu-Chi Chang, Yu-Hsun Chou, and Tien-Chang Lu, “Manipulation of exciton and photon lasing in a membrane-type ZnO microcavity,” Appl. Phys. Lett. 106, 131106 (2015).
|