|
[1] I. J. Busch-Vishniac, “The Case for Magnetically Driven Microactuators,“ Sensors and Actuators, Vol. 33, pp. 207-220, 1992 [2] K. Minami, S. Kawamura, and M. Esashi, “Fabrication of Distributed Electrostatic Micro Actuator (DEMA),” Journal of Microelectromechanical systems, Vol. 2, No. 3, pp. 121-127, 1993. [3] H. Toshiyoshi, H. Fujita, T. Kawai, and T. Ueda, “Piezoelectrically Operated Actuators by Quartz Micromachining for Optical Application,” IEEE Micro Electro Mechanical System Workshop, Fort Lauderdale, FL, USA, pp. 133-138, 1993. [4] R. Holzer, I. Shimoyama, and H. Miura, “Lorentz Force Actuation of Flexible Thin-Film Aluminum Microstructures,” IEEE, pp. 156-161, 1995. [5] B. Rashidian, and M. G. Allen, “Electrothermal Microactuators Based on Dielectric Loss Heating,” IEEE, pp. 24-29, 1993. [6] W. Huang, “On The Selection of Shape Memory Alloys for Actuators,” Materials and Design, Vol. 23, pp. 11-19, 2002. [7] H. L. Tuller, “Microactuators,” Kluwer Academic Publishers, 1998. [8] W. Riethmuller, and W. Benecke, “ Thermally Excited Silicon Microactuators,“ IEEE Trangsctions on Electron Devices, Vol. 35, No. 6, pp. 758-762, 1998. [9] M. Ataka, A. omodaka, N. Takeshima, and H. Fujita, “Fabrication and Operation of Polyimide Bimorph Actuators for a Ciliary Motion System,” Journal of Microelectromechanical systems, Vol. 2, No. 4, pp. 146-150, 1993. [10] H. Sehr, A. G. R. Evans, A. Brunnschweiler, G. J Ensell and T. E G Niblock, “Fabrication and Test of Thermal Vertical Bimorph Actuators for Movement in The Wafer Plane,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 306-310, 2001. [11] J. W. Judy, T. Tamagawa, and D. L. Polla, “Surface Micromachined Linear Thermal Microactuator,” IEEE, pp. 629-632, 1990. [12] H. Guckel, J. Klein, T. Christenson, K. Skrobis, M. Laudon, and E. G. Lovell, “Thermo-Magnetic Metal Flexure Actuators,” IEEE, pp. 73-75, 1992 [13] J. H. Comtois, and Victor M. Bright, “Application for Surface-Micromachined Polysiliccon Thermal Actuators and Arrays,” Sensors and actuators A Vol. 58, pp.19-25, 1997. [14] M. Pai, and N. C. Tien, “Low Voltage Electrothermal Vibromotor for Silicon Optical Bench Applications,” Sensors and Actuators A Vol. 83, pp.237-243, 2000. [15] C. S. Pan, and W. Hus, “An Electro-Thermally and Laterally Driven Polysilicon Microactuator,” Journal of Micromechanics and Microengineering, Vol. 7, pp. 7-13, 1997 [16] Q.-A. Huang, and N. K. S. Lee, “Analytical Modeling and Optimization for a Laterally-Driven Polysilicon Thermal Actuator,” Microsystem Technologies, Vol. 5, pp. 133-137, 1999. [17] Y. B. Gianchandani, and K. Najafi, “Bent-Beam Strain Sensors,” Journal of Microelectromechanical Systems, Vol. 5, No. 1, pp. 52-58, March, 1996. [18] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electro-Thermal Actuators for High Force Applications,” IEEE Conf. On Micro Electro Mechanical System, Orlando, FL, pp. 31-36, 1999 [19] J. Park, L.Chu, E. Siwapornsathain, A. Oliver, and Y. Gianchandani, “Long Throw and Rotary Output Electrothermal Actuators Based on Bent-Beam Suspensions, ” IEEE Conf. On Micro Electro Mechanical System, Japan, pp.680-685, 2000. [20] M. J. Sinclair, “A High Force Low Area MEMS Thermal Actuator,” IEEE Inter Society Conference on Thermal Phenomena, pp. 127-132, 2000. [21] P. Lerch, C. K. Slimane, B. Romanowicz, and P. Renaud, “Modelization and Characterization of Asymmetrical Thermal Microactuators, ” Journal of Micromechanics and Microengineering, Vol. 