跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.138) 您好!臺灣時間:2025/12/07 17:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林玥妘
研究生(外文):Yueh-Yun Lin
論文名稱:添加二乙二醇二甲醚、四丁基氫氧化銨及1,1,3,3-四甲基胍對於二氧化碳水合物熱力學與動力學之實驗量測
論文名稱(外文):Measurement of Thermodynamics and Kinetics of Carbon Dioxide Hydrate in the Presence of 2-Methoxyethyl ether, Tetrabutylammonium hydroxide and 1,1,3,3-Tetramethylguanidine
指導教授:陳延平陳延平引用關係
指導教授(外文):Yan-Ping Chen
口試委員:陳立仁林祥泰蔡榮進蘇至善
口試委員(外文):Li-Jen ChenShiang-Tai LinJung-Chin TsaiChie-Shaan Su
口試日期:2016-06-17
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:化學工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:148
中文關鍵詞:二氧化碳水合物相平衡等容溫度循環法促進劑抑制劑二乙二醇二甲醚四丁基氫氧化銨1133-四甲基胍動力學
外文關鍵詞:carbon dioxide hydratesphase equilibriumisochoric methodpromoterinhibitor2-methoxyethyl ethertetrabutylammonium hydroxide1133-tetramethylguanidinekinetics
相關次數:
  • 被引用被引用:2
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用已建立之高壓相平衡設備,並採用等容溫度循環法,進行二氧化碳水合物之熱力學相平衡與動力學實驗量測。本研究目的為量測含有添加劑之二氧化碳水合物三相 (H-Lw-V) 相平衡曲線,及添加劑對於二氧化碳水合物生成動力學之影響,作為未來工程應用設計、水合物開採等的基礎物性資料。

熱力學相平衡方面,首先,進行純水系統的相平衡點量測,實驗結果顯示本研究所量測之相平衡點與文獻中數據相符,確認本研究之實驗設備與操作手法的可行性。接著進行含有添加劑之二氧化碳水合物相平衡點測量,本研究選用的添加劑為二乙二醇二甲醚 (2-Methoxyethyl ether)、四丁基氫氧化銨(Tetrabutylammonium hydroxide) 及1,1,3,3-四甲基胍(1,1,3,3-Tetramethylguanidine),並將初始壓力設定在1.68 ~ 3.44 MPa之間。根據實驗量測結果,二乙二醇二甲醚及1,1,3,3-四甲基胍為熱力學抑制劑,使二氧化碳水合物之相平衡曲線往低溫高壓方向移動,縮小水合物的生成相區,且抑制效果隨著添加濃度提高而增加,添加30 wt% 二乙二醇二甲醚最大抑制溫度約5.7 K,而添加30 wt% 1,1,3,3-四甲基胍最大抑制溫度約11.1 K。另一方面,結果顯示四丁基氫氧化銨為一促進劑,使二氧化碳水合物之相平衡曲線往高溫低壓方向移動,擴大水合物的生成相區,且促進效果隨著添加濃度提高而增加,添加20 wt% 四丁基氫氧化銨最大促進溫度約11 K。為了接近未來工程應用,本研究亦模擬海水環境 (3.5 wt% NaCl),挑選效果最明顯之添加劑濃度,進行二氧化碳水合物之相平衡點量測,結果顯示三支添加劑在鹽水環境中,不論是促進或抑制效果皆更加明顯,約提升1~3 K。本研究亦利用Clausius-Clapeyron equation判斷水合物的結構及分解熱。結果顯示添加二乙二醇二甲醚及1,1,3,3-四甲基胍之二氧化碳水合物屬於sI型結構;而添加四丁基氫氧化銨之二氧化碳水合物,根據文獻顯示,這類含有長碳鏈的大分子鹽類會形成半籠狀水合物,因此將其與相似結構之半籠狀水合物比較,發現其斜率與TS-I型結構之半籠狀水合物相近,故推測添加四丁基氫氧化銨所形成之水合物結構為TS-I型。

動力學方面,本研究以二乙二醇二甲醚為添加劑,進行添加濃度20及30 wt% 時之動力學實驗量測,以起始壓力為變因,固定系統之操作溫度,並以過飽和梯度 (S*=(Pin/Peq)-1) 為驅動力。實驗結果顯示,在系統添加30 wt% 二乙二醇二甲醚時,當驅動力越大,可縮短水合物生成之誘導時間,亦可增加二氧化碳之氣體總消耗量,然而,對於水合物初期生成速率則無明顯的影響;而在系統添加20 wt% 二乙二醇二甲醚時,當驅動力越大,可縮短水合物生成之誘導時間,亦能提升水合物初期生成速率及二氧化碳之氣體總消耗量。此外,將添加20及30 wt% 二乙二醇二甲醚進行比較,結果顯示添加濃度下降時,有縮短誘導時間的趨勢,表示能使水合物較快時間內生成,而對於二氧化碳之氣體總消耗量及水合物初期生成速率則無明顯的影響。


In this study, phase equilibrium conditions for carbon dioxide hydrates in the presence of 2-methoxyethyl ether, tetrabutylammonium hydroxide and 1,1,3,3-tetramethylguanidine were experimentally measured. The three-phase (H-Lw-V) equilibrium pressures and temperatures were determined by isochoric method in the pressure range from 1.68 to 3.44 MPa with various concentrations of the additives. Also, the kinetic behaviors were investigated in the presence of 2-methoxyethyl ether at 0.2 and 0.3 mass fraction.

