跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.56) 您好!臺灣時間:2025/12/09 22:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡文正
研究生(外文):Wun-Jheng Hu
論文名稱:利用狀態轉換模型捕捉臺灣股價指數與期貨市場報酬與波動性的動態關係
論文名稱(外文):Using Regime-Switching Model to Capture the Return and Volatility Dynamics between the Taiwan Stock Index and Futures Markets
指導教授:莊忠柱莊忠柱引用關係
指導教授(外文):Chung-Chu Chuang
學位類別:碩士
校院名稱:真理大學
系所名稱:管理科學研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:69
中文關鍵詞:股價指數期貨馬可夫狀態轉換模型自我迴歸分配遞延模型
外文關鍵詞:stock index futuresgeneralized regime-switching modelautoregressive distributed lag model
相關次數:
  • 被引用被引用:8
  • 點閱點閱:359
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:3
本文以Gray(1996)的一般化狀態轉換(GRS)模型為基礎,利用1999年1月5日到2003年12月31日間臺灣股價指數與股價指數期貨契約的日資料,捕捉臺灣股價指數與股價指數期貨市場報酬與波動性的動態關係。根據Johansen共整合檢定,發現臺灣股價指數與期貨間存在長期穩定均衡關係。當狀態分為高低波動狀態時,允許條件平均報酬與條件變異數同時隨兩個狀態變動的一般化狀態轉換模型為一較佳的配適模型。在低波動狀態時,股價指數與期貨市場平均報酬為正的,股價指數與期貨市場波動性皆呈現顯著的GARCH效果;在高波動狀態時,股價指數與期貨市場平均報酬為負的,期貨市場波動行為呈現顯著GARCH過程,但股價指數市場波動性則不具有GARCH效果。此外,股價指數與期貨市場的低波動狀態平均存續時間較高波動狀態平均存續時間長。利用一般化狀態轉換模型所捕捉的報酬與波動性為基礎,進一步利用自我迴歸分配遞延(ADL)模型,分別探討股價指數與期貨市場平均報酬對平均報酬與波動性對波動性的動態關係。就短期而言,股價指數報酬對期貨報酬的領先關係較為強烈,而期貨波動性對股價指數波動性的領先關係呈現顯著,此外,股價指數與期貨報酬序列存在長期均衡關係,但股價指數與期貨波動性序列則不存在長期均衡關係。
In this paper, Gray’s(1996) generalized regime-switching(GRS) model and autoregressive distributed lag(ADL) model are used to capture the return and volatility dynamics between the Taiwan stock index and futures markets. Using GRS model to capture the conditional expectation and conditional variance series, we find that the model that allows both the conditional expectation and conditional variance to change with two regimes is an appropriate model. In the low-volatility regime, the return of stock index and futures both are positive and its volatility have GARCH effect. In the high-volatility regime, the return of stock index and futures both are negative, but only the futures has a GARCH process in volatility behavior. In addition, the expected duration of the low-volatility regime is longer than that of the high-volatility regime. Using ADL model to study the return and volatility dynamics between the Taiwan stock index and futures markets. The return of stock index leads temporarily to itself and futures. The volatility of futures leads temporarily to itself and stock index, but the stock index does not have cross-market volatility spillovers effect. There is a long-run equilibrium relationship between the return of stock index and futures, but there is no long-run equilibrium relationship between the volatility of stock index and futures.
目錄
頁次
目錄……………………………..…………………….…………...……Ⅰ
圖目錄…………………………………………………………………..Ⅲ
表目錄……………………………………………..………….………...Ⅳ
第壹章 緒論……………………………………..……………………..1
第一節 研究背景與動機…………………..……………………..1
第二節 研究目的………………………..………………………..6
第貳章 文獻探討……………………………..………………………..8
第一節 理論基礎………………………..………………………..8
第二節 股價指數期貨與現貨領先落後關係的相關文獻研究
……………………………………………..…………....18
第三節 Markov switching模型的應用……………………....…24
第參章 研究資料與方法…………………………..………………....27
第一節 樣本資料與資料來源……………………..…....………27
第二節 實證模式………………………………….…….………30
第肆章 實證結果分析………………………………………………..41
第一節 臺灣股價指數與期貨價格序列單根與共整合檢定
…………………………………………………………..41
第二節 臺灣股價指數與期貨報酬序列基本敘述統計量分析
…………………………………………………………..42
第三節 模型比較………………………………………………..44
第四節 一般化狀態轉換模型的臺灣股價指數與期貨市場動態關係……………………………………………………..53
第伍章 結論與建議…………………………………………………..61
第一節 結論……………………………………………………..61
第二節 未來研究建議…………………………………………..63
參考文獻………………………………………………………………..64
圖目錄
頁次
圖3-1 臺灣股價指數與期貨價格走勢圖……………………………28
表目錄
頁次
表1-1 歷年來臺灣期貨交易所上市的期貨狀況…………….…….…4
表4-1 臺灣股價指數與期貨價格單根與共整合檢定………………41
表4-2 臺灣股價指數與期貨報酬序列基本敘述統計量……………43
