跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃繼傑
研究生(外文):Chi-Chieh Huang
論文名稱:利用B型抗諧振反射光波導表面電漿子共振生物感測元件進行α-凝血蛋白酵素對單股DNA適體鍵結與登革熱病毒DNA雜交之即時檢測
論文名稱(外文):Real-Time Detection of α-Thrombin Binding to Single-Strand DNA Aptamers and Dengue Virus DNA Hybridization by ARROW-B SPR Biosensors
指導教授:黃遠東黃遠東引用關係
指導教授(外文):Yang-Tung Huang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:92
中文關鍵詞:表面電漿子生物感測α-凝血蛋白酵素登革熱病毒
外文關鍵詞:SPRBiosensorsα-Thrombindengue virus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文研究適用於水中環境的B型抗諧振反射光波導表面電漿子共振生化感測元件。由於此生化感測元件具有免標定、高效率以及對於金表面所固定的生物分子層之折射率變化具有高靈敏度等特性,因此能應用在即時感測表面生物分子之交互作用。感測元件的設計以及製作過程在論文中有詳盡的介紹與討論,生物感測實驗部分則根據生物分子不同鍵結特性分為兩方面。(一)進行α-凝血蛋白酵素對單股DNA適體鍵結特性之即時檢測,並且在兩者鍵結之後,通入表面修飾抗α-凝血蛋白酵素抗體的奈米金粒子對α-凝血蛋白酵素進行抗體抗原親合力鍵結以作為SPR訊號放大之用途。此生化感測器對α-凝血蛋白酵素之偵測極限可達到1 pM,與商品化的Biacore 3000之偵測極限 (1 pM)相同,但是本研究所建構之量測系統成本較低。最後,由實驗結果驗證了此生化感測元件能定性且定量地即時檢測DNA適體與α-凝血蛋白酵素分子間具高度專一性的鍵結反應。(二)進行對於登革熱病毒單股DNA雜交反應之即時檢測,登革熱單股DNA分子DENV2-P利用末端修飾的硫醇基先行固定化於金表面,之後登革熱單股DNA分子DENV2-T再利用互補DNA序列與DENV2-P進行專一性鍵結。最後,由實驗結果顯示此生化感測元件能精確地定性且即時檢測此雜交反應。
In this thesis, an antiresonant reflecting optical waveguide of type B (ARROW-B) surface plasmon resonance (SPR) biosensor operating in the aqueous environment has been investigated. The ARROW-B SPR biosensor is proposed to provide a label-free, high-throughput and highly surface-sensitive platform to detect the bimolecular interactions in real time. The design and fabrication process of the ARROW-B SPR sensor chips are described and discussed. Besides, the primary analytes for the bioassay experiments are divided into two categories based on different binding characteristics. First, the real-time detection of α-thrombin binding to ssDNA aptamers was under in-depth investigation. The gold nanoparticles modified with anti-thrombin antibodies were employed to bind to the α-thrombins for signal amplification. The detection limit of this biosensor to α-thrombin was measured at 1 pM level, which was comparable to that of the Biacore 3000 system but at much lower cost. Second, the real-time detection of dengue virus ssDNA hybridization was studied. The dengue virus DNA probe was modified with a thiol group at one end to achieve effective immobilization on the Au surface, while the DNA target utilized the complementary sequence to bind to the immobilized probe. In summary, the measurement results have shown that the ARROW-B SPR biosensors can be applied to detect the ssDNA aptamer/α-thrombin interaction and dengue virus ssDNA hybridization both quantitatively and qualitatively in real time.