Compared with pure water system, addition of 2-methoxyethyl ether and 1,1,3,3-tetramethylguanidine in the system cause inhibition effect on carbon dioxide hydrate formation and the maximum decrease of dissociation temperature is about 5.7 K and 11.1 K, respectively. On the other hand, addition of tetrabutylammonium hydroxide in the system gives rise to promotion effect on carbon dioxide hydrate formation and the maximum increase temperature is about 11 K, compared with pure water system. To simulate the seawater environment, this study also measured the additives in brine system with 0.035 mass fraction of NaCl. Moreover, the structure and dissociation enthalpy of hydrates are estimated by using Clausius-Clapeyron equation. The structures of carbon dioxide hydrates with addition of 2-methoxyethyl ether and 1,1,3,3-tetramethylguanidine are both classified as structure I, whereas those with addition of tetrabutylammonium hydroxide are classified as structure TS-I.

In this study, the kinetics of carbon dioxide hydrate with 2-methoxyethyl ether as the additive at 0.2 and 0.3 mass fraction were also investgated. With an increase in initial operating pressure, the driving force increased. That is due to the fact that higher initial pressure created higher supersaturation, which induced stronger driving force. At 0.3 mass fraction of 2-methoxyethyl ether in the system, the induction time was shortened as the driving force increased. In addition, the carbon dioxide consumption was increased almost linearly with increasing the driving force. However, the average hydrate formation rate stayed almost constant with the increased driving force. Also, addition of 2-methoxyethyl ether at 0.2 mass fraction in the system was studied. The results showed the induction time was shortened in comparison to that of 0.3 mass fraction. However, the average hydrate formation rate and carbon dioxide consumption were not effectively influenced.


摘要 I
Abstract III
目錄 V
表目錄 VIII
圖目錄 X
第一章 緒論 1
1-1 二氧化碳的捕捉與封存 2
1-2 水合物簡介 6
1-3 半籠狀水合物簡介 8
1-4 二氧化碳水合物介紹及應用 10
1-5 研究方向與目的 13
第二章 文獻回顧 15
2-1 自由度計算與水合物相圖 15
2-2 水合物成核機制 17
2-3水合物之結構鑑定方法 21
2-4 水合物之儀器分析 22
2-5 水合物之熱力學研究 26
2-6 水合物之動力學研究 27
第三章 實驗裝置與方法 30
3-1 實驗設備與藥品 30
3-2 實驗方法 31
3-3 實驗步驟 33
3-3.1 熱力學實驗步驟 33
3-2.2 動力學實驗步驟 36
3-4 實驗數據分析 37
3-4.1 熱力學實驗數據分析 37
3-4.2 動力學實驗數據分析 38
第四章 結果與討論 40
4-1 二氧化碳水合物之熱力學相平衡實驗 40
4-1.1 溫度循環流程之探討 40
4-1.2 純水系統對比實驗 41
4-1.3 添加劑之選用及快速溫度循環測試 43
4-1.4 鹽水系統模擬 45
4-2 二氧化碳+純水/鹽水+二乙二醇二甲醚之相平衡實驗 45
4-2.1 二氧化碳+純水/鹽水+二乙二醇二甲醚之相平衡數據 46
4-2.2 二氧化碳+純水/鹽水+二乙二醇二甲醚之水合物結構預測 47
4-2.3 二氧化碳+純水/鹽水+二乙二醇二甲醚之水合物分解熱計算 48
4-3 二氧化碳+純水/鹽水+四丁基氫氧化銨之相平衡實驗 48
4-3.1二氧化碳+純水/鹽水+四丁基氫氧化銨之相平衡數據 49
4-3.2二氧化碳+純水/鹽水+四丁基氫氧化銨之水合物結構預測 50
4-3.3 二氧化碳+純水/鹽水+四丁基氫氧化銨之水合物分解熱計算 51
4-4二氧化碳+純水/鹽水+1,1,3,3-四甲基胍之相平衡實驗 51
4-4.1二氧化碳+純水/鹽水+1,1,3,3-四甲基胍之相平衡數據 52
4-4.2二氧化碳+純水/鹽水+1,1,3,3-四甲基胍之水合物結構預測 52
