|
[1] E. J. Cockayne, P. A. Jr. Dreyer, S. M., Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete Mathmatics 278 (2004) 11-22.
[2] I. Stewart, Defend the Roman Empire, Scientific American 281 (1999) 136-139.
[3] E. J. Cockayne, P. A. Jr. Dreyer, S. M., Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete Mathmatics 278 (2004) 11-22.
[4] C.-H. Hsu, C.-S. Liu, and S.-L. Peng, Roman domination on block graphs, Proceedings of the 22nd Workshop on Combinatorial Mathematics and Computation Theory (2005) 188-191
[5] M. Liedloff, T. Kloks, J. Liu, and S.-L. Peng, Roman domination over some graph classes, WG 2005, LNCS 3787 (2005) 103-114.
[6] H.S. Chao, F.R. Hsu, R.C.T. Lee, An optimal algorithm for finding the minimum cardinality dominating set on permutation graphs, Discrete Applied Mathematics 102 (2000) 159-173
[7] C.S. ReVelle, K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (7) (2000) 585–594.
[8]M.C. Golumbic, Algorithm Graph Teory and Perfect Graphs (Academic Press, New York, 1980).
[9]Y. D. Liang, C. Rhee, S. K. Dhall and S. Lakshmivarahan, A new approach for the domination problem on permutation graphs, Information Processing Letters 37(1991)219-224
[10]Y. Daniel Liang, Teaching Dynamic Programming Techniques Using Permutation Graphs, ACM 1995 0-89791-693-x/95/0003
[11]C. Rhee, Y. D. Liang, S. K. Dhall and S. Lakshmivarahan, An O(m+n) algorithm for finding minimum weight dominating set in permutation graphs, SIAM J. on Computing, to appear, 1994.
[12] M. A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002) 225-234.
[13] M. A. Henning, Defending the Roman Empire from multiple attacks, Discrete Mathematics 271 (2003) 101-115.
[14]Henning Fernau, Roman Domination: A Parameterized Perspective, SOFSEM 2006, LNCS 3831,pp.262-271, 2006
|