1 Introduction................................. 1
2 Methods for Analysis............................ 6
2.1 Transfer Matrix Method . . . . . . . . . . . . . . . 6
2.2 Normalization of GuidedModes . . . . . . . . . . . 10
2.3 Eigenmode Expansion Analysis . . . . . . . .. . . 13
3 ARROW-B Waveguide................................... 15
3.1 Characteristics of an ARROW-B . . . . . . . . . . 17
3.2 Design of an ARROW-B Structure in the Sensing Region . . . 20
3.3 Design of an ARROW-B Structure in the Propagation Region . . . . . . 23
4 SPR Sensor Based on an ARROW-B structure..... 29
4.1 Surface Plasmon Wave . . . . . . . .. . . . . 29
4.1.1 Physical Properties of SPW . . . . . . . . . 29
4.1.2 Au-coated ARROW-B SPR Sensors . . .. . . . . 35
4.1.3 Au-coated ARROW-B SPR Sensor with MgF2 Buffer Layer and Si3N4 Adjusting Layer . . . . . . . . . . . . 36
5 Fabrication Process of ARROW-B SPR Sensor Chip... 43
5.1 Design of layout for the ARROW-B SPR Sensor Chip ... 43
5.2 Fabrication Process of the ARROW-B SPR Sensor Chips . . 47
5.3 Improvement of MgF2/SiOx interfacial film quality . . . 54
6 Real-Time Detection Using ARROW-B SPR Biosensors... 59
6.1 Introduction . . . . . . . . . . . . . . 59
6.1.1 Single-strand DNA aptamers and α-thrombins . . . . 60
6.1.2 Dengue virus ssDNA . . . . . . . . . . . . 63
6.2 OpticalMeasurement Systemand Circulating-Flow System .... 64
6.3 Binding characteristics of α-thrombins to ssDNA aptamers .. . . 65
6.3.1 Materials and Methods . . . . . . . . . . . 65
6.3.2 Measurement and Discussion . . . . . . . . . 70
6.4 Dengue Virus ssDNA Hybridization . . . . . . . 75
6.4.1 Materials and Methods . . . . . . . . . . . . 75
6.4.2 Measurement and Discussion . .. . . . . . . . 76
7 Conclusion....................................... 84
Bibliography....................................... 86
[1] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings,
Springer-Verlag, Berlin, 1988.
[2] J. Homola, S.S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,”
Sensors and Actuators B, vol. 54, pp. 3-15, 1999.
[3] A.D. Boardman, Electromagnetic surface modes, Wiley, Chichester, 1982.
[4] B. Liedberg, C. Nylander, and T. Lind, “Gas detection by means of surface plasmons
resonance,” Sensors and Actuators, vol. 3, pp. 79-88, 1982.
[5] B. Liedberg, C. Nylander, and I. Lundstrom, “Surface plasmons resonance for gas
detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299-304, 1983.
[6] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal.
Bioanal. Chem., vol. 377, pp. 528-539, 2003.
[7] K. S. Phillips and Q. Cheng, “Recent advances in surface plasmon resonance based
techniques for bioanalysis,” Anal. Bioanal. Chem., vol. 387, pp. 1831-1840, 2007.
[8] X. Liu, D. Song, Q. Zhang, Y. Tian, Z. Liu, and H. Zhang, “Characterization of drugbinding
levels to serum albumin using a wavelength modulation surface plasmon
resonance sensor,” Sensors and Actuators B, vol. 117, pp. 188-195, 2006.
[9] D. G. Hong, T. W. Kim, K. B. Kim, J. S. Yuk, and K. S. Ha, “Development of
an immunosensor with angular interrogation-based SPR spectroscopy,” Meas. Sci.
Technol., vol. 18, pp. 1367-1371, 2007.
[10] H. Nakagawa, I. Saito, T. Chinzei, Y. Nakaoki, and Y. Iwata, “The merits/demerits
of biochemical reaction measurements by SPR reflectance signal at a fixed angle,”
Sensors and Actuators B, vol. 108, pp. 772-777, 2004.
[11] C. C. Cheng, “Design of ARROW-B SPR sensors in aqueous environment,” Master
Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu Taiwan,
R.O.C., 2002.
[12] C. H. Chen, “Design of ARROW-B SPR sensors in aqueous environment with the
spectral shift method,” Master Thesis, Institute of Electronics, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., 2003.
