跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/21 23:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鐘國峰
研究生(外文):Guo-Feng Chung
論文名稱:合作式通訊之媒介存取協定設計
論文名稱(外文):Cooperative Medium Access Control Protocol Design in Distributed Wireless Network
指導教授:周俊廷
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電信工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:67
中文關鍵詞:合作式通訊媒介存取協定分集增益中繼者自適應調變分散式網路
外文關鍵詞:cooperative transmissionMAC protocoldiversity gainrelayadaptive modulationdistributed networks
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳輸的可靠度是無線通訊中最重要的議題之一,為了改善傳輸的可靠度,針
對包括實體層 (PHY)及媒介存取層 (MAC)的許多不同技術紛紛被提出。藉著從多
輸入多輸出系統(MIMO system)得到的靈感所提出的合作式通訊,能夠在得到分
集增益的同時避開使用多天線技術的複雜度,而得到的增益在適當的使用下即可
改善傳輸可靠度及減少功率的損耗。
合作式通訊中,在傳送者 (source device)鄰近的裝置我們稱為中繼者
(relay),他可以將從傳送者收到的訊框 (frame)再次送到接收者
(destination)。要達成這樣的合作式傳輸,包含傳送者、中繼者及接收者在內
的裝置必須知道 (1)什麼時候應該合作 (2)應該跟誰合作。為了滿足這些要求,
在媒介存取層中這三方互相的信令傳遞與協調是必須的。
在這篇論文中,我們設計了一種支援合作式傳輸的新的媒介存取協定,這個
新的協定允許裝置在動態的無線網路環境中使用不同的傳輸方式 (是否與他人
合作)。遵循我們的協定,這些裝置可以互相交換關於通道品質的資訊,並藉由一
個完全分散式的方法,透過競爭,來進行中繼者的選擇。為了選到最好的中繼者,
我們也制定了一套「忙線音」中繼者分級系統。除此之外,我們也將一項名為「自
適應調變」的跨層最佳化技術整合進我們的協定之中以獲得更佳的成果。
我們除了數學的分析也藉由網路模擬軟體 Opnet Modeler,進行多樣的模擬
來展現我們的成果。在低信噪比的環境下,整體的吞吐改善量約在 10%到 20%之
間變動,這個結果也證明了我們的提出的協定是可行的,並且在考慮到所有額外
負擔的情形下也能有相當的吞吐改善量。
Transmission reliability is one of the most important issues in wireless communi-
cations. Different techniques have been proposed to improve transmission reliability
in both physical (PHY) and medium access control (MAC) layers. Inspired by the
multi-input multi-output (MIMO) system, cooperative transmission was introduced
to obtain diversity gain without the complexity of using multi-antenna radios. This
additional gain, when being used properly, can improve transmission reliability or
reduce power consumption.
In cooperative transmission, neighbors of the source device, referred to as relays,
forward the data frame received from the source device to the destination device. To
enable such cooperation, devices including the source, the relays, and the destination
must know (1) when to cooperate and (2) whom to cooperate with. To address these
issues, MAC-layer signaling and coordination among the three parties are needed.
In this thesis, we design a new medium access control (MAC) protocol that sup-
ports cooperative transmission. The new protocol enables devices to adapt trans-
mission schemes (direct or cooperative) to dynamic wireless environments. With our
protocol, the devices exchange the link information and perform relay selection — via
contention — in a fully distributed manner. In order to select the best relay, we also
introduce a ”busy-tone” relay raking system. To further improve the performance,
a cross-layer optimization technique, namely adaptive modulation, is integrated into
our protocol.
We performed mathematical analysis and conducted extensive simulation in Opnet
Modeler to show the performance. The overall throughput improvement varies from
10% to 20% in low-SNR environments. The results show that our protocol is a feasible
iisolution and delivers considerable improvement even when taking into account all
signaling overheads.
ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . 1
1.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
CHAPTER 2 SYSTEM MODEL AND ASSUMPTIONS . . . . . . 8
2.1 PHY-Layer Consideration . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 MAC-layer Consideration . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 CSMA/CA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Virtual Carrier Sensing . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 RTS/CTS Handshake . . . . . . . . . . . . . . . . . . . . . . 14
CHAPTER 3 DISTRIBUTED MAC PROTOCOL FOR COOPER-
ATIVE WIRELESS NETWORKS . . . . . . . . . . . . . . . . . . . 16
3.1 Exchange of Link Quality Information . . . . . . . . . . . . . . . . . 17
3.2 Relay Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Data Transmission with Adaptive Modulation . . . . . . . . . . . . 22
3.4 Retransmission Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Modified Virtual Carrier Sensing Mechanism . . . . . . . . . . . . . 25
CHAPTER 4 THROUGHPUT ANALYSIS OF THE PROPOSED
PROTOCOL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.1 Basic Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 Throughput Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 SNR in direction transmission . . . . . . . . . . . . . . . . . 29
4.2.2 SNRs in cooperative transmission . . . . . . . . . . . . . . . 30
4.2.3 Throughput in direct transmission . . . . . . . . . . . . . . . 32
4.2.4 Throughput in cooperative transmission using AF . . . . . . 33
4.2.5 Throughput in cooperative transmission using AF+DF . . . 36
4.3 Selection of Transmission Tactics . . . . . . . . . . . . . . . . . . . . 37
4.3.1 Busy tone pattern . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.1 Impact of Amax and K . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 Impact of busy tones . . . . . . . . . . . . . . . . . . . . . . 44
CHAPTER 5 SIMULATIONS . . . . . . . . . . . . . . . . . . . . . . . 46
5.1 Single Pair Transmission . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.1 Validation of throughput analysis . . . . . . . . . . . . . . . 47
5.1.2 An Extreme Case . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.3 The Impact of Fading . . . . . . . . . . . . . . . . . . . . . . 51
5.1.4 The Impact of Erroneous Control Frames . . . . . . . . . . . 54
5.2 Multiple Relays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.1 The Impact of The Number of Relay Candidates . . . . . . . 56
5.2.2 The Impact of The Value of Amax . . . . . . . . . . . . . . . 58
5.2.3 The Impact of Busy Tones . . . . . . . . . . . . . . . . . . . 59
5.3 Network Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
CHAPTER 6 CONCLUSIONS AND FUTURE WORK . . . . . . . 64
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
[1] T. Cover and A. Gamal, “Capacity theorems for the relay channel,” Information
Theory, IEEE Transactions on, vol. 25, no. 5, pp. 572–584, Sep 1979.
[2] A. Sendonaris, E. Erkip, and B. Aazhang, “Increasing uplink capacity via user
cooperation diversity,” in Information Theory, 1998. Proceedings. 1998 IEEE
International Symposium on, Aug 1998, pp. 156–.
[3] ——, “User cooperation diversity. part i. system description,” Communications,
IEEE Transactions on, vol. 51, no. 11, pp. 1927–1938, Nov. 2003.
[4] ——, “User cooperation diversity. part ii. implementation aspects and perfor-
mance analysis,” Communications, IEEE Transactions on, vol. 51, no. 11, pp.
1939–1948, Nov. 2003.
[5] Y. Zhao, R. Adve, and T. Lim, “Improving amplify-and-forward relay networks:
optimal power allocation versus selection,” Wireless Communications, IEEE
Transactions on, vol. 6, no. 8, pp. 3114–3123, August 2007.
[6] I. Maric and R. Yates, “Forwarding strategies for gaussian parallel-relay net-
works,” in Information Theory, 2004. ISIT 2004. Proceedings. International
Symposium on, June-2 July 2004, pp. 269–.
[7] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity the-
orems for relay networks,” Information Theory, IEEE Transactions on, vol. 51,
no. 9, pp. 3037–3063, Sept. 2005.
[8] S. Yang and J.-C. Belore, “Towards the optimal amplify-and-forward cooper-
ative diversity scheme,” Information Theory, IEEE Transactions on, vol. 53,
no. 9, pp. 3114–3126, Sept. 2007.
[9] X. Deng and A. Haimovich, “Power allocation for cooperative relaying in wireless
networks,” Communications Letters, IEEE, vol. 9, no. 11, pp. 994–996, Nov.
2005.
[10] S. Cui, R. Madan, A. Goldsmith, and S. Lall, “Cross-layer energy and delay
optimization in small-scale sensor networks,” Wireless Communications, IEEE
Transactions on, vol. 6, no. 10, pp. 3688–3699, October 2007.
[11] J. Laneman and G. Wornell, “Distributed space-time coded protocols for ex-
ploiting cooperative diversity in wireless networks,” Global Telecommunications
Conference, 2002. GLOBECOM ’02. IEEE, vol. 1, pp. 77–81 vol.1, Nov. 2002.
[12] P. Liu, Y. Liu, T. Korakis, A. Scaglione, E. Erkip, and S. Panwar, “Cooperative
mac for rate adaptive randomized distributed space-time coding,” 30 2008-Dec.
4 2008, pp. 1–6.
[13] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman, “A simple cooperative di-
versity method based on network path selection,” CoRR, vol. abs/cs/0510071,
2005.
[14] Z. Zhou, S. Zhou, J.-H. Cui, and S. Cui, “Energy-ecient cooperative com-
munication based on power control and selective single-relay in wireless sensor
networks,” Wireless Communications, IEEE Transactions on, vol. 7, no. 8, pp.
3066–3078, August 2008.
[15] Y. Fan, H. V. Poor, and J. S. Thompson, “Cooperative multiplexing in a half
duplex relay network: Performance and constraints,” CoRR, vol. abs/0709.3600,
2007.
[16] Z. Lin, E. Erkip, and M. Ghosh, “Adaptive modulation for coded cooperative
systems,” June 2005, pp. 615–619.
[17] J. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless networks:
Ecient protocols and outage behavior,” Information Theory, IEEE Transac-
tions on, vol. 50, no. 12, pp. 3062–3080, Dec. 2004.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top