6, pp. 134-137, 1996. [22] L. Lin, and M. Chiao, “Electrothermal Responses of Lineshape Microstructures, ” Sensors and Actuators A Vol. 55, pp.35-41, 1996. [23] M. Huja, and M. Husak, “Thermal Microactuators for Optical Purpose, ” IEEE International Conference on Coding and Computing, pp. 137-142, 2001, Las Vegas, NV, USA. [24] C. T. Peng, and K. N. Chiang, “Overview of Multilayered Thin Film Theories for MEMS and Electronic Packaging Applications, ” IEEE Inter Society Conference on Thermal Phenomena, pp. 1058-1065, 2002, San Diego, USA. [25] K. M. Chen, K. H. Horng, and K. N. Chiang, “Coplanarity Analysis and Validation of PBGA and T2-BGA Packages, ” Finite Elements in Analysis and Design, Vol. 38, pp.1165-1178, 2002. [26] Q. A. Huang, and N. K. S. Lee, “Analysis and Design of Polysilicon Thermal Flexure Actuator,” Journal of Micromechanics and Microengineering, Vol. 9, pp.64-70, 1999. [27] ANSYS Menu, “Thermal-Electric Element” Ch11. Table of Contents Theory Reference 5.5 1998 [28] A. F. Mills, “Heat Transfer,” Second Edition, Prentice Hall, U.S.A., 1999. [29] A. Bejan, “Convection Heat Transfer,” Second Edition, John Wiley & Sons, Inc. 1995. [30] M. M. Yovanovich, “On The Effect of Shape, Aspect Ratio and Orientation upon Natural Convection from Isothermal Bodies of Complex Shape,” The Winter Annual Meeting of The ASME, HTD-Vol. 82, pp. 121-129, 1987 ,Boston, Massachusetts. [31] H. Kapels, R. Aigner, and J. Binder, “Fracture Strength and Fatigue of Polysilicon Determined by a Novel Thermal Actuator,” IEEE Transactions on Electron Devices, vol. 47, No. 7, pp.1522-1528, 2000. [32] I. S. Sokolnikoff, “Mathematical Theory of Elasticity,” Second Edition, Mcfraw-Hill, New York, 1956. [33] F. P. Incropera, and D. P. Dewitt, “Fundamentals of Heat and Mass Transfer,” Fourth Edition, John Wiley & Sons, Inc., New York, 1996. [34] W. B. Bickford, “Advanced Mechanics of Materials,” Addison Wesley, 1998. [35] G. K. Fedder, and R.T. Howe, “Thermal assembly of polysilicon microstructures, “ IEEE Micro Electro Mechanical Systems, pp. 63-68, 1991. [36] C. H. Pan, and S. Y. Tyan, “An electro-thermally driven microactuator with bilateral motion in plane and out-of-plane,” IEEE International Symposium on Micromechatronics and Human Science, pp. 135-142, 2001. [37] N. D. Mankame, and G. K. Ananthasuresh, “Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001. [38] R. L. Boylestad, and L. Nashelsky, “Electronics: a survey of electrical engineering principles,” Fourth Edition, Prentice Hall, New Jersey, 1996. [39] M. Shikida, K. Kawasaki, and K. Sato, “Forming a rounded etched profile by using two-step anisotropic wet etching,” IEEE International symposium on micromechatronics and human science, pp. 95-100, 2000. [40] L. Que, J.-S. Park, and Y. B. Gianchandani, “Bent-Beam Electrothermal Actuators-Part I: Single Beam and Cascaded Devices,” Journal of Microelectromechanical Systems, Vol. 10, No. 2, pp. 247-254, June, 2001. [41] N. D. Mankame and G. K. Ananthasuresh, “Comprehensive Thermal Modelling and Characterization of An Electro-thermal-compliant Microactuator,” Journal of Micromechanics and Microengineering, Vol. 11, pp. 452-462, 2001. [42] ANSYS Menu, “Analysis Procedures” Ch7. Table of Contents Theory Reference 5.5 1998 [43] P. Obreja, R. Muller, and M. Ghita, “Silicon Membranes Manufactured by Electrochemical Etch Stop Technique,” International Semiconductor Conference, CAS '99 Proceedings, Vol. 2, pp. 531-534, Sinaia, Romania.
|