4-4.3二氧化碳+純水/鹽水+1,1,3,3-四甲基胍之水合物分解熱計算 53
4-5 二氧化碳水合物之動力學實驗量測 54
4-5.1 動力學實驗流程之討論 54
4-5.2 動力學實驗操作條件之選擇 55
4-5.2 二氧化碳+純水+二乙二醇二甲醚系統之操作壓力探討 56
4-5.3二氧化碳+純水+二乙二醇二甲醚系統之添加劑濃度探討 57
第五章 結論 59
參考文獻 139


Ahn, Y. H., Kang, H., Koh, D. Y., Park, Y. and Lee, H. (2015). Gas hydrate inhibition by 3-hydroxytetrahydrofuran: Spectroscopic identifications and hydrate phase equilibria. Fluid Phase Equilib., 413, 65-70.
Andrey Manakov, T. R., Irina Terekhova, Vladislav Komarov, Alexander Burdin, Artem Sizikov. (2011). Structural and physico-chemical studies of ionic clathrate hydrates of tetrabutyl-and tetraisoamylammonium salts. Paper presented at the Proceedings of the 7th International Conference on Gas Hydrates, United Kingdom.
Anklam, M. R. and Firoozabadi, A. (2004). Driving force and composition for multicomponent gas hydrate nucleation from supersaturated aqueous solutions. J. Nat. Gas Chem., 121(23), 11867-11875.
Bishnoi, P. and Dholabhai, P. (1993). Experimental study on propane hydrate equilibrium conditions in aqueous electrolyte solutions. Fluid Phase Equilib., 83, 455-462.
Cha, J. H., Kang, S. P., Han, S., Kang, J. W. and Kim, K. S. (2016a). Phase equilibria of CH4 and CO2 hydrates formed from aqueous solutions of glutaric acid and malonic acid. Fluid Phase Equilib., 413, 71-74.
Cha, J. H., Ha, C., Kang, S. P., Kang, J. W. and Kim, K. S. (2016b). Thermodynamic inhibition of CO2 hydrate in the presence of morpholinium and piperidinium ionic liquids. Fluid Phase Equilib., 413, 75-79.
Chatti, I., Delahaye, A., Fournaison, L. and Petitet, J. P. (2005). Benefits and drawbacks of clathrate hydrates: a review of their areas of interest. Energy Convers. Manage., 46(9–10), 1333-1343.
Chen, Q., Yu, Y., Zeng, P., Yang, W., Liang, Q., Peng, X., Liu, Y. and Hu, Y. (2008). Effect of 1-butyl-3-methylimidazolium tetrafluoroborate on the formation rate of CO2 hydrate. J. Nat. Gas Chem., 17(3), 264-267.
Chun, M. K. and Lee, H. (1999). Phase equilibria of carbon dioxide hydrate system in the presence of sucrose, glucose, and fructose. J. Chem. Eng. Data, 44(5), 1081-1084.
Clarke, M. A., Majumdar, A. and Bishnoi, P. R. (2004). Experimental investigation of carbon dioxide hydrate formation conditions in the presence of KNO3, MgSO4, and CuSO4. J. Chem. Eng. Data, 49(5), 1436-1439.
Collins, M., Ratcliffe, C. and Ripmeester, J. (1990). Nuclear magnetic resonance studies of guest species in clathrate hydrates: line-shape anisotropies, chemical shifts, and the determination of cage occupancy ratios and hydration numbers. J. Phys. Chem., 94(1), 157-162.
Coninck, H. D., Loos, M., Metz, B., Davidson, O. and Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Intergovernmental Panel on Climate Change.
Davidson, D., Handa, Y. and Ripmeester, J. (1986). 129Xe NMR and thermodynamic parameters of xenon hydrate. J Phys Chem, 90(6), 549-546.
