|
1.行政院衛生福利部國民健康署. 103年癌症登記年報. (2017); Available from: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=7330. 2.Huerta, S., E.J. Goulet, and E.H. Livingston, Colon cancer and apoptosis. Am J Surg, 2006. 191(4): p. 517-26. 3.Kruk, J., Physical activity in the prevention of the most frequent chronic diseases: an analysis of the recent evidence. Asian Pac J Cancer Prev, 2007. 8(3): p. 325-38. 4.Wark, P.A., et al., Family history of colorectal cancer: a determinant of advanced adenoma stage or adenoma multiplicity? Int J Cancer, 2009. 125(2): p. 413-20. 5.Triantafillidis, J.K., G. Nasioulas, and P.A. Kosmidis, Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res, 2009. 29(7): p. 2727-37. 6.Romano, G., et al., The TGF-beta pathway is activated by 5-fluorouracil treatment in drug resistant colorectal carcinoma cells. Oncotarget, 2016. 7(16): p. 22077-91. 7.Wong, T.W. and A. Bose, Glyoxalated chitosan-5-fluorouracil/chitosan-folate as colon-specific and colon cancer cell-targeted device. J Control Release, 2015. 213: p. e105. 8.Gao, X.Y. and X.L. Wang, An adoptive T cell immunotherapy targeting cancer stem cells in a colon cancer model. J BUON, 2015. 20(6): p. 1456-63. 9.Messersmith, W.A. and D.J. Ahnen, Targeting EGFR in colorectal cancer. N Engl J Med, 2008. 359(17): p. 1834-6. 10.Zaniboni, A. and V. Formica, The Best. First. Anti-EGFR before anti-VEGF, in the first-line treatment of RAS wild-type metastatic colorectal cancer: from bench to bedside. Cancer Chemother Pharmacol, 2016. 78(2): p. 233-44. 11.Temraz, S., et al., Methods of overcoming treatment resistance in colorectal cancer. Crit Rev Oncol Hematol, 2014. 89(2): p. 217-30. 12.Cai, Y., et al., Recent insights into the biological activities and drug delivery systems of tanshinones. Int J Nanomedicine, 2016. 11: p. 121-30. 13.Ho, T.F. and C.C. Chang, A promising "TRAIL" of tanshinones for cancer therapy. Biomedicine (Taipei), 2015. 5(4): p. 23. 14.Jing, X., et al., Tanshinone I induces apoptosis and pro-survival autophagy in gastric cancers. Cancer Chemother Pharmacol, 2016. 77(6): p. 1171-81. 15.Lee, C.Y., et al., Anticancer effects of tanshinone I in human non-small cell lung cancer. Mol Cancer Ther, 2008. 7(11): p. 3527-38. 16.Li, Y., et al., Bioactive tanshinone I inhibits the growth of lung cancer in part via downregulation of Aurora A function. Mol Carcinog, 2013. 52(7): p. 535-43. 17.Nizamutdinova, I.T., et al., Tanshinone I suppresses growth and invasion of human breast cancer cells, MDA-MB-231, through regulation of adhesion molecules. Carcinogenesis, 2008. 29(10): p. 1885-92. 18.Tung, Y.T., et al., Active Component of Danshen (Salvia miltiorrhiza Bunge), Tanshinone I, Attenuates Lung Tumorigenesis via Inhibitions of VEGF, Cyclin A, and Cyclin B Expressions. Evid Based Complement Alternat Med, 2013. 2013: p. 319247. 19.Gong, Y., et al., Bioactive tanshinones in Salvia miltiorrhiza inhibit the growth of prostate cancer cells in vitro and in mice. Int J Cancer, 2011. 129(5): p. 1042-52. 20.Shin, E.A., et al., Upregulation of microRNA135a-3p and death receptor 5 plays a critical role in Tanshinone I sensitized prostate cancer cells to TRAIL induced apoptosis. Oncotarget, 2014. 5(14): p. 5624-36. 