|
[1] D. S. Tuch, T. G. Reese, M. R. Wiegell, N. Makris, J. W. Belliveau, and V. J. Wedeen, “High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity,” Magnetic Resonance in Medicine, vol. 48, no. 4, pp. 577-582, 2002. [2] D. S. Tuch, “Q‐ball imaging,” Magnetic Resonance in Medicine, vol. 52, no. 6, pp. 1358-1372, 2004. [3] J. Tournier, F. Calamante, D. G. Gadian, and A. Connelly, “Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution,” NeuroImage, vol. 23, no. 3, pp. 1176-1185, 2004. [4] V. J. Wedeen, P. Hagmann, W. Y. I. Tseng, T. G. Reese, and R. M. Weisskoff, “Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging,” Magnetic Resonance in Medicine, vol. 54, no. 6, pp. 1377-1386, 2005. [5] K. Setsompop, J. Cohen-Adad, B. Gagoski, T. Raij, A. Yendiki, B. Keil, V. J. Wedeen, and L. L. Wald, “Improving diffusion MRI using simultaneous multi-slice echo planar imaging,” Neuroimage, vol. 63, no. 1, pp. 569-580, 2012. [6] P. Hagmann, L. Jonasson, P. Maeder, J.-P. Thiran, V. J. Wedeen, and R. Meuli, “Understanding Diffusion MR Imaging Techniques: From Scalar Diffusion-weighted Imaging to Diffusion Tensor Imaging and Beyond 1,” Radiographics, vol. 26, no. suppl_1, pp. S205- S223, 2006. [7] V. J. Wedeen, R. Wang, J. D. Schmahmann, T. Benner, W. Tseng, G. Dai, D. Pandya, P. Hagmann, H. D'Arceuil, and A. J. de Crespigny, “Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers,” Neuroimage, vol. 41, no. 4, pp. 1267-1277, 2008. [8] L.-W. Kuo, J.-H. Chen, V. J. Wedeen, and W.-Y. I. Tseng, “Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system,” Neuroimage, vol. 41, no. 1, pp. 7-18, 2008. [9] H.-E. Assemlal, D. Tschumperlé, L. Brun, and K. Siddiqi, “Recent advances in diffusion MRI modeling: Angular and radial reconstruction,” Medical image analysis, vol. 15, no. 4, pp. 369-396, 2011. [10] M. I. Menzel, E. T. Tan, K. Khare, J. I. Sperl, K. F. King, X. Tao, C. J. Hardy, and L. Marinelli, “Accelerated diffusion spectrum imaging in the human brain using compressed sensing,” Magnetic Resonance in Medicine, vol. 66, no. 5, pp. 1226-1233, 2011. [11] D. L. Donoho, “Compressed sensing,” Information Theory, IEEE Transactions on, vol. 52, no. 4, pp. 1289-1306, 2006. [12] E. J. Candès, and M. B. Wakin, “An introduction to compressive sampling,” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 21-30, 2008. [13] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, “Introduction to compressed sensing,” Preprint, vol. 93, 2011.[14] E. J. Candes, “The restricted isometry property and its implications for compressed sensing,” Comptes Rendus Mathematique, vol. 346, no. 9, pp. 589-592, 2008. [15] S. Merlet, and R. Deriche, “Compressed sensing for accelerated EAP recovery in diffusion MRI,” CDMRI'10, 2010. [16] S. Merlet, E. Caruyer, and R. Deriche, "Impact of radial and angular sampling on multiple shells acquisition in diffusion mri," Medical Image Computing and Computer-Assisted Intervention– MICCAI 2011, pp. 116-123: Springer, 2011. [17] S. Merlet, J. Cheng, A. Ghosh, and R. Deriche, "Spherical polar fourier eap and odf reconstruction via compressed sensing in diffusion mri." pp. 365-371. [18] B. Bilgic, K. Setsompop, J. Cohen‐Adad, A. Yendiki, L. L. Wald, and E. Adalsteinsson, “Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries,” Magnetic Resonance in Medicine, vol. 68, no. 6, pp. 1747-1754, 2012. [19] A. Gramfort, C. Poupon, and M. Descoteaux, "Sparse dsi: Learning dsi structure for denoising and fast imaging," Medical Image Computing and Computer-Assisted Intervention– MICCAI 2012, pp. 288-296: Springer, 2012. [20] B. A. Landman, J. A. Bogovic, H. Wan, F. E. Z. ElShahaby, P.-L. Bazin, and J. L. Prince, “Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI,” NeuroImage, vol. 59, no. 3, pp. 2175-2186, 2012. [21] S. Merlet, E. Caruyer, and R. Deriche, "Parametric dictionary learning for modeling eap and odf in diffusion mri," Medical Image Computing and Computer-Assisted Intervention– MICCAI 2012, pp. 10-17: Springer, 2012. [22] B. Bilgic, I. Chatnuntawech, K. Setsompop, S. Cauley, A. Yendiki, L. Wald, and E. Adalsteinsson, “Fast dictionary-based reconstruction for diffusion spectrum imaging,” 2013. [23] S. L. Merlet, and R. Deriche, “Continuous diffusion signal, EAP and ODF estimation via Compressive Sensing in diffusion MRI,” Medical image analysis, vol. 17, no. 5, pp. 556-572, 2013. [24] A. Gramfort, C. Poupon, and M. Descoteaux, “Denoising and fast diffusion