Delahaye, A., Fournaison, L., Marinhas, S., Chatti, I., Petitet, J.-P., Dalmazzone, D. and Fürst, W. (2006). Effect of THF on Equilibrium Pressure and Dissociation Enthalpy of CO2 Hydrates Applied to Secondary Refrigeration. Ind. Eng. Chem. Res., 45(1), 391-397.
Dholabhai, P., Englezos, P., Kalogerakis, N. and Bishnoi, P. (1991). Equilibrium conditions for methane hydrate formation in aqueous mixed electrolyte solutions. Can. J. Chem. Eng., 69(3), 800-805.
Duc, N. H., Chauvy, F. and Herri, J.-M. (2007). CO2 capture by hydrate crystallization – A potential solution for gas emission of steelmaking industry. Energy Convers. Manage., 48(4), 1313-1322.
Fan, S.-S. and Guo, T.-M. (1999). Hydrate formation of CO2-rich binary and quaternary gas mixtures in aqueous sodium chloride solutions. J. Chem. Eng. Data, 44(4), 829-832.
Fournaison, L., Delahaye, A., Chatti, I. and Petitet, J.-P. (2004). CO2 Hydrates in Refrigeration Processes. Ind. Eng. Chem. Res., 43(20), 6521-6526.
Fowler, D. L., Loebenstein, W. V., Pall, D. B. and Kraus, C. A. (1940). Some Unusual Hydrates of Quaternary Ammonium Salts. J. Am. Chem. Soc., 62(5), 1140-1142.
Golombok, M., Ineke, E., Luzardo, J.-C. R., He, Y. Y. and Zitha, P. (2009). Resolving CO2 and methane hydrate formation kinetics. Environmental Chemistry Letters, 7(4), 325-330.
Han, F. X., Lindner, J. S. and Wang, C. (2007). Making carbon sequestration a paying proposition. Naturwissenschaften, 94(3), 170-182.
Hatakeyama, T., Aida, E., Yokomori, T., Ohmura, R. and Ueda, T. (2009). Fire Extinction Using Carbon Dioxide Hydrate. Ind. Eng. Chem. Res., 48(8), 4083-4087.
Hawtin, R. W., Quigley, D. and Rodger, P. M. (2008). Gas hydrate nucleation and cage formation at a water/methane interface. PCCP, 10(32), 4853-4864.
He, Y., Rudolph, E. S. J., Zitha, P. L. and Golombok, M. (2011). Kinetics of CO2 and methane hydrate formation: An experimental analysis in the bulk phase. Fuel, 90(1), 272-279.
Heriot-Watt University Hydrate model. Retrieved from http://www.pet.hw.ac.uk/research/hydrate/
Herzog, H. (2001). What future for carbon capture and sequestration: new technologies could reduce carbon dioxide emissions to the atmosphere while still allowing the use of fossil fuels. Environ. Sci. Technol., 35(7).
Holzammer, C., Finckenstein, A., Will, S. and Braeuer, A. S. (2016). How Sodium Chloride Salt Inhibits the Formation of CO2 Gas Hydrates. J. Phys. Chem. B, 120(9), 2452-2459.
Hughes, T. J. (2008). Plug formation and dissociation of mixed gas hydrates and methane semi-clathrate hydrate stability.
Iino, K., Sakakibara, Y., Suginaka, T. and Ohmura, R. (2014). Phase equilibria for the ionic semiclathrate hydrate formed with tetrabutylphosphonium chloride plus CO2, CH4, or N2. J. Chem. Thermodyn., 71, 133-136.
Ilani-Kashkouli, P., Mohammadi, A. H., Naidoo, P. and Ramjugernath, D. (2016). Thermodynamic stability conditions for semi-clathrate hydrates of CO2, CH4, or N2 with tetrabutyl ammonium nitrate (TBANO3) aqueous solution. J. Chem. Thermodyn., 96, 52-56.
Jeffrey, G. A. (1969). Water structure in organic hydrates. Acc. Chem. Res., 2(11), 344-352.
Jones, E. R. and Childers, R. L. (1993). Contemporary College Physics (2nd ed.). Massachusetts: Addison-Wesley.
Kang, S. P. and Lee, H. (2000). Recovery of CO2 from Flue Gas Using Gas Hydrate:  Thermodynamic Verification through Phase Equilibrium Measurements. Environ. Sci. Technol., 34(20), 4397-4400.
