跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/09 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱朝順
論文名稱:10-Hydroxybenzo[h]quinoline激發態質子轉移研究及偵測技術的探討
論文名稱(外文):Studies of Excited State Intramolecular Proton Transfer of 10-hydroxybenzo[h]quinoline and the Discussion of Detection Technique of Time-Resolved Thermal Lensing
指導教授:周必泰
指導教授(外文):Pi-Tai Chou
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2002
畢業學年度:90
語文別:中文
中文關鍵詞:質子轉移熱透鏡
外文關鍵詞:proton transferthermal lensing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:279
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
藉由研究10-hydroxybenzo[h]quinolines(HBQ)及其衍生物7,9-diiodo- 10-hydroxybenzo[h]quinolines(DIHBQ)的光譜動力學,我們發現了HBQ和DIHBQ在激發態質子轉移過程中最低的三重態。因為分子內重原子效應,在77K玻璃態methylcyclohexane中,經由激發態質子轉移後形成的異構物, 可測到其磷光,最大值在735 nm。更進一步,我們以transient absorption 和單態氧實驗導出異構物三重態的量子產率和放射衰減速率常數(Radiative decay rate constant kr)分別是0.85及8.8s-1。在77K玻璃態methylcyclohexane中,隨著激發光源的強度的增加,我們發現HBQ及DIHBQ會產生光解離現象。我們一再的重複解凍再冰凍的過程,發現它的光譜是可重複性的。所以我們認為它是部份激發光源破壞分子內氫鍵結構,產生一個沒有分子內氫鍵的形式。根據以上我們所測量的結果,結合理論計算,我們建立起在激發態質子轉移過程中,不同自旋狀態的相對能量圖。
光熱力學方法,例如時間解析熱透鏡技術,光聲波法等等,不只是有用的直接偵測熱的一種技術,更是與其他光量測技術形成很好的互補。而熱透鏡時間解析技術可以直接偵測到如,單重態、三重態、同分異購物、或其它過度物種的動力學和能量的變化。在我們此次的實驗中,我們在近三個月內再重複實驗失敗中終於成功的用在樣品量測分析。並結合實驗室光譜背景,以單態氧在不同溶劑中的鬆弛現象用TRTL測得其生命期,並算出由PH當作sensitizer的系統間穿越的量子產率Φisc。

The low-lying triplet states of 10-hydroxybenzo[h]quinoline (HBQ) and its halogenated derivatives 7,9-diiodo-10-hydroxybenzo[h]quinoline (DIHBQ) in an excited-state intramolecular proton transfer (ESIPT) process have been investigated. For DIHBQ, enhanced by the intramolecular heavy atom effect, the proton-transfer tautomer (i.e. the keto form) phosphorescence maximized at 735 nm (p = 1.75 s) was resolved in a 77 K methylcyclohexane (MCH) glass. Further transient absorption and 1O2 sensitization experiments deduce the population yield and radiative decay rate of the keto triplet-state to be 0.85 and 8.8 s-1, respectively. Upon increasing the excitation intensity, photolysis reactions were observed for both HBQ and DIHBQ in the MCH glass. The reversibility of the photolysis reaction throughout a thawing-and-freezing cycle led us to conclude the rupture of an intramolecular hydrogen bond through the excessive energy dissipated. The product exhibits a non-hydrogen-bonding type of enol emission that would otherwise be inaccessible in the hydrogen-bonded enol form due to the ultrafast ESIPT. Accordingly, relative energy levels in different spin manifolds are established during a proton-transfer cycle. The keto  enol reverse proton transfer in the lowest triplet manifold was estimated to be endergonic by ~ 7.42 kcal/mol.
Photothermal methods, e.g. time-resolved thermal lensing (TRTL) and photoacoustic methods, are powerful techniques to study nonradiative but also radiative process, and are exactly complementary to conventional optical methods. The TRTL method enables us to instantaneously measure the heat released by nonradiative deactivation processes of photoexcited transient species such as excited singlets ,tripets,isomers, and radicals,providing energetic and kinetic information with hight sensitivity and accuracy of calorimetry. In the work,we had used time-resolved thermal lensing successfully to determine the lifetime of singlet oxygen (1Δg) and Φisc in the various solvents produced by energy transfer from 1-H-phenalen-1-one (PH).

