|
[1] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988. [2] J. Homola, S.S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sensors and Actuators B, vol. 54, pp. 3-15, 1999. [3] A.D. Boardman, Electromagnetic surface modes, Wiley, Chichester, 1982. [4] B. Liedberg, C. Nylander, and T. Lind, “Gas detection by means of surface plasmons resonance,” Sensors and Actuators, vol. 3, pp. 79-88, 1982. [5] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299-304, 1983. [6] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal. Bioanal. Chem., vol. 377, pp. 528-539, 2003. [7] K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based techniques for bioanalysis,” Anal. Bioanal. Chem., vol. 387, pp. 1831-1840, 2007. [8] X. Liu, D. Song, Q. Zhang, Y. Tian, Z. Liu, and H. Zhang, “Characterization of drugbinding levels to serum albumin using a wavelength modulation surface plasmon resonance sensor,” Sensors and Actuators B, vol. 117, pp. 188-195, 2006. [9] D. G. Hong, T. W. Kim, K. B. Kim, J. S. Yuk, and K. S. Ha, “Development of an immunosensor with angular interrogation-based SPR spectroscopy,” Meas. Sci. Technol., vol. 18, pp. 1367-1371, 2007. [10] H. Nakagawa, I. Saito, T. Chinzei, Y. Nakaoki, and Y. Iwata, “The merits/demerits of biochemical reaction measurements by SPR reflectance signal at a fixed angle,” Sensors and Actuators B, vol. 108, pp. 772-777, 2004. [11] C. C. Cheng, “Design of ARROW-B SPR sensors in aqueous environment,” Master Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu Taiwan, R.O.C., 2002. [12] C. H. Chen, “Design of ARROW-B SPR sensors in aqueous environment with the spectral shift method,” Master Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2003. [13] J. H. Chen, “Ag-coated ARROW-B SPR sensors,” Master Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2003. [14] T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical waveguide,” IEEE Photon. Technol. Lett., vol. 1. no. 8, pp. 232-234, 1989. [15] J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for antiresonant waveguides,” J. Lightwave Technol., vol. 11, no. 3, pp. 416-423, 1993. [16] T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. of Quantum Electron., vol. 28. no. 7, pp. 1689-1700, 1992. [17] Y. Kokubun and T. Baba, “Scattering loss of antiresonant reflecting optical waveguide,” J. Lightwave Technol., vol. 9, no. 5, pp. 590-597, 1991. [18] W. Z. Chang, “Investigation on ARROW-B SPR sensors in aqueous environment,” Master Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2001. [19] H. E. Brujin, R. P. H. Kooyman, and J. Greve, “Choice of metal and wavelength for surface plasmon resonance sensors: some considerations,” Appl. Opt., vol. 31, pp. 440-442, 1992. [20] T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Self-assembled monolayers for biosensors,” Analyst, vol. 122, pp. 43-50, 1997. [21] J. Ctyroky, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a waveguide surface plasmon resonance sensor,” Electron. Lett., vol. 33, no. 14, pp. 1246-1248, 1997. [22] K. Y. Tsai, “Design and fabrication of ARROW-B SPR biochemical sensors in aqueous environment,” Master Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2002. [23] A. E. Ennos, “Stresses developed in optical film coatings,” Appl. Opt., vol. 5, pp. 51-61,1966. [24] S. Tamulevicius, “Stress and strain in vacuum deposited thin films”, Vacuum, vol. 51, pp. 127—139, 1998. [25] H.K. Pulker, “Mechanical properties of optical films,” Thin Solid Films, vol. 89, pp. 191-204, 1982. [26] R. Thielsch, J. Heber, H. Uhlig, and N. Kaiser, “Mechanical stress in fluoride coatings,” Proc. of SPIE, vol. 3738, pp. 136-147, 1999. [27] A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind specific ligands,” Nature, vol. 346, pp. 818-822, 1990. [28] D. L. Robertson and G. F. Joyce, “Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA,” Nature, vol. 344, pp. 467-468, 1990. [29] C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968, pp. 505-510, 1990. [30] S. D. Jayasena, “Aptamers: an emerging class of molecules that rival antibodies in diagnostics,” Clinical Chemistry, vol. 45, no. 9, pp. 1628-1650, 1999. [31] T. Mairal, et al, “Aptamers: molecular tools for analytical applications,” Anal. Bioanal. Chem., vol. 390, pp. 989-1007, 2008. [32] S. Balamurugan, A. Obubuafo, S. A. Soper, and D. A. Spivak, “Surface immobilization methods for aptamer diagnostic applications,” Anal Bioanal Chem, vol. 390, pp. 1009-1021, 2007. [33] S. M. Nimjee, C. P. Rusconi, and B. A. Sullenger, The aptamer handbook. Wiley- VCH, Weinheim, pp. 131-166, 2006. [34] D. W. Drolet, R. D. Jenison, D. E. Smith, D. Pratt, and B. J . Hicke, “A high throughput platform for systematic evolution of ligands by exponential enrichment,” Combinatorial Chemistry & High Throughput Screening, vol. 2, pp. 271-278, 1999. [35] H. Seo, M. Yoo, and J. H. Kim, “Detection of thrombin-specific oligonucleotides using quartz crystal microbalances coated with silica sol—gel glass thin films,” Journal of Sol-Gel Science Technology, vol. 46, pp. 33-38, 2008. [36] E. W. Davie, K. Fujikawa, and W. Kisiel. “The coagulation cascade: initiation, maintenance, and regulation,” Biochemistry, vol. 30, pp. 10363-10370, 1991. [37] S. J. Degen and W. Y. Sun, “The biology of prothrombin.” Crit. Rev. Eukaryot. Gene Expr. vol. 8, no. 2, pp. 203-224, 1994. [38] M. T. Stubbs and W. Bode, “A player of many parts: the spotlight falls on thrombin’s structure.” Thrombin Res., vol. 69, no. 1, pp. 1-58, 1993. [39] M. Tsiang, et al., “Functional mapping of the surface residues of human thrombin,” J. Biol. Chem., vol. 270, no. 28, pp. 16854-16863, 1995. [40] L.C. Bock, L.C. Griffin, J.A. Latham, E.H. Vermaas, and J.J. Toole, “Selection of single-stranded DNA molecules that bind and inhibit human thrombin,” Nature, vol. 355, pp. 564-566, 1992. [41] K.Y. Wang, S. H. Krawczyk, N. Bischofberger, S. Swaminathan, and P.H. Bolton, “The tertiary structure of a DNA aptamer which binds to and inhibits thrombin determines activity,” Biochemistry, vol. 32, pp. 11285-11292, 1993. [42] H. M. So, K. Won, Y.H. Kim, B. K. Kim, B. H. Ryu, H. Kim, and J. O. Lee, “Aptamers as molecular recognition elements for electrical nanobiosensors,” J. Am. Chem. Soc., vol. 127, pp. 11906-11907, 2005. [43] K. Maehashi , T, Katsura, K. Kerma, Y. Takamura, K. Matsumoto, and E. Tamiya, “Label-free protein biosensor based on aptamer-modified carbon nanotube fieldeffect transistors” Anal. Chem., vol. 79, pp. 782-787, 2006. [44] M. Ikanovic, et al, “Fluorescence assay based on aptamer-quantum dot binding to bacillus thuringiensis spores,” J. Fluoresc., vol. 17, pp. 193-199, 2007. [45] X. Wang, et al., “Detection of thrombin using electrogenerated chemiluminescence based on Ru(bpy)2+ 3 -doped silica nanoparticle aptasensor via target protein-induced strand displacement,” Analytica Chimica Acta, vol. 598, issue 2, pp. 242-248, 2007. [46] Q. Tang, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy study of interfacial binding of thrombin to antithrombin DNA aptamers,” Journal of Colloid and Interface Science, vol. 315,pp. 99-106, 2007. [47] C. M. Olsen, W. H. Gmeiner, and L. A. Marky, “Unfolding of G-quadruplexes: energetic, and ion and water contributions of G-quartet stacking,” J. Phys. Chem. B., vol. 110, no. 13, pp. 6962-6969, 2006. [48] K. Padmanabhan, et al, “The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer,” J. Biol. Chem., vol. 268, pp. 17651-17654, 1993. [49] S. Nagatoishi, Y. Tanaka, and K. Tsumoto, “Circular dichroism spectra demonstrate formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizingcation- deficient conditions,” Biochem. Biophys. Res. Comm., vol. 352, pp. 812-817, 2007. [50] D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human thrombin that bind distinct epitopes,” J. Mol. Biol. vol. 272, pp. 688-698, 1997. [51] D. Xu, X. Yu, Z. Liu, W. He, and Z. Ma, “Label-free electrochemical detection for aptamer-based array electrodes,” Anal. Chem., vol. 77, no. 16, pp. 5107-5113, 2005. [52] Y. Xiao, A. A.Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free electronic detection of thrombin in blood serum by using an aptamer-based sensor,” Angew. Chem. Int. Ed., vol. 44, pp. 5456—5459, 2005. [53] K. Ikebukuro, C. Kiyohara, and K. Sode, “Electrochemical detection of protein using a double aptamer sandwich,” Anal. Lett., vol. 37, pp. 2901-2909, 2004. [54] http://www.cdc.gov/NCIDOD/DVBID/DENGUE/ [55] http://www.kscep.gov.tw/english/news.asp [56] I. Craig and J. A. McLaughlin, “SPR and AFM study of engineered biomolecule immobilisation techniques,” Proceedings of the 28th IEEE EMBC conference, pp. 6728-6731, 2006. [57] K. Wadu-Mesthrige, et al., “Immobilization of proteins on self-assembled monolayers,” Scanning, vol. 22, no. 6, pp. 380-388, 2000. [58] M. G. Kim, et al., “Enhanced sensitivity of surface plasmon resonance immunoassays using a peroxidase-catalyzed precipitation reaction and its application to a protein microarray,” Journal of Immunological Methods, vol. 297, pp. 125-132, 2005. [59] J. Turkova, “Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function,” Journal of Chromatography B, vol. 722, pp. 11-31, 1999. [60] S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing Highly Specific Biosensing Surfaces Using Aptamer Monolayers on Gold,” Langmuir, vol. 22, pp. 6446-6453, 2006. [61] X. Yang, et al., “Enhanced surface plasmon resonance with the modified catalytic growth of Au nanoparticles,” Biosensors and Bioelectronics, vol. 22, pp. 1106-1110, 2005. [62] K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and characterization of Au colloids monolayers,” Anal. Chem. vol. 67, pp. 735-743, 1995. [63] X. Cui, F. Yang, Y. Sha, and X. Yang, “Real-time immunoassay of ferritin using surface plasmon resonance biosensor,” Talanta, vol. 60, issue 1, pp. 53-61, 2003. [64] W. M. Mulletta, E. P. C. Laia, and J. M. Yeungb, “Surface plasmon resonance-based immunoassays, ” Methods, vol. 22, pp. 77-91, 2000. [65] R. Pei, X. Yang, and E. Wang, “Enhanced surface plasmon resonance immunoassay for human complement factor 4 , ” Anal. Chim. Acta, vol. 453, pp. 173-179, 2002. [66] http://www.biacore.com/lifesciences/products/systems overview/3000/system information /index.html
|