跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 18:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王翔翎
研究生(外文):Hsiang-Ling Wang
論文名稱:理論計算研究銅離子與貝他類澱粉胜肽的配位結構:意含貝他類澱粉胜肽的聚集
論文名稱(外文):A theoretical study on the structure of copper-binding peptides :Implications in the aggregation of β-amyloid (Aβ) peptide
指導教授:李豐穎
指導教授(外文):Feng-Yin LI
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:62
中文關鍵詞:阿茲海默症銅離子貝他類澱粉胜肽組氨酸
外文關鍵詞:Alzheimer’s diseaseCopper ionAmyloid-β peptideHis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
老年斑塊和纖維沉澱是阿茲海默症特徵而且它們被認為和阿茲海默症的神經毒性有關聯。貝他類澱粉胜肽則是老年斑塊和纖維沉澱的主要成分。銅離子和貝他類澱粉胜肽鍵結被認為是產生神經毒性的貝他類澱粉胜肽的重要角色。但是許多銅離子和貝他類澱粉胜肽鍵結的特性和位置都還沒有明確的答案且具有一些爭議。在我們的研究中,提供了一些銅離子和貝他類澱粉胜肽上的組氨酸(His)的配位結構,而這些結構有可能造成纖維沉澱。
Amyloid-β peptide (Aβ) is the principal constituent of plaques and fibrils associated with Alzheimer’s disease (AD) and is thought to be responsible for the neurotoxicity associated with the disease. Copper binding to Aβ has been hypothesized to play an important role in the neruotoxicity of Aβ. However, many properties of copper binding to Aβ have not been elucidated clearly, and the location of copper binding sites on Aβ is also in controversy. In this work, several possible models containing copper(II) coordinating with His residues of Aβ related to fibril formation were proposed, and the results provided a viewpoint to discuss formation of the fibril.
Acknowledgement--------------------------------------------------------------------------i
Abstract------------------------------------------------------------------------------------------iii
Contents----------------------------------------------------------------------------------------v
Tables--------------------------------------------------------------------------------------------vii
Figures-----------------------------------------------------------------------------------------viii
Chapter 1 Introduction------------------------------------------------------------------01
Chapter 2 Theoretical Background-------------------------------------------------07
2.1 The Born-Oppenheimer approximation--------------------------------------------07
2.2 Density-Functional Theory----------------------------------------------------------08
2.2.1 The Hohenberg-Kohn Theory---------------------------------------------08
2.2.2 Local density approximation (LDA) ----------------------------------------09
2.2.3 Hybrid functionals ----------------------------------------------------------09
2.3 Basis sets----------------------------------------------------------------------------09
2.3.1 Slater-type orbital (STO) ----------------------------------------------------10
2.3.2 Gaussian Type Orbital (GTO) -----------------------------------------------10
2.3.3 Double-ξ, Triple-ξ, Quadruple-ξ---------------------------------------------11
2.3.4 Split Valence Basis Set ---------------------------------------------------------11
2.3.5 Polarized basis Set -------------------------------------------------------11
2.3.6 Diffuse Sets --------------------------------------------------------12
2.4 Semiempirical Method--------------------------------------------------------12
2.4.1 Parameterized Method 3 (PM3) ----------------------------------13
Chapter 3 Model and Calculational Method ------------------------------14
3.1 Models---------------------------------------------------------------------------------14
3.2 Analysis method - Ramachandran plot ---------------------------------------------17
Chapter 4 Results and Discussion-------------------------------------------------19
4.1 Coordination mode of Cu2+-Aβ complex ------------------------------------------20
4.2 Intermolecular backbone hydrogen bonds ------------------------------------27
4.3 Permutation combination and Ramachandran plot----------------------------32
4.4 The conformation change of Aβ42 when coordinated to copper(II) -------------52 Chapter 5 Conclusions -----------------------------------------------------------------56
References------------------------------------------------------------------------------------57
Tables
Table 1. The comparison among the nine optimized structures including the energies, binding atoms and the dihedral angles of the distorted square planar.
