跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/07 21:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃瀚賢
研究生(外文):Huang, Han-hsien
論文名稱:利用實驗設計方法將回收廢棄製成多孔營養鹽生物載體力用於同時硝化脫硝反應
論文名稱(外文):Recycled the wasted sludge to rebuild the nutrient biofilm carrier in simultaneous nitrification and denitrification (SND) system by design of experiment (DOE)
指導教授:張鎮南張鎮南引用關係
指導教授(外文):Chang, Cheng-nan
口試委員:宋孟浩馬英石陳谷汎張鎮南
學位類別:碩士
校院名稱:東海大學
系所名稱:環境科學與工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:101
中文關鍵詞:廢棄活性汙泥回收同時硝化脫硝氧化還原電位實驗設計方法
外文關鍵詞:waste activated sludge (WAS)recyclesimultaneous nitrification and denitrification (SND)oxidation reduction potential (ORP)design of experimental (DOE)
相關次數:
  • 被引用被引用:1
  • 點閱點閱:500
  • 評分評分:
  • 下載下載:170
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用台中福田水資源回收中心廢棄活性污泥、台中大度山的紅土以及化學添加物混和燒製成顆粒狀載體。由於不同的污泥比例會影響燒製載體的吸水率、密度以及強度,因此利用實驗設計方法 (DOE),找出製作污泥載體的最佳比例為,在顆粒中加入50%的污泥。另外,為了增加微生物生長及促進處理效率,在原料中添加了營養鹽 ( KH2PO4、KNO3)。
利用回收污泥製作的生物載體將利用在循序批分式反應槽中 (SBBR),將兩個系統(傳統SBBR及添加營養鹽載體SBBR)的即時監測數據 ( ORP, pH, DO) 及水質分析數據進行比較,本研究係利用反應槽中之氧化還原電位(ORP)變化,推導控制因子的模式。而在140天不同濃度 Loading Ⅰ (F/M: 0.309 kg COD/ kg MLSS-day, 0.039 kg NH4+-N/ kg MLSS-day, C/N: 8.02), Ⅱ (F/M: 0.430 kg COD/ kg MLSS-day, 0.053 kg NH4+-N/ kg MLSS-day, C/N: 8.04) 以及 III (F/M: 0.627 kg COD/ kg MLSS-day, 0.078 kg NH4+-N/ kg MLSS-day, C/N: 8.13) 馴養污泥至steady state後,進行同時硝化脫硝(SND)的操作。同時硝化脫硝反應(SND)是較短路徑的脫硝反應,可減少汙泥量及提高處理效率。由實驗結果得知,添加含有營養鹽之載體之反應槽效果較添加原始載體的SND效果為佳( SND效率 98 % > 96 % ),即可減少汙泥處理的時間。且在實驗室操作測試中,此回收污泥製成的載體可使用至少超過兩年,不會被破壞,因此可以增加實際使用的實用性。

In this study, the wasted activated sludge (WAS) from a local municipal wastewater treatment plant in Taichung was mixed with laterite and some chemical additives and then backed to make porous WAS pellets. Optimal formula to assemble the porous pellets was obtained using design of experiment (DOE) method. Various assembling formula between WAS and laterite resulted in different water absorption capacity, bulk density, and compressive strength of the sintered products. Additionally, some nutrients (i.e., KH2PO4, KNO3) were added into the pellets in an attempt to allow more microbial growth. Monitored data for the SBBR system (with raw pallets) and the SBBR-Nutrient system (with nutrient added pellets) were compared to determine treatment variation. Results shows that the pellets (with nutrients) reused in sequencing batch biofilm reactor (SBBR) had notable biofilm formed enhancing wastewater treatment performance significantly. Furthermore, the simultaneous nitrification and denitrification (SND) efficiency for the SBBR-Nutrient system (98%) were better than that of the SBBR system with raw pellets (96%). Overall results suggested the porous WAS pellets with nutrients addition could be used as an appropriate biofilm carrier during wastewater processing.
