跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.136) 您好!臺灣時間:2025/09/20 12:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張廷瑜
研究生(外文):Chang, Ting-Yu
論文名稱:鍺擴散於氮化矽快閃記憶體之研究
論文名稱(外文):The Investigation of Charge-Trapping Flash Nonvolatile Memory by Using Ge Diffusion into Si3N4 Trapping Layer
指導教授:荊鳳德
指導教授(外文):Chin, Feng-Te
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:英文
論文頁數:62
中文關鍵詞:擴散氮化矽氮化矽鍺
外文關鍵詞:GeDiffusionSi3N4GeSi2N4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:358
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
科技日新月異,隨著消費性電子廣泛的普及化,近年來對於記憶體的需求也日益增加,而各式各樣的記憶體便隨之被發明出來。而屬於非揮發性型態的快閃記憶體也因其具有高密度、良好的資料保存能力以及可重複抹寫的特性,而廣泛的使用在各個領域的電子產品上,如隨身碟、手機/相機記憶卡、各式電子產品程式儲存…等,面對如此龐大的應用,因此對於快閃記憶體特性的提升以及改良是個重要的議題。

現在市場的快閃記憶體依然以傳統的懸浮閘記憶體 (Floating Gate) 為主流,但由於傳統的懸浮閘使用多晶矽 (Poly-Silicon) 作為電荷捕捉層 (Trapping Layer),在經過多次的寫入 (Program) 以及抹除 (Erase) 操作之後,原本在多晶矽內自由移動的電子也很容易隨著氧化層的缺陷產生路徑回到矽基板,造成資料大量的流失,而此類現象在尺寸的微縮下更加嚴重。且多晶矽也會在相鄰的元件之間產生寄生電容,使得元件與元件之間的電子產生游移,並從而降低可靠度。因此對於資料保存性 (Retention) 以及耐久度 (Endurance) 的考量之下,具有將電子牢牢捉住的氮化物便具有取代傳統多晶矽的潛力。由氮化矽電荷捕捉層所組成的多晶矽/金屬閘極-氧化矽-氮化矽-矽 (SONOS/MONOS) 所組成的結構,可解決傳統懸浮閘微縮問題,並具有良好的電荷儲存能力、低工作電壓特性、並且符合現在互補式金氧半場效電晶體元件 (CMOS) 的製程,現階段已開始有部分廠商開始在產品上使用電荷捕捉式快閃記憶體 (Charge Trapping Flash Memory) 取代傳統懸浮閘了。

為了改良氮化矽的特性,我們不使用離子佈植 (Ion Implantation) 而讓鍺經過高溫擴散至氮化矽。由於經過高溫RTA後,鍺擴散至氮化矽層並且與之產生再次反應。除此之外,LaAlO3/SiO2 雙層穿隧氧化層也達到更快速的讀取/抹除速度和更好的耐久度,而使用高介電材質也讓操作電壓進而下降。
在此論文中,我們比較了使用氮化矽以及鍺/氮化矽兩種載子捕獲快閃記憶體結構。使用鍺/氮化矽結構可以達到3.5nm的等校氮化層厚度,並且具有初始2.9V記憶體窗口大小,以及在室溫中十年後還能保有1.7V的好特性,而耐久性在100 μs 以及 低電壓 ?b16 V P/E 操作過十萬次後還保有2.3V的窗口大小。以上的結果是由於使用鍺擴散至氮化矽而形成矽鍺氮化物的緣故。

The rapid advancement of technology with a wide range of consumer electronics is popularity. In recent years, the requirements for memory are increasing and a variety of memory will be invented. Non-volatile flash memory are popular because of its high density, good data retention and program/erase (P/E), while widely used in various fields of electronic products, such as flash drives, mobile phones / camera memory card, many kinds of electronic product code stored ... and so on, faced with such a huge application, so the characteristics of flash memory for upgrading and improvement is an important issue.

Majority of the flash memory market still use the traditional floating-gate memory type, but because of the traditional floating-gate using poly-silicon as the charge trapping layer, after the numerous program and erase operation, carriers (electrons) have moved freely in the poly-silicon, and also very easy back to the silicon substrate through the electronic defects caused by damage in the oxide layer, resulting in the loss of a lot of information, especially serious when the size scale down. And poly-silicon also cause the adjacent parasitic capacitance between the components, making the electrons move freely between each components, and thus reduce the reliability. So for data preservation (Retention) and durability (Endurance) under consideration, nitride has the characteristic of discrete charge-trap, and has the potential to replace the traditional poly-silicon. Charge trapping type consist of the following structure: poly-silicon / metal gate - oxide - silicon nitride - silicon (SONOS / MONOS), solve the problem of the traditional floating gate, and has a good charge storage capacity, low-voltage consumption, and can be embedded with complementary metal-oxide-Semiconductor FET devices (CMOS) manufacturing process, some company have begun to use charge trapping type in their production and replace the traditional floating gate type.