表4-3 臺灣股價指數與期貨報酬序列配適不同落後期模型的SBC值
…………………………………………………………………44
表4-4 臺灣股價指數與期貨模型係數估計與檢定:AR(p)-GARCH(1, 1)模型………………………………………………….…..45
表4-5 條件平均報酬隨狀態轉換模型的係數估計與檢定…………46
表4-6 條件變異數隨狀態轉換模型的係數估計與檢定……………49
表4-7 一般化狀態轉換模型的係數估計與檢定……………………51
表4-8 臺灣股價指數與期貨報酬縮減ADL模型檢定……………54
表4-9 臺灣股價指數與期貨報酬ADL模型係數估計與檢定……..55
表4-10 臺灣股價指數與期貨波動性縮減ADL模型檢定….………..58
表4-11 臺灣股價指數與期貨波動性ADL模型係數估計與檢定…...59
參考文獻
一、中文部分
1. 林常青,洪茂蔚,管中閔,2002。台灣短期利率的動態行為:狀態轉換模型的應用,經濟論文,第30卷第1期:29-55。
2. 徐士勛,管中閔,2001。九零年代台灣的景氣循環:馬可夫轉換模型與紀卜斯抽樣法的應用,人文及社會科學集刊,第13卷第5期:515-540。
3. 莊忠柱,2000。股價指數期貨與現貨波動性外溢:臺灣的實證,證券市場發展季刊,第12卷第3期:111-139。
4. 黃仁德,林彥伶,2002。台灣失業率的轉換機率與預測-馬可夫轉換模型的應用,中國統計學報,第40卷第3期:303-331。
5. 黃玉娟,徐守德,1997。台股指數現貨與期貨市場價格動態關連性之研究,證券市場發展季刊,第9卷第3期:1-28。
二、英文部分
1. Abhyankar, A. H., 1995. Return and Volatility Dynamics in the FT-SE 100 Stock Index and Stock Index Futures Markets, Journal of Futures Markets, 15: 457-488.
2. Akaike, H., 1973. Information Theory and an Extension of Maximum Likelihood Principle, Budapest: Akademiai Kiado.
3. Akgiray, V., 1989. Conditional Heteroskedasticity in Time Series of Stock Return: Evidence and Forecasts, Journal of Business, 62: 55-80.
4. Baillie, R. T. and R. P. DeGennaro, 1990. Stock Returns and Volatility, Journal of Financial and Quantitative Analysis, 25: 203-214.
5. Bentzen, J. and T. Engsted, 2001. A Revival of the Autoregressive Distributed Lag Model in Estimating Energy Demand Relationships, Energy, 26: 45-55.
6. Black, F., 1976. The Pricing of Commodity Contracts, Journal of Financial Economics, 3: 167-179.
7. Bollerslev, T., 1986. Generalized Autoregressive Conditional Heteroskedasticity, Journal of Econometrics, 31: 307-327.
8. ________, 1987. A Conditionally Heteroskedastic Time Series Model for Speculative Price and Rates of Return, Review of Economics and Statistics, 69: 542-547.
9. Booth, G. G., R. W. So and Y. Tse, 1999. Price Discovery in the German Equity Index Derivatives Markets, The Journal of Futures Markets, 19: 619-643.
10. Broyden, C. G., 1970. Convergence of a Class of Couble Rank Minimization Algorithms, Journal of the Institute of Mathematics and Its Applications, 6: 7690.
11. Chan, K., 1992. A Further Analysis of the Lead-Lag Relationship between the Cash Market and Stock Index Futures Market, The Review of Financial Studies, 5: 123-152.
12. Chu, Q. C., W. G. Hsieh and Y. Tse, 1998. Price Discovery on the S&P 500 Index Markets: An Analysis of Spot Index, Index Futures and SPDRS. working paper.
13. Dickey, D. and W. Fuller, 1979. Distribution of the Estimators for Autoregressive Time Series with a Unit Root, Journal of the American Statistical Association, 74: 427-431.
14. Diebold, F. X., 1986. Modeling the Persistence of Conditional Variances, Econometric Review, 5: 51-56.
15. Engle, R. F., 1982. Autoregressive Conditional Heteroskedasticity with Estimates of the Variance if United Kingdom Inflation, Econometrica, 50: 987-1007.
16. Engle, R. F. and C. W. J. Granger, 1987. Co-integration and Error Correction: Representation, Estimation, and Testing, Econometrica, 55: 251-276.
17. Fletcher, R., 1970. A New Approach to Variable Metric Algorithms, Computer Journal, 13: 317-322.
18. Ghosh, A., 1993. Cointegration and Error Correction Model: International Causality between Index and Futures Prices, The Journal of Futures Markets, 13: 193-198.
19. Goldfarb, D., 1970. A Vamily of Variable Metric Methods Derived by Variational Means, Mathematics of Computation, 30: 23-26.
20. Granger, C., 1981. Some Properties of Time Series Data and their Use in Econometric Model Specification, Journal of Econometrics, 16: 121-130.