CHAPTER 1 INTRODUCTION 1
1.1 Background Information 1
1.2 Objective of Research 5
CHAPTER 2 LITERATURE REVIEW 6
2.1 Characteristic of Wasted Activated Sludge (WAS) 6
2.1.1 Sources and Types of Wasted Activated Sludge (WAS) 6
2.1.2 Composition of Wasted Activated Sludge (WAS) 7
2.1.3 Wasted Activated Sludge Recycling 9
2.2 The WAS sintering 11
2.3 Mechanism of immobilized system 14
2.3.1 Formation of attached biofilm on the bio-carriers 14
2.3.2 The biofilm system 16
2.4 Biological nutrient removal (BNR) 18
2.4.1 Nitrification 18
2.4.2 Denitrification 19
2.4.3 Simultaneous nitrification and denitrification (SND) 20
2.4 Sequencing batch biofilm reactor (SBBR) 23
2.5 Nernst Equation 25
2.6 Design of Experiments (DOE) 27
CHAPTER 3 MATERIAL AND METHODS 28
3.1 Experimental design and flow chart 28
3.2 Rebuilt WAS as biofilm carrier 30
3.2.1 The procedure of manufacture the WAS pellets 30
3.2.2 The addition of nutrients 31
3.3 The WAS sampling and basic characteristics analysis 33
3.3.1 Compressive strength 34
3.3.2 Water absorption 34
3.3.3 Bulk density 35
3.3.4 Specific external surface area 35
3.3.5 Toxicity characteristics leaching procedure (TCLP) 36
3.4 The sequencing batch biofilm reactor (SBBR) system 38
3.4.1 Experiment setup 38
3.4.2 The real-time monitor 39
3.4.3 Experiment operation 40
3.4.4 Composition of the synthetic wastewater 41
3.5 The methods of analysis 45
3.5.1 The methods of water analysis 45
3.5.2 Field Emission Gun Scanning Electron Microscopy (FESEM) 46
3.5.3 Energy Dispersive X-ray analysis (EDX) analyses 47
3.5.4 The particle size analysis 48
3.5.5 X-ray powder diffractometer (XRD) 48
CHAPTER 4 RESULTS AND DISCUSSION 50
4.1 The basic characteristic of the domestic waste activated sludge 50
4.2 The characteristic of the biofilm carrier pellets 54
4.2.1 The TCLP test 56
4.2.2 The pellets surface image and composition 57
4.2.3 The XRD patterns of the pellets 62
4.3 Apply the rebuilt WAS pellets in SBBR systems 64
4.3.1 The daily monitor profiles in system 64
4.3.2 The profiles of a cycle in the two SBBR systems 67
4.3.3 The profiles of batch tests 72
4.3.4 The biomass of two pellets in systems 82
4.4 Comparison the KN, KDN and SND efficiency of different system 83
4.5 Model Development 86
4.5.1 Overall SND process in immobilized system 86
4.5.2 Nernst Equation established in SND Process 87
4.5.3 Application SBBR SND system 91
CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 93
5.1 Conclusions 93
5.2 Suggestions 94
REFERENCE 95

Ahn, Y. H., (2006), Sustainable nitrogen elimination biotechnologies: A review, Process Biochem., Vol. 41, pp. 1709-1721.
Antileo, C., Werner, A., Ciudad, G., Muñoz, C., Bornhardt, C., Jeison, D. and Urrutia, H., (2006), Novel operational strategy for partial nitrification to nitrite in a sequencing batch rotating disk reactor, Biochem. Eng. J., Vol. 32,pp. 69-78.
APHA, AWWA and WEF, (2005). Standard Method for Examination of Water and Wastewaters”, 21st ed., of American Public Health Association, Washington, DC., USA.
Blaney, L. M., Cinar, S. and SenGupta, A. K., (2007), Hybrid anion exchanger for trace phosphate removal from water and wastewater, Wat. Res., Vol. 41,pp. 1603-1613.
Carrera, J., Vicent, T. and Lafuente, J., (2004). Effect of influent COD/N ratio on biological nitrogen removal (BNR) from high-strength ammonium industrial wastewater. Process Biochem., Vol. 39, pp. 2035-2041.
Chang, C. N., Cheng, H. B. and Chao, A. C., (2004). Applying the Nernst Equation to Simulate Redox Potential Variations for Biological Nitrification and Denitrification Processes. Environ. Sci. Technol., Vol. 38, pp. 1807-1812.