[13] J. H. Chen, “Ag-coated ARROW-B SPR sensors,” Master Thesis, Institute of Electronics,
National Chiao Tung University, Hsinchu, Taiwan, R.O.C., 2003.
[14] T. Baba and Y. Kokubun, “New polarization-insensitive antiresonant reflecting optical
waveguide,” IEEE Photon. Technol. Lett., vol. 1. no. 8, pp. 232-234, 1989.
[15] J. L. Archambault, R. J. Black, S. Lacroix, and J. Bures, “Loss calculations for
antiresonant waveguides,” J. Lightwave Technol., vol. 11, no. 3, pp. 416-423, 1993.
[16] T. Baba and Y. Kokubun, “Dispersion and radiation loss characteristics of antiresonant
reflecting optical waveguides—numerical results and analytical expressions,”
IEEE J. of Quantum Electron., vol. 28. no. 7, pp. 1689-1700, 1992.
[17] Y. Kokubun and T. Baba, “Scattering loss of antiresonant reflecting optical waveguide,”
J. Lightwave Technol., vol. 9, no. 5, pp. 590-597, 1991.
[18] W. Z. Chang, “Investigation on ARROW-B SPR sensors in aqueous environment,”
Master Thesis, Institute of Electronics, National Chiao Tung University, Hsinchu,
Taiwan, R.O.C., 2001.
[19] H. E. Brujin, R. P. H. Kooyman, and J. Greve, “Choice of metal and wavelength for
surface plasmon resonance sensors: some considerations,” Appl. Opt., vol. 31, pp.
440-442, 1992.
[20] T. Wink, S. J. van Zuilen, A. Bult, and W. P. van Bennekom, “Self-assembled
monolayers for biosensors,” Analyst, vol. 122, pp. 43-50, 1997.
[21] J. Ctyroky, J. Homola, and M. Skalsky, “Tuning of spectral operation range of a
waveguide surface plasmon resonance sensor,” Electron. Lett., vol. 33, no. 14, pp.
1246-1248, 1997.
[22] K. Y. Tsai, “Design and fabrication of ARROW-B SPR biochemical sensors in aqueous
environment,” Master Thesis, Institute of Electronics, National Chiao Tung
University, Hsinchu, Taiwan, R.O.C., 2002.
[23] A. E. Ennos, “Stresses developed in optical film coatings,” Appl. Opt., vol. 5, pp.
51-61,1966.
[24] S. Tamulevicius, “Stress and strain in vacuum deposited thin films”, Vacuum, vol.
51, pp. 127—139, 1998.
[25] H.K. Pulker, “Mechanical properties of optical films,” Thin Solid Films, vol. 89, pp.
191-204, 1982.
[26] R. Thielsch, J. Heber, H. Uhlig, and N. Kaiser, “Mechanical stress in fluoride coatings,”
Proc. of SPIE, vol. 3738, pp. 136-147, 1999.
[27] A. D. Ellington and J. W. Szostak, “In vitro selection of RNA molecules that bind
specific ligands,” Nature, vol. 346, pp. 818-822, 1990.
[28] D. L. Robertson and G. F. Joyce, “Selection in vitro of an RNA enzyme that specifically
cleaves single-stranded DNA,” Nature, vol. 344, pp. 467-468, 1990.
[29] C. Tuerk and L. Gold, “Systematic evolution of ligands by exponential enrichment:
RNA ligands to bacteriophage T4 DNA polymerase,” Science, vol. 249, no. 4968,
pp. 505-510, 1990.
[30] S. D. Jayasena, “Aptamers: an emerging class of molecules that rival antibodies in
diagnostics,” Clinical Chemistry, vol. 45, no. 9, pp. 1628-1650, 1999.
[31] T. Mairal, et al, “Aptamers: molecular tools for analytical applications,” Anal.
Bioanal. Chem., vol. 390, pp. 989-1007, 2008.