--------------------------------------------------------------------------------------------25
Table 2. The location of the backbone H-bonds in the four extra Gly residues and the types of the coordinated nitrogen atoms and energies of three structures. ---------------------------------------------------------------------------------------------31
Figures
Figure 1 The microscope of AD patients’ brain slice taken from Reference1. --------04
Figure 2 The amino acid sequence of Aβ(1-42) with His6, 13 and 14 labeled as the metal binding sites.-------------------------------------------------------------------05
Figure 3 The molecular structure of Histidine with Nπ and Nτ of Histidine imidazole ring labeled as candidates for metal binding ligands. --------------------------06
Figure 4 The scheme to generate the models of Aβ42 aggregates with copper-bonding motifs used in this study based on three structures of copper coordinating with a His-His dipeptide suggested in Reference 22 and 23 as labeled as “a”, “b”and “c”. ------------------------------------------------------------------------16
Figure 5 The schematic plot for the definition of Φ and Ψ angles in Ramachandran plot, which is the dihedral angles of C-N-αC-C and N-αC-C-N, respectively.-------------------------------------------------------------------------------------------18
Figure 6 “a - Nπ” with 4N coordination (4Nπ).--------------------------------------------22
Figure7 “a – NτNπ” with 3N1O coordination (2Nπ,Nτ, OB)-------------------------22
Figure 8 “a – Nτ” with 3N1O coordination (Nπ, 2Nτ,OB).-----------------------------22
Figure 9 “b - Nπ” with 3N1O coordination (Nπ, 2Nτ,OB).-----------------------------23
Figure 10 “b - NτNπ” with 4N coordination (Nπ,3Nτ).-------------------------------23
Figure 11 “b - Nτ” with 4N coordination (4Nτ).------------------------------------------23
Figure 12 “c - Nπ” with 4N coordination (2Nπ,Nτ,NB-).-------------------------------24
Figure 13 “c - NτNπ” with 4N coordination (2Nπ,Nτ,NB-).--------------------------24
Figure 14 “c - Nτ” with 4N coordination (2Nπ,Nτ,NB-).-------------------------------24
Figure 15 The definition of dihedral angle. ---------------------------------------------------26
Figure 16 The structure of “a- NτNπ” attaching four Gly residues to the C-terminal of the two His13-His14 strands. ------------------------------------------------------28
Figure 17 The structure of “b- NτNπ” attaching four Gly residues to the C-terminal of the two His13-His14 strands. ------------------------------------------------------29
Figure 18 The structure of “c- Nτ” attaching four Gly residues to the C-terminal of the two His13-His14 strands.-----------------------------------------------------------30
Figure 19 The aggregation motif used in the current study, representing two His13-His14 strands coordinated with copper (II), referred as “4N” model. -----------------34
Figure 20 The permutation combination of “1-series” using His13 as bridge.------------------------------------------------------------------------------------------35
Figure 21 The scheme for the formation of “b-NτNπ-1-b-Nτ” and “b-NτNπ-1''-b-Nτ”.------------------------------------------------------------------------------------------36
Figure 22 The example of “b-NτNπ-1-b-Nτ” formation. -----------------------------------37
Figure 23 The example of “b-NτNπ-1''-b-Nτ” formation. ----------------------------------37
Figure 24 The permutation combination of “2-series” using His13’ as bridge.------------------------------------------------------------------------------------------38
Figure 25 The scheme for the formation of “b-NτNπ-2-b-Nτ” ------------------------------------------------------------------------------------------39
Figure 26 The example of “b-NτNπ-2-b-Nτ” formation. ----------------------------------40