21.Rane, S.G. and E.P. Reddy, Janus kinases: components of multiple signaling pathways. Oncogene, 2000. 19(49): p. 5662-79. 22.Silva, C.M., Role of STATs as downstream signal transducers in Src family kinase-mediated tumorigenesis. Oncogene, 2004. 23(48): p. 8017-23. 23.Yu, H., et al., Revisiting STAT3 signalling in cancer: new and unexpected biological functions. Nat Rev Cancer, 2014. 14(11): p. 736-46. 24.Corvinus, F.M., et al., Persistent STAT3 Activation in Colon Cancer Is Associated with Enhanced Cell Proliferation and Tumor Growth. Neoplasia, 2005. 7(6): p. 545-555. 25.Fan, L.C., et al., Pharmacological Targeting SHP-1-STAT3 Signaling Is a Promising Therapeutic Approach for the Treatment of Colorectal Cancer. Neoplasia, 2015. 17(9): p. 687-96. 26.Hu, M.H., et al., Targeting SHP-1-STAT3 signaling: A promising therapeutic approach for the treatment of cholangiocarcinoma. Oncotarget, 2017. 27.Kusaba, T., et al., Activation of STAT3 is a marker of poor prognosis in human colorectal cancer. Oncol Rep, 2006. 15(6): p. 1445-51. 28.Lin, L., et al., STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res, 2011. 71(23): p. 7226-37. 29.Lin, Q., et al., Constitutive activation of JAK3/STAT3 in colon carcinoma tumors and cell lines: inhibition of JAK3/STAT3 signaling induces apoptosis and cell cycle arrest of colon carcinoma cells. Am J Pathol, 2005. 167(4): p. 969-80. 30.Tsareva, S.A., et al., Signal transducer and activator of transcription 3 activation promotes invasive growth of colon carcinomas through matrix metalloproteinase induction. Neoplasia, 2007. 9(4): p. 279-91. 31.Aghazadeh, S. and R. Yazdanparast, Activation of STAT3/HIF-1alpha/Hes-1 axis promotes trastuzumab resistance in HER2-overexpressing breast cancer cells via down-regulation of PTEN. Biochim Biophys Acta, 2017. 32.Fernandes, A., A.W. Hamburger, and B.I. Gerwin, ErbB-2 kinase is required for constitutive stat 3 activation in malignant human lung epithelial cells. Int J Cancer, 1999. 83(4): p. 564-70. 33.Kim, D.Y., et al., STAT3 expression in gastric cancer indicates a poor prognosis. J Gastroenterol Hepatol, 2009. 24(4): p. 646-51. 34.Mace, T.A., et al., Pancreatic cancer-associated stellate cells promote differentiation of myeloid-derived suppressor cells in a STAT3-dependent manner. Cancer Res, 2013. 73(10): p. 3007-18. 35.Li, F., et al., CUEDC2 suppresses glioma tumorigenicity by inhibiting the activation of STAT3 and NF-kappaB signaling pathway. Int J Oncol, 2017. 36.Pencik, J., et al., IL-6/STAT3/ARF: the guardians of senescence, cancer progression and metastasis in prostate cancer. Swiss Med Wkly, 2015. 145: p. w14215. 37.Song, J.I. and J.R. Grandis, STAT signaling in head and neck cancer. Oncogene, 2000. 19(21): p. 2489-95. 38.Siveen, K.S., et al., Targeting the STAT3 signaling pathway in cancer: role of synthetic and natural inhibitors. Biochim Biophys Acta, 2014. 1845(2): p. 136-54. 39.Yu, H., D. Pardoll, and R. Jove, STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer, 2009. 9(11): p. 798-809. 40.Yeatman, T.J., A renaissance for SRC. Nat Rev Cancer, 2004. 4(6): p. 470-80. 41.Chong, Y.P., T.D. Mulhern, and H.C. Cheng, C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK)--endogenous negative regulators of Src-family protein kinases. Growth Factors, 2005. 