[32] S. Balamurugan, A. Obubuafo, S. A. Soper, and D. A. Spivak, “Surface immobilization
methods for aptamer diagnostic applications,” Anal Bioanal Chem, vol. 390,
pp. 1009-1021, 2007.
[33] S. M. Nimjee, C. P. Rusconi, and B. A. Sullenger, The aptamer handbook. Wiley-
VCH, Weinheim, pp. 131-166, 2006.
[34] D. W. Drolet, R. D. Jenison, D. E. Smith, D. Pratt, and B. J . Hicke, “A high
throughput platform for systematic evolution of ligands by exponential enrichment,”
Combinatorial Chemistry & High Throughput Screening, vol. 2, pp. 271-278, 1999.
[35] H. Seo, M. Yoo, and J. H. Kim, “Detection of thrombin-specific oligonucleotides using
quartz crystal microbalances coated with silica sol—gel glass thin films,” Journal
of Sol-Gel Science Technology, vol. 46, pp. 33-38, 2008.
[36] E. W. Davie, K. Fujikawa, and W. Kisiel. “The coagulation cascade: initiation,
maintenance, and regulation,” Biochemistry, vol. 30, pp. 10363-10370, 1991.
[37] S. J. Degen and W. Y. Sun, “The biology of prothrombin.” Crit. Rev. Eukaryot.
Gene Expr. vol. 8, no. 2, pp. 203-224, 1994.
[38] M. T. Stubbs and W. Bode, “A player of many parts: the spotlight falls on thrombin’s
structure.” Thrombin Res., vol. 69, no. 1, pp. 1-58, 1993.
[39] M. Tsiang, et al., “Functional mapping of the surface residues of human thrombin,”
J. Biol. Chem., vol. 270, no. 28, pp. 16854-16863, 1995.
[40] L.C. Bock, L.C. Griffin, J.A. Latham, E.H. Vermaas, and J.J. Toole, “Selection of
single-stranded DNA molecules that bind and inhibit human thrombin,” Nature, vol.
355, pp. 564-566, 1992.
[41] K.Y. Wang, S. H. Krawczyk, N. Bischofberger, S. Swaminathan, and P.H. Bolton,
“The tertiary structure of a DNA aptamer which binds to and inhibits thrombin
determines activity,” Biochemistry, vol. 32, pp. 11285-11292, 1993.
[42] H. M. So, K. Won, Y.H. Kim, B. K. Kim, B. H. Ryu, H. Kim, and J. O. Lee,
“Aptamers as molecular recognition elements for electrical nanobiosensors,” J. Am.
Chem. Soc., vol. 127, pp. 11906-11907, 2005.
[43] K. Maehashi , T, Katsura, K. Kerma, Y. Takamura, K. Matsumoto, and E. Tamiya,
“Label-free protein biosensor based on aptamer-modified carbon nanotube fieldeffect
transistors” Anal. Chem., vol. 79, pp. 782-787, 2006.
[44] M. Ikanovic, et al, “Fluorescence assay based on aptamer-quantum dot binding to
bacillus thuringiensis spores,” J. Fluoresc., vol. 17, pp. 193-199, 2007.
[45] X. Wang, et al., “Detection of thrombin using electrogenerated chemiluminescence
based on Ru(bpy)2+
3 -doped silica nanoparticle aptasensor via target protein-induced
strand displacement,” Analytica Chimica Acta, vol. 598, issue 2, pp. 242-248, 2007.
[46] Q. Tang, X. Su, and K. P. Loh, “Surface plasmon resonance spectroscopy study of
interfacial binding of
thrombin to antithrombin DNA aptamers,” Journal of Colloid and Interface Science, vol. 315,pp. 99-106, 2007.
[47] C. M. Olsen, W. H. Gmeiner, and L. A. Marky, “Unfolding of G-quadruplexes:
energetic, and ion and water contributions of G-quartet stacking,” J. Phys. Chem.
B., vol. 110, no. 13, pp. 6962-6969, 2006.