Figure 27 The example of “b-NτNπ-2''-b-Nτ” formation. -------------------------------- 40 Figure 28 The permutation combination of “3-series” using His14 as bridge. ----------41
Figure 29 The scheme for the formation of “b-NτNπ-3-b-Nτ” and “b-NτNπ-3''-b-Nτ”.------------------------------------------------------------------------------------------42
Figure 30 The example of “b-NτNπ-3-b-Nτ” formation. -----------------------------------43
Figure 31 The example of “b-NτNπ-3''-b-Nτ” formation. ----------------------------------43
Figure 32 The permutation combination of “4-series” using His14’ as bridge. ----------44
Figure 33 The scheme for the formation of “b-NτNπ-4-b-Nτ” and b-NτNπ-4''-b-Nτ”.------------------------------------------------------------------------------------------45
Figure 34 The example of “b-NτNπ-4-b-Nτ” formation. ----------------------------------46
Figure 35 The example of “b-NτNπ-4''-b-Nτ” formation. ---------------------------------46 Figure 36 The Ramachandran plot of the five structures chose from the permutation combination of the 1-series. --------------------------------------------------------48
Figure 37 The Ramachandran plot of the two structures chose from the permutation combination of the 1’-series. -------------------------------------------------------48
Figure 38 The Ramachandran plot of the four structures chose from the permutation combination of the 2-series. --------------------------------------------------------49
Figure 39 The Ramachandran plot of the two structures chose from the permutation combination of the 2’-series. -------------------------------------------------------49
Figure 40 The Ramachandran plot of the ten structures chose from the permutation combination of the 3-series. --------------------------------------------------------50
Figure 41 The Ramachandran plot of the four structures chose from the permutation combination of the 3’-series. -------------------------------------------------------50
Figure 42 The Ramachandran plot of the six structures chose from the permutation combination of the 4-series. --------------------------------------------------------51
Figure 43 The side view of “c-Nτ-3-c-NτNπ” with the intermolecular hydrogen bonds shown in green dashed lines. -------------------------------------------------------54
Figure 44 The front view of “c-Nτ-3-c-NτNπ”. There are two distorted square planes with metal-binding atoms as “2Nπ, Nτ, NB- ”.------------------------------------55
1.Parson, R. E. T. A. B. Decoding Darkness(The Search for the Genetic Causes of Alzheimer''s Disease)
2.Ali, F. E. A.; Barnham, K. J.; Barrow, C. J.; Separovic, F. Australian Journal of Chemistry 2004, 57, 511.
3.Brookmeyer, R.; Gray, S.; Kawas, C. Am J Public Health 1998, 88, 1337.
4.Goate, A.; Chartier-Harlin, M.-C.; Mullan, M.; Brown, J.; Crawford, F.; Fidani, L.; Giuffra, L.; Haynes, A.; Irving, N.; James, L.; Mant, R.; Newton, P.; Rooke, K.; Roques, P.; Talbot, C.; Pericak-Vance, M.; Roses, A.; Williamson, R.; Rossor, M.; Owen, M.; Hardy, J. Nature 1991, 349, 704.
5.Miura, T.; Suzuki, K.; Kohata, N.; Takeuchi, H. Biochemistry 2000, 39, 7024.
6.Syme, C. D.; Nadal, R. C.; Rigby, S. E. J.; Viles, J. H. J. Biol. Chem. 2004, 279, 18169.
7.Wu, Y. W.; Lei, P.; Zhao, Y. F.; Li, Y. M. Biopolymers 2006, 83, 20.
8.Raffa, D. F.; Rauk, A. J. Phys. Chem. B 2007, 111, 3789.
9.Dong, J.; Canfield, J. M.; Mehta, A. K.; Shokes, J. E.; Tian, B.; Childers, W. S.; Simmons, J. A.; Mao, Z.; Scott, R. A.; Warncke, K. Proceedings of the National Academy of Sciences 2007, 104, 13313.
10.Suzuki, K.; Miura, T.; Takeuchi, H. Biochemical and Biophysical Research Communications 2001, 285, 991.
11.Miller, L. M.; Wang, Q.; Telivala, T. P.; Smith, R. J.; Lanzirotti, A.; Miklossy, J. Journal of Structural Biology 2006, 155, 30.