Cheeseman, C. R. and Virdi, G. S., (2005), Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash Resour. Conserv.Recy., Vol. 45,pp. 18-30.
Cheeseman, C. R., Sollars, C. J. and McEntee, S., (2003), Properties, microstructure and leaching of sintered sewage sludge ash, Adv. Environ. Res., Vol. 40,pp. 13-25.
Cheeseman, C. R., Sollars, C. J. and McEntee, S., (2003). Properties, microstructure and leaching of sintered sewage sludge ash. Adv. Environ. Res., Vol. 40, pp. 13-25.
Chiang, Y. P., Liang, Y. Y., Chang, C. N. and Chao, A. C., (2006). Differentiating ozone direct and indirect reactions on decomposition of humic substances. Chemosphere, Vol. 65, pp. 2395-2400.
Chiu, Y. C., Lee, L. L., Chang, C. N. and Chao, A. C., (2007). Control of carbon and ammonium ratio for simultaneous nitrification and denitrification in a sequencing batch bioreactor. International Biodeterioration& Biodegradation, Vol. 59(1), pp.1-7.
Chou, J. D., Wey, M. Y., Chang, S. H., (2009), Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure, Journal of Hazardous Materials,Vol. 162,pp. 1000–1006
Chu, L., Zhang, X., Yang, F. and Li, X., (2006). Treatment of domestic wastewater by using a microaerobic membrane bioreactor. Desalination, Vol. 189, pp. 181-192.
Dewil, R., Baeyens J. and Neyens E., (2005), Fenton peroxidation improves the drying performance of waste activated sludge, J. Hazard. Mater., Vol. B117: pp. 161-170.
Gao, D., Peng Y., Li B., Liang H., (2009). Shortcut nitrification–denitrification by real-time control strategies. Bioresource Technology, Vol. 100, pp. 2298–2300
German, R. M., (1996). Sintering theory practice, An Imprint of Wiley, ISBN, 0-471-05786-X.
Gieseke, A., Arnz, P., Amann, R. and Schramm, A., (2002), Simultaneous P and N removal in a sequencing batch biofilm reactor: insights from reactor and microscale investigations, Wat. Res., Vol. 36, pp. 501-509.
Gulnaz, O., Kaya, A. and Dincer, S., (2006), The reuse of dried activated sludge for adsorption of reactive dye, J. Hazard. Mater., Vol. B134, pp. 190-196.
Guo, H., Zhou, J., Su, J., Zhang Z., (2005). Integration of nitrification and denitrification in airlift bioractor. Biochemical Engineering Journal. Vol. 23, pp. 57-62.
Guo, J., Peng, Y., Wang, S., Zheng, Y., Huang, H., Wang Z., (2009). Long-term effect of dissolved oxygen on partial nitrification performanceand microbial community structure. Bioresource Technology, Vol. 100, pp. 2796–2802.
He, S. b., Xue, G., Kong, H. N. and Li, X., (2007), Improving the performance of sequencing batch reactor (SBR) by the addition of zeolite powder, J. Hazard. Mater. , Vol. 142, pp. 493-499.
Holakoo, L., Nakhla, G., Bassi, A. S. and Yanful, E. K., (2007). Long term performance of MBR for biological nitrogen removal from synthetic municipal wastewater. Chemosphere, Vol. 66, pp. 849-857.
Holman, J.B., Wareham, D.G., (2005). COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochemical Engineering Journal, Vol. 22, pp. 125–133.
Hu, Z., Ferraina, R. A., Ericson, J. F., MacKay, A. A. and Smets, B. F., (2005), “Biomass characteristics in three sequencing batch reactors treating a wastewater containing synthetic organic chemicals”, Wat. Res., Vol. 39, pp. 710-720.
Huang, C. P., Pan, R. S. and Liu, Y. R., (2005), Mixing water treatment residual with excavation waste soil in brick and artificial aggregate, Journal of Environmental Engineering, Vol. 131, pp. 272
Joaquim C. G. Esteves da Silva, José R. M. Dias and Júlia M. C. S. Magalhães, (2001). Factorial analysis of a chemiluminescence system for bromate detection in water, AnalytieaChimicaActa, Vol. 450, pp. 175-184
Jun, B.H., Miyanaga, K., Tanji, Y., Unno, H., (2003). Removal of nitrogenous and carbonaceous substances by a porous carrier–membrane hybrid process for wastewater treatment. Biochemical Engineering Journal, Vol. 14(1), pp. 37-44.