21. Gray, S. F., 1996. Modeling the Conditional Distribution of Interest Rates As a Regime-Switching Process, Journal of Financial Economics, 42: 27-62.
22. Grossman, S. J., 1989. The Information Role of Prices, Cambridge: The MIT press.
23. Hamilton, J. D., 1988. Rational Expectations Econometric Analysis of Changes in Regime: An Investigation of the Term Structure of Interest Rates, Journal of Economic Dynamics and Control, 12: 385-423.
24. ________, 1989. A New Approach to the Economic Analysis of Nonstationary Time Series and Business Cycle, Econometrica, 57: 357-384.
25. Hamilton, J. D. and R. Susmel, 1994. Autoregressive Conditional Heteroscedasticity and Changes in Regime, Journal of Econometrics, 64: 307-333.
26. Iihara, Y., K. Kato and T. Tokunaga, 1996. Intraday Return Dynamics between the Cash and the Futures Markets in Japan, The Journal of Futures Markets, 16: 147-162.
27. Johansen, S. and K. Juselius, 1990. Maximum Likelihood Estimation and Inference on Cointegration with Applications to the Demand for Money, Oxford Bulletin of Economics and Statistics, 52: 169-210.
28. Kawaller, I. G., P. D. Koch and T. W. Koch, 1987. The Temporal Price Relationship between S&P 500 Futures and the S&P 500 Index, The Journal of Finance, 42: 1309-1329.
29. Kim, C. J., 1994. Dynamic Linear Models with Markov-Switching, Journal of Econometrics, 6: 1-22.
30. Lamoureux, C. G. and W. D. Lastrapes, 1990a. Persistence in Variance, Structural Change, and the GARCH Model, Journal of Business and Economic Statistics, 8: 225-234.
31. _________, 1990b. Heteroskedasticity in Stock Return Data: Volume Versus GARCH Effects, Journal of Finance, 45: 221-229.
32. MacKinnon, J. D., 1991. Critical Value for Cointegration Tests. Chapter 13, Long-Run Economic Relationship, eds. R. F. Engle and C. W. J. Granger, Oxford University Press.
33. Miller, M. H., 1990. International Competitiveness of U. S. Futures Markets, Journal of Financial Service Research, 4: 387-408.
34. Min, J. H. and M. Najand, 1999. A Further Investigation of the Lead-Lag Relationship between the Spot Market and Stock Index Futures: Early Evidence from Korea, The Journal of Futures Markets, 19: 217-232.
35. Najand, M. and K. Yung, 1994. A GARCH Examination of the Relationship between Volume and Price Variability in Futures Markets, Journal of Futures Markets, 11: 465-478.
36. Patrick, J., 2002. Financial Crisis and the Great Depression: A Regime Switching Approach, Journal of Money, Credit, and Banking, 34: 76-93.
37. Pesaran, M. H. and Y. Shin, 1995a. Long Run Structural Modeling. DAE Working Paper, Department of Applied Economics, University of Cambridge.
38. ______, 1995b. An Autoregressive Distributed Lag Modeling Approach to Cointegration Analysis. DAE Working Paper, No. 9514, Department of Applied Economics, University of Cambridge.
39. Phillip, P. and P. Perron, 1988. Testing for a Unit Root in Time Series Regression, Biomertica, 75: 335-346.
40. Pizzi, M. A., A. J. Economopoulos and H. M. O’Neill, 1998. An Examination of the Relation between Stock Index Cash and Futures Market: A Cointegration, The Journal of Futures Market, 18: 297-305.
41. Ramchand, L. and R. Susmel, 1998. Volatility and Cross Correlation Across Major Stock Market, Journal of Empirical Finance, 5: 397-416.
42. Said, S. and D. Fuller, 1984. Testing for Unit Roots in Autoregressive-Moving Average Models with Unknown Order, Biometrica, 71: 599-607.
43. Schwarz, G., 1989. Estimating the Dimension of a Model, Annals of Statistic, 6: 461-464.
44. Shanno, D., 1970. Conditining of Quasi-Newton Methods for FunctionMinimization, Mathematics of Computation, 24: 647-657.
45. Shyy, G., V. Vijayraghavan and B. Scott-Quinn, 1996. A Further Investigation of the Lead-Lag Relationship between the Cash Market and Stock Index Futures Market with the Use of Bid/Ask Quotes: the Case of France, The Journal of Futures Markets, 16: 405-420.
46. Stoll, H. R. and R. E. Whaley, 1990. The Dynamics of Stock Index and Stock Index Futures Returns, Journal of Financial and Quantitative Analysis, 25: 441-468.
47. Tse, Y. K., 1995. Lead-Lag Relationship between Spot Index and Futures Price of the Nikkei Stock Average, Journal of Forecasting, 14: 553-563.
48. ___, Y. K., 1999. Price Discovery and Volatility Spillovers in the DJIA Index and Futures Markets, The Journal of Futures Markets, 19: 911-930.
49. Wahab, M. and M. Lashgari, 1993. Price Dynamics and Error Correction in Stock Index and Stock Index Futures Markets: A Cointegration Approach, The Journal of Futures Markets, 13: 711-742.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top