12.Bush, A. I.; Multhaup, G.; Moir, R. D.; Williamson, T. G.; Small, D. H.; Rumble, B.; Pollwein, P.; Beyreuther, K.; Masters, C. L. J. Biol. Chem. 1993, 268, 16109.
13.Rottkamp, C. A.; Raina, A. K.; Zhu, X.; Gaier, E.; Bush, A. I.; Atwood, C. S.; Chevion, M.; Perry, G.; Smith, M. A. Free Radical Biology and Medicine 2001, 30, 447.
14.Bush, A. I.; Pettingell, W. H.; Multhaup, G.; d Paradis, M.; Vonsattel, J. P.; Gusella, J. F.; Beyreuther, K.; Masters, C. L.; Tanzi, R. E. Science 1994, 265, 1464.
15.Burkoth, T. S.; Benzinger, T. L. S.; Urban, V.; Morgan, D. M.; Gregory, D. M.; Thiyagarajan, P.; Botto, R. E.; Meredith, S. C.; Lynn, D. G. J. Am. Chem. Soc. 2000, 122, 7883.
16.Cuajungco, M. P.; Goldstein, L. E.; Nunomura, A.; Smith, M. A.; Lim, J. T.; Atwood, C. S.; Huang, X.; Farrag, Y. W.; Perry, G.; Bush, A. I. J. Biol. Chem. 2000, 275, 19439.
17.Morgan, D. M.; Dong, J.; Jacob, J.; Lu, K.; Apkarian, R. P.; Thiyagarajan, P.; Lynn, D. G. J. Am. Chem. Soc. 2002, 124, 12644.
18.Jin Zou, K. K. N. S. Angewandte Chemie International Edition 2001, 40, 2274.
19.Curtain, C. C.; Ali, F.; Volitakis, I.; Cherny, R. A.; Norton, R. S.; Beyreuther, K.; Barrow, C. J.; Masters, C. L.; Bush, A. I.; Barnham, K. J. J. Biol. Chem. 2001, 276, 20466.
20.Huang, X.; Cuajungco, M. P.; Atwood, C. S.; Hartshorn, M. A.; Tyndall, J. D. A.; Hanson, G. R.; Stokes, K. C.; Leopold, M.; Multhaup, G.; Goldstein, L. E.; Scarpa, R. C.; Saunders, A. J.; Lim, J.; Moir, R. D.; Glabe, C.; Bowden, E. F.; Masters, C. L.; Fairlie, D. P.; Tanzi, R. E.; Bush, A. I. J. Biol. Chem. 1999, 274, 37111.
21.Huang, X.; Atwood, C. S.; Hartshorn, M. A.; Multhaup, G.; Goldstein, L. E.; Scarpa, R. C.; Cuajungco, M. P.; Gray, D. N.; Lim, J.; Moir, R. D.; Tanzi, R. E.; Bush, A. I. Biochemistry 1999, 38, 7609.
22.Raffa, D. F.; Gomez-Balderas, R.; Brunelle, P.; Rickard, G. A.; Rauk, A. J. Biol. Chem. 2005, 10, 887.
23.Selkoe, D. J. Physiol. Rev. 2001, 81, 741.
24.Selkoe, D. J. J. Biol. Chem. 1996, 271, 18295.
25.Wolfe, M. S.; De Los Angeles, J.; Miller, D. D.; Xia, W.; Selkoe, D. J. Biochemistry 1999, 38, 11223.
26.Xia, W.; Ray, W. J.; Ostaszewski, B. L.; Rahmati, T.; Kimberly, W. T.; Wolfe, M. S.; Zhang, J.; Goate, A. M.; Selkoe, D. J. Proceedings of the National Academy of Sciences 2000, 97, 9299.
27.Tanzi, R. E. J Clin Invest. 1999, 104, 1175.
28.Martin, G. M. Experimental Gerontology 2000, 35, 439.
29.Kang, J.; Lemaire, H.-G.; Unterbeck, A.; Salbaum, J. M.; Masters, C. L.; Grzeschik, K.-H.; Multhaup, G.; Beyreuther, K.; Muller-Hill, B. Nature 1987, 325, 733.