In order to improve the characteristics of Si3N4, we used the Ge diffusion into Si3N4 trapping layer which is different from the usage of ion implantation. We let Ge diffuse into the Si3N4 and react with Si3N4 by high temperature rapid-thermal annealing (RTA). In addition, the band offset in LaAlO3/SiO2 double tunnel layers lowers tunneling barrier for faster P/E speeds and better endurance. The high-κ blocking and trapping layers lower the P/E voltage.

In this study, we compare the Si3N4 and Ge/Si3N4 Charge-Trapping (CT) flash devices. We report a Ge/Si3N4 CT flash memory at a record thinnest 3.5-nm ENT trapping layer, this device has an initial 2.9 V memory window, good retention of 1.7 V extrapolated 10-year retention window at 25oC and 2.3 V endurance window at 105 cycles were measured, under fast 100 μs and low ±16 V P/E. These were achieved by using Ge diffusion the Si3N4 and reacting with Si3N4 to form the GeSi2N4 for better charge storage.

摘要 i
Abstract iii
誌謝 vi
Contents viii
Figure Captions x
Chapter 1 Introduction 1
1.1 Overview of Nonvolatile Memory 1
1.2 Charge Trapping Flash Memory 3
1.3 Organization of This Thesis 8
Chapter 2 Basic Principle of Nonvolatile memory 16
2.1 Programming/Erasing Mechanisms of Nonvolatile Memory 17
2.2 Basic Reliability of Nonvolatile Memory 22
2.2.1 Retention 22
2.2.2 Endurance 24
Chapter 3 The MONOS memory using Si3N4 Trapping Layer 31
3.1 Introduction 31
3.2 Experimental 32
3.3 Results and Discussion 33
Chapter 4 The MONOS memory using Ge diffusion into Si3N4 Trapping Layer 39
4.1 Introduction 39
4.2 Experimental 39
4.3 Results and Discussion 40
Chapter 5 Conclusions 50
References 56


[1.1] Kim, “Future Memory Technology: Trends and Challenges”, Plenary paper, ISQED, 2006
[1.2] D. K. and S. M. Sze , “A floating gate and its application to memory devices”, Bell Syst. Tech, 46, 1288, 1967
[1.3] P. Pavan, R. Bez, P. Olivo and E. Zanoni, “Flash Memory Cells—An Overview,” Proc. IEEE, 85, 1248, 1997
[1.4] “International Technology Roadmap for Semiconductors, 2007 update
[1.5] C.Y. Lu and C.C. Yeh, “Advanced Non-Volatile Memory Devices with Nano -Technology”, invited talk for 15th International Conference on Ion Implantation Technology, 2004
[1.6] S. Tiwari, F. Rana, H. Hanafi, A. Hartstein, E. F. Crabbe, and K. Chan, Appl. Phys. Lett., 68, 1377 (1996)
[1.7] J. D. Blauwe , ”Flash Nonvolatile Memory Devices,” IEEE Trans. Nanotechnol., 1, 72 (2002)
[1.8] C. H. Tu, T. C. Chang, P. T. Liu, H. C. Liu, S. M. Sze, and C. Y. Chang, Improved memory window for Ge flashs embedded in SiON layer,” Appl. Phys. Lett., 89, 162105 (2006)
[1.9] Greg Atwood, ”Future Directions and Challenges for ETox Flash Memory Scaling,” IEEE Trans. on Device and Materials Reliability, Vol. 4, No. 3, pp.301-305, September 2004
[1.10] Barbara De Salvo, Cosimo Gerardi, Rob van Schaijk, Savatore A.Lombardo, Domenico Corso, Cristina Plantamura, Stella Serafino, Giuseppe Ammendola, Michiel van Duuren, Pierre Goarin, Wan Yuet Mei, Kees van der Jeugd, Thierry Baron, Marc Gely, Pierre Mur, and Simon Deleonibus, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Flashs, SONOS),” IEEE Transactions on Device and Materials Reliability, Vol.4, No. 3, pp.377-389, September 2004
[1.11] W. N. Papian, “The MIT magnetic-core memory,” in Proc. Eastern Joint Comp. Conf., Dec. 1953, pp. 37-42
[1.12] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., vol. 46, no. 4, pp. 1288-1295, 1967
[1.13] T.S. Chen, K.H.Wu, H. Chung, and C.H. Kao, ”Performance Improvement of SONOS Memory by Bandgap Engineering of Charge-Trapping Layer,” IEEE Electron Device Letters, Vol. 25, No. 4, pp.205-207, April 2004
[1.14] Barbara De Salvo, Cosimo Gerardi, Rob van Schaijk, Savatore A.Lombardo, Domenico Corso, Cristina Plantamura, Stella Serafino, Giuseppe Ammendola, Michiel van Duuren, Pierre Goarin, Wan Yuet Mei, Kees van der Jeugd, Thierry Baron, Marc Gely, Pierre Mur, and Simon Deleonibus, “Performance and Reliability Features of Advanced Nonvolatile Memories Based on Discrete Traps (Silicon Flashs, SONOS),” IEEE Transactions on Device and Materials Reliability, Vol. 4, No. 3, pp.377-389, September 2004
[1.15] Stefan Lai, “Flash Memories: Where We Were and Where We are Going,” IEDM Tech. Dig., pp.971-973, 1998
[1.16] Marvin H. White, Dennis A. Adams, and Jiankang Bu, “On the go with SONOS,” IEEE Circuit and Device, pp.22-31, July 2000
[1.17] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti, “Introduction to Flash Memory,” Proceedings of The IEEE, Vol. 91, No. 4, pp.489-502, April 2003
[1.18] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, D. Buchanan,”Volatile and Non-Volatile Memories in Silicon with Nano-Crystal Storage”, Technical Digest of the IEDM 1995, 521-524 (1995)
[1.19] J De Blauwe, “Flash nonvolatile memory devices”, IEEE Trans. Nanotechnol, 2002