Jun, Bvong-Hee, Mivanaga, Kazuhiko, Tanii, Yasunori, Unno and Halime, (2003). Removal of nitrogenous and carbonaceous substances by a porous carrier–membrane hybrid process for wastewater treatment. Biochemical Engineering Journal, Vol. 14(1), pp. 37-44.
Keller, J., Subramaniam, K., Gosswein, J. and Greenfield, P.F., (1997). Nutrient removal from industrial wastewater using single tank sequencing batch reactors. Water Science and Technology, Vol. 35(6), pp. 137–144.
Kim, C. G., Lee, H. S. and Yoon, T. I., (2003). Resource recovery of sludge as a micro-media in an activated sludge process. Advances in Environmental Research, Vol. 7(3), pp. 629-633.
Kishida, N., Kim, J., Tsuneda, S. and Sudo, R., (2006), Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms, Wat. Res., Vol. 40, pp. 2303-2310.
Lee, D. U., Lee, I. S., Choi, Y. D. and Bae, J. H., (2001). Effects of external carbon source and empty bed contact time on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification. Process Biochem., Vol. 36, pp. 1215-1224.
Lemaire, R., Meyer, R., Taske, A., Crocetti, G. R., Keller, J. and Yuan, Z., (2006), Identifying causes for N2O accumulation in a lab-scale sequencing batch reactor performing simultaneous nitrification, denitrification and phosphorus removal, J. Biotechnol., Vol. 122, pp. 62-72.
Li, B. and Irvin, S., (2007). The comparison of alkalinity and ORP as indicators for nitrification and denitrification in a sequencing batch reactor (SBR). Biochem. Eng. J., Vol. 34, pp. 248-255.
Li, J., Xing, X. H. and Wang, B. Z., (2003), Characteristics of phosphorus removal from wastewater by biofilm sequencing batch reactor (SBR), Biochem. Eng. J., Vol. 16, pp. 279-285.
Ling, L., Fan, M., Robert, C., Brown Jacek A.,Koziel, J., van L., (2009), Production of a new wastewater treatment coagulant from fly ash with concomitant flue gas scrubbing, Journal of Hazardous Materials,Vol. 162, pp. 1430–1437
Loukidou, M. X. and Zouboulis, A. I., (2001), Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment, Environ. Pollut., Vol. 111, pp. 273-281.
Lourdes, H. A., Antonio, M. G., José M. G.and Francisca G., (2005), Reuse of waste materials as growing media for ornamental plants, Bioresource Technol., Vol. 96, pp. 125-131.
May, G. S., Huang, J., Spanos, C. J., (1991). Statistical Experiment Design in Plasma Etch Modeling. IEEE Transactions on Semiconductor Manufacturing, Vol. 4, pp. 83-98.
Michaud, L., Blancheton, J. P., Bruni, V. and Piedrahita, R., (2006). Effect of particulate organic carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquacult. Eng., 34, 224-233.
Mohan, S. V., Rao, N. C., Prasad, K. K., Madhavi, B. T. V. and Sharma, P. N., (2005), Treatment of complex chemical wastewater in a sequencing batch reactor (SBR) with an aerobic suspended growth configuration, Process Biochem., Vol. 40, pp. 1501-1508.
Molin, S. and Tim, T. N., (2003). Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr. Opin. Biotech., Vol. 14, pp. 255-261.
Monzó J., Payá J., Borrachero, M. V. and Girbés, I., (2003), Reuse of sewage sludge ashes (SSA) in cement mixtures: the effect of SSA on the workability of cement mortars, Waste Manage., Vol. 23, pp. 373–381.
Qin, L., Liu, Y., (2006). Aerobic granulation for organic carbon and nitrogen removal in alternating aerobic–anaerobic sequencing batch reactor, Chemosphere, Vol. 63, pp. 926–933
Sirianuntapiboon, S. and Tondee, T., (2000). Application of packed cage RBC system for treating wastewater contaminated with nitrogenous compounds. Thammasat International Journal of Science and Technology, Vol. 5(1), pp. 28–39.