30.Selkoe, D. J.; Podlisny, M. B.; Joachim, C. L.; Vickers, E. A.; Lee, G.; Fritz, L. C.; Oltersdorf, T. Proceedings of the National Academy of Sciences of the United States of America 1988, 85, 7341.
31.Dyrks, T.; Weidemann, A.; Multhaup, G.; Salbaum, J. M.; Lemaire, H. G.; Kang, J.; Muller-Hill, B.; Masters, C. L.; Beyreuther, K. The EMBO Journal 1988, 7, 949.
32.Goldgaber, D.; Lerman, M. I.; McBride, O. W.; Saffiotti, U.; Gajdusek, D. C. Science 1987, 235, 877.
33.Tanzi, R. E.; Gusella, J. F.; Watkins, P. C.; Bruns, G. A.; St George-Hyslop, P.; Van Keuren, M. L.; Patterson, D.; Pagan, S.; Kurnit, D. M.; Neve, R. L. Science 1987, 235, 880.
34.Haass, C.; Schlossmacher, M. G.; Hung, A. Y.; Vigo-Pelfrey, C.; Mellon, A.; Ostaszewski, B. L.; Lieberburg, I.; Koo, E. H.; Schenk, D.; Teplow, D. B.; Selkoe, D. J. Nature 1992, 359, 322.
35.Seubert, P.; Vigo-Pelfrey, C.; Esch, F.; Lee, M.; Dovey, H.; Davis, D.; Sinha, S.; Schiossmacher, M.; Whaley, J.; Swindlehurst, C. Nature 1992, 359, 325.
36.Shoji, M.; Golde, T. E.; Ghiso, J.; Cheung, T. T.; Estus, S.; Shaffer, L. M.; Cai, X. D.; McKay, D. M.; Tintner, R.; Frangione, B.; et, a. Science 1992, 258, 126.
37.Koudinov, A. R.; Berezov, T. T. Acta Neurobiol Exp (Wars) 2004, 64, 71.
38.Gravina, S. A.; Ho, L.; Long, K. E.; Otvos, L., Jr.; Younkin, L. H.; Suzuki, N.; Younkin, S. G. J. Biol. Chem. 1995, 270, 7013.
39.Suzuki, N.; Cheung, T. T.; Cai, X. D.; Odaka, A.; Otvos, L., Jr.; Eckman, C.; Golde, T. E.; Younkin, S. G. Science 1994, 264, 1336.
40.Younkin, S. G. Ann Neurol 1995, 37, 287.
41.Dahlgren, K. N.; Manelli, A. M.; Stine, W. B., Jr.; Baker, L. K.; Krafft, G. A.; LaDu, M. J. J. Biol. Chem. 2002, 277, 32046.
42.Suo, Z.; Humphrey, J.; Kundtz, A.; Sethi, F.; Placzek, A.; Crawford, F.; Mullan, M. Neuroscience Letters 1998, 257, 77.
43.Pillot, T.; Drouet, B.; Queille, S.; Labeur, C.; Vandekerckhove, J.; Rosseneu, M.; Pincon-Raymond, M.; Chambaz, J. Journal of Neurochemistry 1999, 73, 1626.
44.El-Agnaf, O. M. A.; Mahil, D. S.; Patel, B. P.; Austen, B. M. Biochemical and Biophysical Research Communications 2000, 273, 1003.
45.Wang, H.-W.; Pasternak, J. F.; Kuo, H.; Ristic, H.; Lambert, M. P.; Chromy, B.; Viola, K. L.; Klein, W. L.; Stine, W. B.; Krafft, G. A.; Trommer, B. L. Brain Research 2002, 924, 133.
46.Tong, L.; Thornton, P. L.; Balazs, R.; Cotman, C. W. J. Biol. Chem. 2001, 276, 17301.
47.Paris, D.; Town, T.; Mori, T.; Parker, T. A.; Humphrey, J.; Mullan, M. Neurobiology of Aging 2000, 21, 183.