imaging with physically constrained sparse dictionary learning,” Medical image analysis, vol. 18, no. 1, pp. 36-49, 2014. [25] M. Paquette, S. Merlet, G. Gilbert, R. Deriche, and M. Descoteaux, “Comparison of sampling strategies and sparsifying transforms to improve compressed sensing diffusion spectrum imaging,” Magnetic Resonance in Medicine, 2014. [26] M. Lustig, D. Donoho, and J. M. Pauly, “Sparse MRI: The application of compressed sensing for rapid MR imaging,” Magnetic resonance in medicine, vol. 58, no. 6, pp. 1182-1195, 2007. [27] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” Signal Processing Magazine, IEEE, vol. 25, no. 2, pp. 72-82, 2008. [28] W. Ye, B. C. Vemuri, and A. Entezari, "An over-complete dictionary based regularized reconstruction of a field of ensemble average propagators." pp. 940-943. [29] K. T. Block, M. Uecker, and J. Frahm, “Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint,” Magnetic resonance in medicine, vol. 57, no. 6, pp. 1086-1098, 2007. [30] J. Aelterman, H. Q. Luong, B. Goossens, A. Pižurica, and W. Philips, “Augmented Lagrangian based reconstruction of non-uniformly sub-Nyquist sampled MRI data,” Signal Processing, vol. 91, no. 12, pp. 2731-2742, 2011. [31] N. Chauffert, P. Ciuciu, and P. Weiss, "Variable density compressed sensing in MRI. Theoretical VS heuristic sampling strategies." pp. 298-301. [32] M. Aharon, M. Elad, and A. Bruckstein, “K-svd: An algorithm for designing overcomplete dictionaries for sparse representation,” Signal Processing, IEEE Transactions on, vol. 54, no. 11, pp. 4311-4322, 2006. [33] H. Lee, A. Battle, R. Raina, and A. Y. Ng, "Efficient sparse coding algorithms." pp. 801-808. [34] E. J. Candes, Y. C. Eldar, D. Needell, and P. Randall, “Compressed sensing with coherent and redundant dictionaries,” Applied and Computational Harmonic Analysis, vol. 31, no. 1, pp. 59-73, 2011. [35] R. Otazo, and D. Sodickson, "Adaptive compressed sensing MRI." p. 4867. [36] S. Ravishankar, and Y. Bresler, “MR image reconstruction from highly undersampled kspace data by dictionary learning,” Medical Imaging, IEEE Transactions on, vol. 30, no. 5, pp. 1028-1041, 2011. [37] E. Saint-Amant, and M. Descoteaux, "Sparsity characterisation of the diffusion propagator." p. 2011. [38] S. Merlet, E. Caruyer, A. Ghosh, and R. Deriche, “A computational diffusion MRI and parametric dictionary learning framework for modeling the diffusion signal and its features,” Medical image analysis, vol. 17, no. 7, pp. 830-843, 2013. [39] D. Jones, M. Horsfield, and A. Simmons, “Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging,” Magn Reson Med, vol. 42, 1999. [40] R. Deriche, J. Calder, and M. Descoteaux, “Optimal real-time Q-ball imaging using regularized Kalman filtering with incremental orientation sets,” Medical image analysis, vol. 13, no. 4, pp. 564-579, 2009. [41] J. L. Paulsen, H. Cho, G. Cho, and Y.-Q. Song, “Acceleration of multi-dimensional propagator measurements with compressed sensing,” Journal of Magnetic Resonance, vol. 213, no. 1, pp. 166-170, 2011. [42] P. J. Basser, J. Mattiello, and D. LeBihan, “MR diffusion tensor spectroscopy and imaging,” Biophysical journal, vol. 66, no. 1, pp. 259-267, 1994. [43] D. S. Tuch, T. G. Reese, M. R. Wiegell, and V. J. Wedeen, “Diffusion MRI of complex neural architecture,” Neuron, vol. 40, no. 5, pp. 885-895, 2003. [44] E. L. Hahn, “Spin echoes,” Physical Review, vol. 80, no. 4, pp. 580, 1950. [45] H. C. Torrey, “Bloch equations with diffusion terms,” Physical Review, vol. 104, no. 3, pp. 563, 1956. [46] E. Stejskal, and J. Tanner, “Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient,” The journal of chemical physics, vol. 42, no. 1, pp. 288-292, 1965. [47] P. T. Callaghan, Principles of nuclear magnetic resonance microscopy: Clarendon Press Oxford, 1991. [48] R. Ward, “Compressed sensing with cross validation,” Information Theory, IEEE Transactions on, vol. 55, no. 12, pp. 5773-5782, 2009. [49] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the Royal Statistical Society. Series B (Methodological), pp. 267-288, 1996. [50] M. A. Rasmussen, and R. Bro, “A tutorial on the Lasso approach to sparse modeling,” Chemometrics and Intelligent Laboratory Systems, vol. 119, pp. 21-31, 2012. [51] C. G. Koay, E. Özarslan, K. M. Johnson, and M. E. Meyerand, “Sparse and optimal acquisition design for diffusion MRI and beyond,” Medical physics, vol. 39, no. 5, pp. 2499-2511, 2012.
|