23(3): p. 233-44. 42.Hunter, T., A tail of two src's: mutatis mutandis. Cell, 1987. 49(1): p. 1-4. 43.Dehm, S.M. and K. Bonham, SRC gene expression in human cancer: the role of transcriptional activation. Biochem Cell Biol, 2004. 82(2): p. 263-74. 44.Cartwright, C.A., et al., pp60c-src activation in human colon carcinoma. J Clin Invest, 1989. 83(6): p. 2025-33. 45.Yu, C.L., et al., Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science, 1995. 269(5220): p. 81-3. 46.Chen, J., et al., The role of Src in colon cancer and its therapeutic implications. Clin Colorectal Cancer, 2014. 13(1): p. 5-13. 47.Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516. 48.Ly, J.D., D.R. Grubb, and A. Lawen, The mitochondrial membrane potential (deltapsi(m)) in apoptosis; an update. Apoptosis, 2003. 8(2): p. 115-28. 49.Desagher, S. and J.C. Martinou, Mitochondria as the central control point of apoptosis. Trends Cell Biol, 2000. 10(9): p. 369-77. 50.Youle, R.J. and A. Strasser, The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol, 2008. 9(1): p. 47-59. 51.Coultas, L. and A. Strasser, The role of the Bcl-2 protein family in cancer. Semin Cancer Biol, 2003. 13(2): p. 115-23. 52.Reed, J.C., et al., Bcl-2 family proteins and the regulation of programmed cell death in leukemia and lymphoma. Cancer Treat Res, 1996. 84: p. 31-72. 53.Han, B., et al., Small-Molecule Bcl2 BH4 Antagonist for Lung Cancer Therapy. Cancer Cell, 2015. 27(6): p. 852-63. 54.Lauwers, G.Y., G.V. Scott, and M.S. Karpeh, Immunohistochemical evaluation of bcl-2 protein expression in gastric adenocarcinomas. Cancer, 1995. 75(9): p. 2209-13. 55.Adams, J.M. and S. Cory, The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene, 2007. 26(9): p. 1324-37. 56.Hague, A., et al., BCL-2 expression in human colorectal adenomas and carcinomas. Oncogene, 1994. 9(11): p. 3367-70. 57.Watson, A.J., et al., Evidence of reciprocity of bcl-2 and p53 expression in human colorectal adenomas and carcinomas. Br J Cancer, 1996. 73(8): p. 889-95. 58.Su, C.C., G.W. Chen, and J.G. Lin, Growth inhibition and apoptosis induction by tanshinone I in human colon cancer Colo 205 cells. Int J Mol Med, 2008. 22(5): p. 613-8. 59.Lu, M., C. Wang, and J. Wang, Tanshinone I induces human colorectal cancer cell apoptosis: The potential roles of Aurora A-p53 and survivin-mediated signaling pathways. Int J Oncol, 2016. 49(2): p. 603-10. 60.Wang, Y., et al., Tanshinone I inhibits tumor angiogenesis by reducing Stat3 phosphorylation at Tyr705 and hypoxia-induced HIF-1alpha accumulation in both endothelial and tumor cells. Oncotarget, 2015. 6(18): p. 16031-42. 61.Das, J., et al., 2-aminothiazole as a novel kinase inhibitor template. Structure-activity relationship studies toward the discovery of N-(2-chloro-6-methylphenyl)-2-[[6-[4-(2-hydroxyethyl)-1- piperazinyl)]-2-methyl-4-pyrimidinyl]amino)]-1,3-thiazole-5-carboxamide (dasatinib, BMS-354825) as a potent pan-Src kinase inhibitor. J Med Chem, 2006. 49(23): p. 6819-32. 62.Boidot, R., F. Vegran, and S. Lizard-Nacol, Transcriptional regulation of the survivin gene. Mol Biol Rep, 2014. 41(1): p. 233-40.
|