Kang, S. P., Lee, H. and Ryu, B.-J. (2001). Enthalpies of dissociation of clathrate hydrates of carbon dioxide, nitrogen,(carbon dioxide+ nitrogen), and (carbon dioxide+ nitrogen+ tetrahydrofuran). J. Chem. Thermodyn., 33(5), 513-521.
Kashchiev, D. and Firoozabadi, A. (2002a). Driving force for crystallization of gas hydrates. J. Cryst. Growth, 241(1), 220-230.
Kashchiev, D. and Firoozabadi, A. (2002b). Nucleation of gas hydrates. J. Cryst. Growth, 243(3), 476-489.
Kelland, M. A. (2006). History of the development of low dosage hydrate inhibitors. Energy Fuels, 20(3), 825-847.
Kempe, S. (1979). Carbon in the rock cycle. The global carbon cycle, 380, 343-375.
Kim, E., Lee, S., Lee, J. D. and Seo, Y. (2016). Enclathration of tert-butyl alcohol in sII hydrates and its implications in gas storage and CO2 sequestration. Fuel, 164, 237-244.
Knox, W. G., Hess, M., Jones, G. and Smith, H. (1961). The hydrate process. Chem. Eng. Prog, 57(2), 66-71.
Koh, C. A., Sum, A. K. and Sloan, E. D. (2009). Gas hydrates: Unlocking the energy from icy cages. J. Appl. Phys., 106(6), 829-832.
Komarov, V. Y., Rodionova, T. V., Terekhova, I. S. and Kuratieva, N. V. (2007). The Cubic Superstructure-I of Tetrabutylammonium Fluoride (C4H9)4NF•29.7 H2O Clathrate Hydrate. J. Incl. Phenom. Macrocycl. Chem., 59(1), 11-15.
Lederhos, J., Long, J., Sum, A., Christiansen, R. and Sloan, E. (1996). Effective kinetic inhibitors for natural gas hydrates. Chem. Eng. Sci., 51(8), 1221-1229.
Lee, H. J., Lee, J. D., Linga, P., Englezos, P., Kim, Y. S., Lee, M. S. and Do Kim, Y. (2010). Gas hydrate formation process for pre-combustion capture of carbon dioxide. Energy, 35(6), 2729-2733.
Lee, J., Shin, C. and Lee, Y. (2009). Experimental investigation to improve the storage potentials of gas hydrate under the unstirring condition. Energy Fuels, 24(2), 1129-1134.
Lee, J. D., Susilo, R. and Englezos, P. (2005). Kinetics of structure H gas hydrate. Energy & fuels, 19(3), 1008-1015.
Lee, S., Lee, Y., Park, S., Kim, Y., Lee, J. D. and Seo, Y. (2012). Thermodynamic and spectroscopic identification of guest gas enclathration in the double tetra-n-butylammonium fluoride semiclathrates. J. Phys. Chem. B, 116(30), 9075-9081.
Lee, Y., Lee, S., Park, S., Kim, Y., Lee, J. W. and Seo, Y. (2013). 2-Propanol as a co-guest of structure II hydrates in the presence of help gases. J Phys Chem B, 117(8), 2449-2455.
Li, S., Fan, S., Wang, J., Lang, X. and Wang, Y. (2010). Semiclathrate hydrate phase equilibria for CO2 in the presence of tetra-n-butyl ammonium halide (bromide, chloride, or fluoride). J. Chem. Eng. Data, 55(9), 3212-3215.
Linga, P., Kumar, R. and Englezos, P. (2007). Gas hydrate formation from hydrogen/carbon dioxide and nitrogen/carbon dioxide gas mixtures. Chem. Eng. Sci., 62(16), 4268-4276.
Long, J. (1994). Gas hydrate formation mechanism and kinetic inhibition. (Ph.D. Thesis), Colorado School of Mines, Golden, CO.
Maekawa, T. (2010). Equilibrium conditions for carbon dioxide hydrates in the presence of aqueous solutions of alcohols, glycols, and glycerol. J. Chem. Eng. Data, 55(3), 1280-1284.
Maekawa, T. (2011). Equilibrium conditions of clathrate hydrates formed from carbon dioxide and aqueous acetone solutions. Fluid Phase Equilib., 303(1), 76-79.
Maekawa, T. (2014). Equilibrium conditions for clathrate hydrates formed from carbon dioxide or ethane in the presence of aqueous solutions of 1,4-dioxane and 1,3-dioxolane. Fluid Phase Equilib., 384, 95-99.