[2.1] C.Y. Lu and C.C. Yeh, “Advenced Non-Volatile Memory Devices with Nano-Technology”, Invited Talk for 15th International Conference on Ion Implantation Technology, 2004
[2.2] M. Woods, Nonvolatile Semiconductor Memories: Technologies, Design, and Application, C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, p.59
[2.3] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, Proceedings of The IEEE, 85, 1248 (1997)
[2.4] T. Ohnakado, H. Onoda, O. Sakamoto, K. Hayashi, N. Nishioka, H. Takada, K. Sugahara, N. Ajika and S. Satoh, “Device characteristics of 0.35  m P-channel DINOR flash memory using band-to-band tunneling-induced hot electron (BBHE) programming”, IEEE Trans. Electron Devices, Vol. 46, pp. 1866-1871, (1999)
[2.5] J. Bu, and M. H. White, “Design considerations in scaled SONOS nonvolatile memory devices”, Solid-State Electronics., 45, 113 (2001)
[2.6] M. L. French, and M. H. White, “Scaling of multidielectric nonvolatile SONOS memory structures”, Solid-State Electron., p.1913 (1994)
[2.7] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White., “Design and Scaling of a SONOS Multidielectric Device for Nonvolatile Memory Applications”, IEEE Trans Comp Pack and Manu Tech part A., 17, 390 (1994)
[2.8] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa,
A. Ishitani, and T. Okazawa, “A high capacitive-coupling ratio (HiCR) cell for 3 V-only 64 Mbitand future flash memories”, IEDM Tech. Dig., p.19 (1993)
[2.9] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-an overview”, Proceedings of The IEEE, 85, 1248 (1997)
[2.10] D. Ielmini, A. Spinelli, A. Lacaita, and A. Modelli, “Statistical model of reliability and scaling projections for Flash memories,” in IEDM Tech. Dig., 2001, pp.32.2.1–32.2.4.
[2.11] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri, and A. Visconti,“New technique for fast characterization of SILC distribution in Flash arrays,” in Proc. IRPS, 2001, pp. 73–80.
[2.12] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone, and A. Visconti, “Localization of SILC in Flash memories after program/erase cycling,” in Proc. IRPS, 2002, pp. 1–6.
[2.13] P. Cappelletti, R. Bez, D. Cantarelli, and L. Fratin, “Failure mechanisms of flash cell in program/erase cycling,” IEDM Tech. Dig., p.291 (1994)
[2.14] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, “Quantum confinement in Ge nanocrystals,” Appl. Phys. Lett., 77, pp.1182-1184 (2000)
[2.15] T. Takagahara and K.Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect- gap materials,” Phys. Rev. B, Vol. 46, p. 15578, 1992
[2.16] J.D.Jackson, “Classcial Electrodynamics”, published by John Wiley & Sons, 1999.