Sirianuntapiboon, S., Jeeyachok, N. and Larplai, R., (2005), Sequencing batch reactor biofilm system for treatment of milk industry wastewater, J. Environ. Manage., Vol. 76, pp. 177-183.
Siripong, S. and Rittmann, B. E., (2007), Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Wat. Res., Vol. 41, pp. 1110-1120.
Stüven, R. and Bock E., (2001), Nitrification and Denitrification as a Source for NO and NO2 Production in High-Strength Wastewater, Wat. Res., Vol. 35, pp. 1905-1914.
Su, J. L., Ouyang, C. F., (1996), Nutrient removal using a combined process with activated sludge and fixed biofilm. Water Science Technology, Vol. 34(1-2), pp. 477-486.
T. Ivanova, and L. Malone, (1999). Comparison Of A Two-Stage Group-Screening Design to a Standard 2k-p Design For a Whole-Line Semiconductor Manufacturing Simulation Model. Proceedings of the 1999 Winter Simulation Conference, pp 640-646.
Wang, L., Jin, Y., Nie, Y., (2010), Investigation of accelerated and natural carbonation of MSWI fly ash with a high content of Ca, Journal of Hazardous Materials,Vol. 174, pp. 334–343
Wang, X., Jin, Y., Wang Z., Nie, Y., Huang, Q., Wang, Q., (2009), Development of lightweight aggregate from dry sewage sludge and coal ash, Waste Management, Vol. 29, pp. 1330–1335
Wijffels, R. H., Tramper, J., (1995), Nitrification by immobilized cells. Enzyme and Microbial Technology, review, Vol. 17(6), pp. 482-492.
Wojciechowska E., (2005). Application of microwaves for sewage sludge conditioning. Wat. Res., Vol. 39, pp. 4749-4754.
Wrage, N., Velthof, G. L., van Beusichem, M. L. and Oenema, O. (2001) Role of nitrifierdenitrification in the production of nitrous oxide. Soil Biology and Biochemistry, Vol. 33, pp. 1723-1732.
Zeng, R. J., Lemaire, R., Yuan, Z., Keller, J, (2003). Simultaneous nitrification, denitrification, and phosphorus removal in a lab-scale sequencing batch reactor. Biotechnology and Bioengineering, Vol. 84(2), pp. 170-178.
Zhang, D., Lu, P., Long, T. and Verstraete, W., (2005). The integration ofmethanogensis with simultaneous nitrification and denitrification in a membrane bioreactor. Process Biochemistry, Vol. 40, pp. 541-547
王文志(2004),實驗設計為基礎架構之資料挖礦方法及其實證研究,國立清華大學工業工程所碩士論文。
呂志宏(2001),有機廢水之硝化與脫硝處理研究,大同大學生物工程研究所碩士論文。
林東燦(2006),污泥類廢棄物取代部分水泥原料燒製環保水泥之可行性研究。國立中央大學環境工程研究所碩士論文。
林茗儀 (2004),活性污泥脫硝基因及脫硝菌多樣性之研究,中原大學土木工程所碩士論文。
郭惠如(2007),Thermusaquaticus NTU103之Fosmid選殖株B7F9 與生物膜形成之關係,慈濟大學微免暨分子醫學研究所碩士論文。
陳俊宏(2005),利用燒製技術將工業廢棄活性污泥資源化,東海大學環境科學與工程所碩士論文。
陳逸凡(2006),下水污泥堆肥施用過程有機物對重金屬與營養鹽移動性影響之研究。逢甲大學環境工程與科學所碩士論文。 
鍾承佑(2007),利用回收廢棄活性污泥製造生物載體以增進循序批分式生物膜反應槽處理營養鹽功能。東海大學環境科學與工程所碩士論文。
蘇汶芳(2008),以廢棄活性污泥製成孔隙生物載體進行同時硝化脫硝技術之探討,東海大學環境科學與工程所碩士論文。
彭明琛(2002),養殖環境中氨氧化菌之研究,國立中山大學海洋資源研究所碩士論文。
李莉鈴(2004),建立並模擬同時硝化脫硝之反應機制,東海大學環境科學與工程所碩士論文。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