Majumdar, A., Maini, B., Bishnoi, P. and Clarke, M. (2012). Three-phase equilibrium conditions of TiAAB semiclathrates formed from N2, CO2, and their mixtures. J. Chem. Eng. Data, 57(8), 2322-2327.
Makogon, I. U. R. F., Makogon, J. F., Ingénieur, R., Makogon, J. F. and Engineer, R. (1981). Hydrates of natural gas: PennWell Books Tulsa, Okla, USA.
Mayoufi, N., Dalmazzone, D., FüRst, W., Delahaye, A. and Fournaison, L. (2009). CO2 enclathration in hydrates of peralkyl-(ammonium/phosphonium) salts: stability conditions and dissociation enthalpies. J. Chem. Eng. Data, 55(3), 1271-1275.
Mcmullan, R. K., Bonamico, M. and Jeffrey, G. A. (1963). Polyhedral Clathrate Hydrates. V. Structure of the Tetra‐n‐butyl Ammonium Fluoride Hydrate. J. Chem. Phys., 39(12), 3295-3310.
Mech, D., Pandey, G. and Sangwai, J. S. (2015). Effect of Molecular Weight of Polyethylene Glycol on the Equilibrium Dissociation Pressures of Methane Hydrate System. J. Chem. Eng. Data, 60(6), 1878-1885.
Metz, B., Davidson, O., De Coninck, H., Loos, M. and Meyer, L. (2005). IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Press release]
Mohammadi, A. H., Afzal, W. and Richon, D. (2008). Gas hydrates of methane, ethane, propane, and carbon dioxide in the presence of single NaCl, KCl, and CaCl2 aqueous solutions: Experimental measurements and predictions of dissociation conditions. J. Chem. Thermodyn., 40(12), 1693-1697.
Mohammadi, A. H., Anderson, R. and Tohidi, B. (2005). Carbon monoxide clathrate hydrates: equilibrium data and thermodynamic modeling. AIChE journal, 51(10), 2825-2833.
Mohammadi, A. H., Eslamimanesh, A., Belandria, V. and Richon, D. (2011). Phase equilibria of semiclathrate hydrates of CO2, N2, CH4, or H2 + tetra-n-butylammonium bromide aqueous solution. J. Chem. Eng. Data, 56(10), 3855-3865.
Mohammadi, A. H. and Richon, D. (2009). Phase equilibria of clathrate hydrates of methyl cyclopentane, methyl cyclohexane, cyclopentane or cyclohexane+ carbon dioxide. Chem. Eng. Sci., 64(24), 5319-5322.
Mohammadi, A. H. and Richon, D. (2010a). Clathrate hydrate dissociation conditions for the methane + cycloheptane/cyclooctane + water and carbon dioxide + cycloheptane/cyclooctane+ water systems. Chem. Eng. Sci., 65(10), 3356-3361.
Mohammadi, A. H. and Richon, D. (2010b). Clathrate hydrates of isopentane+ carbon dioxide and isopentane+ methane: experimental measurements of dissociation conditions. Oil & Gas Science and Technology–Revue d’IFP Energies nouvelles, 65(6), 879-882.
Mooijer-Van Den Heuvel, M. M., Witteman, R. and Peters, C. J. (2001). Phase behaviour of gas hydrates of carbon dioxide in the presence of tetrahydropyran, cyclobutanone, cyclohexane and methylcyclohexane. Fluid Phase Equilib., 182(1-2), 97-110.
Mullin, J. W. (1993). Crystallization (3rd Edition ed.). U.K.: Oxford.
Ng, H. J. and Robinson, D. B. (1985). Hydrate formation in systems containing methane, ethane, propane, carbon dioxide or hydrogen sulfide in the presence of methanol. Fluid Phase Equilib., 21(1), 145-155.
Ota, M., Morohashi, K., Abe, Y., Watanabe, M., Smith Jr, R. L. and Inomata, H. (2005). Replacement of CH 4 in the hydrate by use of liquid CO2. Energy Convers. Manage., 46(11), 1680-1691.
Peng, X., Hu, Y., Liu, Y., Jin, C. and Lin, H. (2010). Separation of ionic liquids from dilute aqueous solutions using the method based on CO2 hydrates. J. Nat. Gas Chem., 19(1), 81-85.
Radhakrishnan, R. and Trout, B. L. (2002). A new approach for studying nucleation phenomena using molecular simulations: Application to CO2 hydrate clathrates. J. Chem. Phys., 117(4), 1786-1796.