48.Hoshi, M.; Sato, M.; Matsumoto, S.; Noguchi, A.; Yasutake, K.; Yoshida, N.; Sato, K. Proceedings of the National Academy of Sciences 2003, 100, 6370.
49.Lambert, M. P.; Barlow, A. K.; Chromy, B. A.; Edwards, C.; Freed, R.; Liosatos, M.; Morgan, T. E.; Rozovsky, I.; Trommer, B.; Viola, K. L.; Wals, P.; Zhang, C.; Finch, C. E.; Krafft, G. A.; Klein, W. L. Proceedings of the National Academy of Sciences 1998, 95, 6448.
50.Atwood, C. S.; Moir, R. D.; Huang, X.; Scarpa, R. C.; Bacarra, N. M. E.; Romano, D. M.; Hartshorn, M. A.; Tanzi, R. E.; Bush, A. I. J. Biol. Chem. 1998, 273, 12817.
51.Atwood, C. S.; Scarpa, R. C.; Huang, X.; Moir, R. D.; Jones, W. D.; Fairlie, D. P.; Tanzi, R. E.; Bush, A. I. Journal of Neurochemistry 2000, 75, 1219.
52.Lovell, M. A.; Robertson, J. D.; Teesdale, W. J.; Campbell, J. L.; Markesbery, W. R. Journal of the Neurological Sciences 1998, 158, 47.
53.Yoshiike, Y.; Tanemura, K.; Murayama, O.; Akagi, T.; Murayama, M.; Sato, S.; Sun, X.; Tanaka, N.; Takashima, A. J. Biol. Chem. 2001, 276, 32293.
54.Cherny, R. A.; Legg, J. T.; McLean, C. A.; Fairlie, D. P.; Huang, X.; Atwood, C. S.; Beyreuther, K.; Tanzi, R. E.; Masters, C. L.; Bush, A. I. J. Biol. Chem. 1999, 274, 23223.
55.Barrow, C. J.; Yasuda, A.; Kenny, P. T. M.; Zagorski, M. G. Journal of Molecular Biology 1992, 225, 1075.
56.Barrow, C. J.; Zagorski, M. G. Science 1991, 253, 179.
57.http://www.shodor.org/chemviz/basis/teachers/background.html
58.http://www.shodor.org/chemviz/basis/students/lls.html
59.Axel, D. B. The Journal of Chemical Physics 1993, 98, 1372.
60.Lee, C.; Yang, W.; Parr, R. G. Physical Review B 1988, 37, 785.
61.Ashcroft, N. W.; Mermin, N. D. Solid state physics; Holt, Rinehart and Winston New York, 1976.
62.Dreizler, R. M.; Gross, E. K. U. Density functional theory; Springer-Verlag New York, 1990.
63.Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press, USA, 1989.
64.Fulde, P. Electron Correlations in Molecules and Solids; Springer, 1993.
65.Jensen, F. 1999.
66.Holder, A. J. Encycl. Comput. Chem. 1998, 14, 8.
67.Stewart, J. J. P. Encycl. Comput. Chem. 1998, 3, 2153.
68.Ivarsson, G.; Lundberg, B. K. S.; Ingri, N. Acta Chem. Scand 1972, 26, 3005.
69.Viles, J. H.; Cohen, F. E.; Prusiner, S. B.; Goodin, D. B.; Wright, P. E.; Dyson, H. J. Proceedings of the National Academy of Sciences of the United States of America 1999, 96, 2042.
70.Bryce, G. F.; Gurd, F. R. J Biol Chem 1966, 241, 122.
71.Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem Rev 1996, 96, 2563.
72.Owen, M. C.; Komaromi, I.; Murphy, R. F.; Lovas, S. Journal of Molecular Structure: THEOCHEM 2006, 759, 117.
73.Luhrs, T.; Ritter, C.; Adrian, M.; Riek-Loher, D.; Bohrmann, B.; Dobeli, H.; Schubert, D.; Riek, R. Proceedings of the National Academy of Sciences 2005, 102, 17342.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top