[3.1] Ryuji Ohba, Naoharu Sugiyama,Junji Koga,Shinobu Fujita, “Silicon nitride trap
memory with double tunnel junction”,Symposium on VLSI Technology Digest of Technical Papers, p.35-36 (2003)
[3.2] C. H. Lai, A. Chin, K. C. Chiang, W. J. Yoo, C. F. Cheng,S. P. McAlister, C. C.
Chi and P. Wu, Symp. on VLSI Tech.Dig., 2005, pp. 210-211.
[3.3] A. Chin, C. C. Laio, C. Chen, K. C. Chiang, D. S. Yu, W. J.Yoo, G. S. Samudra, T. Wang, I . J . Hsieh, S. P. McAlister,and C. C. Chi, IEDM Tech. Dig., 2005, pp. 165-168
[3.4] C. H. Lai, A. Chin, H. L. Kao, K. M. Chen, M. Hong, J.Kwo and C. C. Chi, Symp. on VLSI Tech. Dig., 2006, pp.54-55
[3.5] S. H. Lin, Albert Chin, F. S. Yeh, and S. P. McAlister,IEDM Tech. Dig., 2008, pp. 843-846
[3.6] H. T. Lue et al, IEDM Tech. Dig., 2005, pp. 547-550
[3.7] K. H. Joo, C. R. Moon, S. N. Lee, X. Wang, J. K. Yang, I.S. Yeo, D. Lee, O. Nam,U. I. Chung, J. T. Moon, and B. I.Ryu, IEDM Tech. Dig., 2006, pp. 979–982
[3.8] Albert Chin, S. H. Lin, K. C. Chiang, and F. S. Yeh, “Improved Device Characteristics in Charge-Trapping-Engineered Flash Memory Using high-κDielectrics,” ECS Trans., vol. 25, no. 6, pp. 447-455, 200

[4.1] M. L. Lee, Z.Y. Cheng, C. W. Leitz, A. J. Pitera, T. A. Langdo, M. T.Currie, G. Taraschi, E. A. Fitzgerald, and D. A. Antoniadis, Appl. Phys.Lett. 79, 3344 ,2001
[4.2] S. Takagi, Tech. Dig. VLSI Symp. 2003, 115
[4.3] Y. C. King, T. J. King, and C. Hu, IEEE Electron Device Lett. 20, 409, 1999.
[4.4] L. Dori, A. Acovic, D. J. Dimaria, and C. H. Hsu, IEEE Electron Device Lett. 14, 283, 1993.
[4.5] M. Rosmeulen, E. Sleeckx, and K. D. Meyer, Tech. Dig. - Int. Electron Devices Meet. 2002, 189.
[4.6] C.H. Tu , T.C. Chang, P.T. Liu, H.C. Liu, W.R. Chen, C.C. Tsai, L.T. Chang, and C.Y. Chang, “Formation of silicon germanium nitride layer with distributed charge storage elements,” Appl. Phys. Lett. 88, 112105,2006

[5.1] C.H. Tu , T.C. Chang, P.T. Liu, H.C. Liu, W.R. Chen, C.C. Tsai, L.T. Chang, and C.Y. Chang, “Formation of silicon germanium nitride layer with distributed charge storage elements,” Appl. Phys. Lett. 88, 112105,2006
[5.2] J. Am. Ceram. Soc., 85, 75, 2002
[5.3] Jianjun Dong, Jack Deslippe, Otto F. Sankey, Emmanuel Soignard, and Paul F. McMillan, “Theoretical study of the ternary spinel nitride system Si3N4-Ge3N4,” Physical review b 67, 094104 ~2003!
[5.4] H. Wang, Y. Chen, Yasunori Kaneta, and Shuichi Iwata, “First-principles investigation of structural, electronic and optical properties of IVA group spinel nitrides” Eur. Phys. J. B 59, 155–165, 2007
[5.5] W. Y. Ching, Shang-Di Mo, and Lizhi Ouyang, “Electronic and optical properties of the cubic spinel phase of c-Si3N4, c-Ge3N4, c-SiGe2N4, and c-GeSi2N4” physical review b, volume 63, 245110
[5.6] A. Bouhemadou1,a, Y. Al-Douri2, R. Khenata3, and K. Haddadi1, “Structural, elastic, electronic, optical and thermal properties of c-SiGe2N4” Eur. Phys. J. B
71, 185–194, 2009

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