Ramjugernath, D. (2015). Hydrate phase equilibria for CO2, CH4, or N2+ tetrabutylphosphonium bromide (TBPB) aqueous solution. Fluid Phase Equilib., 411, 88-92.
Rice, W. (2006). Hydrogen production from methane hydrate with sequestering of carbon dioxide. Int. J. Hydrogen Energy, 31(14), 1955-1963.
Ripmeester, J. and Ratcliffe, C. (1988). Low-temperature cross-polarization/magic angle spinning carbon-13 NMR of solid methane hydrates: structure, cage occupancy, and hydration number. J. Phys. Chem., 92(2), 337-339.
Ripmeester, J. and Ratcliffe, C. (1990). Xenon-129 NMR studies of clathrate hydrates: new guests for structure II and structure H. J. Phys. Chem., 94(25), 8773-8776.
Rochelle, C., Camps, A., Long, D., Milodowski, A., Bateman, K., Gunn, D., Jackson, P., Lovell, M. and Rees, J. (2009). Can CO2 hydrate assist in the underground storage of carbon dioxide? Geological Society, London, Special Publications, 319(1), 171-183.
Rodionova, T., Komarov, V., Villevald, G., Aladko, L., Karpova, T. and Manakov, A. (2010). Calorimetric and Structural Studies of Tetrabutylammonium Chloride Ionic Clathrate Hydrates. J. Phys. Chem. B, 114(36), 11838-11846.
Sa, J. H., Lee, B. R., Park, D. H., Han, K., Chun, H. D. and Lee, K. H. (2011). Amino acids as natural inhibitors for hydrate formation in CO2 sequestration. Environ. Sci. Technol., 45(13), 5885-5891.
Sabil, K. M., Azmi, N. and Mukhtar, H. (2011). A review on carbon dioxide hydrate potential in technological applications. J Appl Sci, 11(21), 3534-3540.
Sabil, K. M., Witkamp, G. J. and Peters, C. J. (2009). Phase equilibria of mixed carbon dioxide and tetrahydrofuran hydrates in sodium chloride aqueous solutions. Fluid Phase Equilib., 284(1), 38-43.
Sabil, K. M., Witkamp, G. J. and Peters, C. J. (2010a). Estimations of enthalpies of dissociation of simple and mixed carbon dioxide hydrates from phase equilibrium data. Fluid Phase Equilib., 290(1–2), 109-114.
Sabil, K. M., Witkamp, G. J. and Peters, C. J. (2010b). Phase equilibria in ternary (carbon dioxide+ tetrahydrofuran+ water) system in hydrate-forming region: Effects of carbon dioxide concentration and the occurrence of pseudo-retrograde hydrate phenomenon. J. Chem. Thermodyn., 42(1), 8-16.
Schlesinger, W. H. (1999). Carbon sequestration in soils. Science, 284(5423), 2095.
Seo, Y., Kang, S. P., Lee, S. and Lee, H. (2008). Experimental measurements of hydrate phase equilibria for carbon dioxide in the presence of THF, propylene oxide, and 1, 4-dioxane. J. Chem. Eng. Data, 53(12), 2833-2837.
Servio, P., Lagers, F., Peters, C. and Englezos, P. (1999). Gas hydrate phase equilibrium in the system methane–carbon dioxide–neohexane and water. Fluid Phase Equilib., 158, 795-800.
Shen, R., Tezuka, K., Uchida, T. and Ohmura, R. (2012). Hydrate phase equilibrium in the system of (carbon dioxide+ 2, 2-dimethylbutane+ water) at temperatures below freezing point of water. The Journal of Chemical Thermodynamics, 53, 27-29.
Shi, L.-L. and Liang, D.-Q. (2015). Thermodynamic model of phase equilibria of tetrabutyl ammonium halide (fluoride, chloride, or bromide) plus methane or carbon dioxide semiclathrate hydrates. Fluid Phase Equilib., 386, 149-154.
Shimada, W., Ebinuma, T., Oyama, H., Kamata, Y., Takeya, S., Uchida, T., Nagao, J. and Narita, H. (2003). Separation of gas molecule using tetra-n-butyl ammonium bromide semi-clathrate hydrate crystals. Japanese Journal of Applied Physics, 42(2A), L129.
Shimada, W., Shiro, M., Kondo, H., Takeya, S., Oyama, H., Ebinuma, T. and Narita, H. (2005). Tetra-n-butylammonium bromide-water (1/38). Acta Crystallographica Section C, 61(2), 65-66.