[48] K. Padmanabhan, et al, “The structure of alpha-thrombin inhibited by a 15-mer
single-stranded DNA aptamer,” J. Biol. Chem., vol. 268, pp. 17651-17654, 1993.
[49] S. Nagatoishi, Y. Tanaka, and K. Tsumoto, “Circular dichroism spectra demonstrate
formation of the thrombin-binding DNA aptamer G-quadruplex under stabilizingcation-
deficient conditions,” Biochem. Biophys. Res. Comm., vol. 352, pp. 812-817,
2007.
[50] D. M. Tasset, M. F. Kubik, and W. Steiner, “Oligonucleotide inhibitors of human
thrombin that bind distinct epitopes,” J. Mol. Biol. vol. 272, pp. 688-698, 1997.
[51] D. Xu, X. Yu, Z. Liu, W. He, and Z. Ma, “Label-free electrochemical detection for
aptamer-based array electrodes,” Anal. Chem., vol. 77, no. 16, pp. 5107-5113, 2005.
[52] Y. Xiao, A. A.Lubin, A. J. Heeger, and K. W. Plaxco, “Label-Free electronic
detection of thrombin in blood serum by using an aptamer-based sensor,” Angew.
Chem. Int. Ed., vol. 44, pp. 5456—5459, 2005.
[53] K. Ikebukuro, C. Kiyohara, and K. Sode, “Electrochemical detection of protein using
a double aptamer sandwich,” Anal. Lett., vol. 37, pp. 2901-2909, 2004.
[54] http://www.cdc.gov/NCIDOD/DVBID/DENGUE/
[55] http://www.kscep.gov.tw/english/news.asp
[56] I. Craig and J. A. McLaughlin, “SPR and AFM study of engineered biomolecule
immobilisation techniques,” Proceedings of the 28th IEEE EMBC conference, pp. 6728-6731, 2006.
[57] K. Wadu-Mesthrige, et al., “Immobilization of proteins on self-assembled monolayers,”
Scanning, vol. 22, no. 6, pp. 380-388, 2000.
[58] M. G. Kim, et al., “Enhanced sensitivity of surface plasmon resonance immunoassays
using a peroxidase-catalyzed precipitation reaction and its application to a protein
microarray,” Journal of Immunological Methods, vol. 297, pp. 125-132, 2005.
[59] J. Turkova, “Oriented immobilization of biologically active proteins as a tool for
revealing protein interactions and function,” Journal of Chromatography B, vol. 722,
pp. 11-31, 1999.
[60] S. Balamurugan, A. Obubuafo, S. A. Soper, R. L. McCarley, and D. A. Spivak, “Designing
Highly Specific Biosensing Surfaces Using Aptamer Monolayers on Gold,”
Langmuir, vol. 22, pp. 6446-6453, 2006.
[61] X. Yang, et al., “Enhanced surface plasmon resonance with the modified catalytic
growth of Au nanoparticles,” Biosensors and Bioelectronics, vol. 22, pp. 1106-1110,
2005.
[62] K. C. Grabar, R. G. Freeman, M. B. Hommer, and M. J. Natan, “Preparation and
characterization of Au colloids monolayers,” Anal. Chem. vol. 67, pp. 735-743, 1995.
[63] X. Cui, F. Yang, Y. Sha, and X. Yang, “Real-time immunoassay of ferritin using
surface plasmon resonance biosensor,” Talanta, vol. 60, issue 1, pp. 53-61, 2003.
[64] W. M. Mulletta, E. P. C. Laia, and J. M. Yeungb, “Surface plasmon resonance-based
immunoassays, ” Methods, vol. 22, pp. 77-91, 2000.
[65] R. Pei, X. Yang, and E. Wang, “Enhanced surface plasmon resonance immunoassay
for human complement factor 4 , ” Anal. Chim. Acta, vol. 453, pp. 173-179, 2002.
[66] http://www.biacore.com/lifesciences/products/systems overview/3000/system information
/index.html
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