Skovborg, P. and Rasmussen, P. (1994). Comments on: hydrate dissociation enthalpy and guest size. Fluid Phase Equilib., 96, 223-231.
Sloan, E. D. (2003). Fundamental principles and applications of natural gas hydrates. Nature, 426(6964), 353-363.
Sloan, E. D. and Fleyfel, F. (1992). Hydrate dissociation enthalpy and guest size. Fluid Phase Equilib., 76, 123-140.
Sloan, E. D. and Koh, C. (2008). Clathrate hydrates of natural gases: CRC press.
Stewart, P. B. and Munjal, P. K. (1970). Solubility of carbon dioxide in pure water, synthetic sea water, and synthetic sea water concentrates at-5. deg. to 25. deg. and 10-to 45-atm. pressure. J. Chem. Eng. Data, 15(1), 67-71.
Subramanian, S., Kini, R., Dec, S. and Sloan, E. (2000). Evidence of structure II hydrate formation from methane+ ethane mixtures. Chem. Eng. Sci., 55(11), 1981-1999.
Sun, Z. G., Jiao, L. J., Zhao, Z. G., Wang, G. L. and Huang, H. F. (2014). Phase equilibrium conditions of semi-calthrate hydrates of (tetra-n-butyl ammonium chloride+ carbon dioxide). J. Chem. Thermodyn., 75, 116-118.
Tezuka, K., Shen, R., Watanabe, T., Takeya, S., Alavi, S., Ripmeester, J. A. and Ohmura, R. (2013). Synthesis and characterization of a structure H hydrate formed with carbon dioxide and 3, 3-dimethyl-2-butanone. Chem. Commun., 49(5), 505-507.
Tohidi, B., Yang, J., Salehabadi, M., Anderson, R. and Chapoy, A. (2010). CO2 hydrates could provide secondary safety factor in subsurface sequestration of CO2. Environ. Sci. Technol., 44(4), 1509-1514.
Tumba, K., Reddy, P., Naidoo, P., Ramjugernath, D., Eslamimanesh, A., Mohammadi, A. H. and Richon, D. (2011). Phase equilibria of methane and carbon dioxide clathrate hydrates in the presence of aqueous solutions of tributylmethylphosphonium methylsulfate ionic liquid. J. Chem. Eng. Data, 56(9), 3620-3629.
Vysniauskas, A. and Bishnoi, P. (1983). A kinetic study of methane hydrate formation. Chem. Eng. Sci., 38(7), 1061-1072.
Wendland, M., Hasse, H. and Maurer, G. (1999). Experimental pressure-temperature data on three-and four-phase equilibria of fluid, hydrate, and ice phases in the system carbon dioxide-water. J. Chem. Eng. Data, 44(5), 901-906.
Zhang, J. and Lee, J. W. (2008). Enhanced kinetics of CO2 hydrate formation under static conditions. Ind. Eng. Chem. Res., 48(13), 5934-5942.
工業技術研究院. (2013). 二氧化碳捕獲與封存技術 Retrieved from http://ccs.tw/
王欣薇. (2014). 添加1,3-二氧六環、乙醯胺及環戊醇對於二氧化碳水合物熱力學與動力學之實驗量測,國立國立臺灣大學化學工程學研究所碩士論文.
史伶俐 and 梁德青. (2014). 四丁基氯化铵半籠型水合物的相平衡模型. 新能源進展, 2(3), 221-225.
吳承哲. (2015). 添加N-甲基吡咯烷酮及N-甲基嗎啉對於二氧化碳水合物熱力學與動力學之實驗量測,國立國立臺灣大學化學工程學研究所碩士論文.
吳翊萍. (2013). 添加環戊酮、環己酮及2-甲基-2-丙醇對於二氧化碳水合物分解狀態與動力學之實驗量測,國立國立臺灣大學化學工程學研究所碩士論文.
徐锋, 朱丽华, 吴强 and 徐龙君. (2009). 甲烷水合物拉曼光谱法研究进展. 光谱学与光谱分析, 29(9), 2457-2461.
歐陽湘. (2011). 國際溫室氣體減量及二氧化碳捕獲與封存. 經濟部能源期刊, 10, 4-9.
孙志高, 石磊, 樊栓狮, 郭开华 and 王如竹. (2001). 气体水合物相平衡测定方法研究. 石油与天然气化工, 4, 164-166.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