總目錄
英文摘要………………………………………………………Ⅰ
中文摘要………………………………………………………Ⅱ
第一章 HBQ及其衍生物之質子轉移研究
第一節 激發態質子轉移簡述…………………………..3
第二節 摘要……………………………………………..7
第三節 引言……………………………………………..8
第四節 實驗……………………………………………10
第五節 結果與討論……………………………………13
第六節 圖表…………………………………………….20
參考文獻…………………………………………………..27
第二章 熱透鏡實驗原理及裝置
第一節 TRTL 簡介………………………………………...30
第二節 原理及裝置………………………………………..32
第三節 實驗與討論………………………………………..42
參考文獻…………………………………………………….57
第三章 溶液態中的SO
第一節 簡介.....................................59
第二節 實驗………………………………………………...60
第三節 結果與討論………………………………………67
第四節 未來展望…………………………………………70
參考文獻………………………………………………….72
APPENDIX : Transient Absorption………………………..73

1. Chou. P. T. et al. J. Phys. Chem. A. 2002
2. Kasha, M. J. Chem. Soc. Faraday, Trans. 2 1986, 82, 2379.
3. Kosower, E. M.; Huppert, D. Ann. Rev. Phys. Chem. 1986, 37, 127.
4. Barbara, P. F.; Walsh, P. K.; Brus, L. E. J. Phys. Chem. 1989, 93, 29.
5. Special Issue (Spectroscopy and Dynamics of Elementary
Proton Transfer in Polyatomic systems, ed. By P. F. Barbara and H. D. Trommsdorff), Chem. Phys. 1989, 136, 153.
6. Special Issue (M. Kasha Festschirift), J. Phys. Chem. 1991, 95, 10220.
7. Formosinho, S. F.; Arnaut, L. G. J. Photochem. Photobiol. A Chem. 1993, 75, 21.
8. Douhal, A.; Lahmani, F.; Zewail, A. H. Chem. Phys. 1996, 207, 477.
9. Pfeiffer, M.; Lau, A.; Lenz, K; Elsaesser, T. Chem. Phys. Lett. 1997, 268, 258
10. Moriyama, M.; Kosuge, M.; Tobita, S.; Shizuka, H. Chem. Phys. 2000, 253, 91.
11. Scheiner, S. J. Phys. Chem. A 2000, 104, 5898.
12. For example, see: (a) Chou, P. T.; McMorrow, D.; Aartsma, T. J.; Kasha, M. J. Phys. Chem. 1984, 88, 4596. (b) Ernsting, N. P.; Nikolaus, B. Appl. Phys. B. 1986, 39, 155. (c) Acuna, A. V.; Amat-Guerri, F.; Catalan, J.; Costella, A.; Figuera, J.; Munoz, J. Chem. Phys. Lett. 1986, 132, 576. (d) Kasha, M. In Molecular Electronic Devices; Carter, F. L., Siatkowski, R. E., Wohltjen, H., Eds.; Elsevier Science Publishers: New York, 1988; p 107-121.(e) Catalán, J; del Valle, J. C. J. Am. Chem. Soc. 1993, 115, 4321. (f) Ferrer, M. L.; Acuña, A. U.; Amat-Guerri, F.; Costela, A.; Figuera, J. M.; Florido, F.; Sastre, R. Appl. Opt. 1994, 33, 2266. (g) Jones, G.; Rahman, M. A. J. Phys. Chem. 1994, 98, 13028. (h) Liphardt, M.; Gooneskera, A.; Jones, B. E.; Ducharme, S.; Takacs, J. M.; Zhang, L. Science 1994, 263, 367. (i) Kuldová, K.; Corval, A.; Trommsdorff, H. P.; Lehn, J. M. J. Phys. Chem. A 1997, 101, 6850.
13. Sytnik, A.; Gormin, D.; Kasha, M. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 8267, 11968.
14. Sytnik, A.; del Valle, J. C. J. Phys. Chem. 1995, 99, 13028.
15. Roshal, A. D.; Grigorovich, A. V.; Doroshenko, A. O.; Pivovarenko, V. G.; Demchenko, A. P. J. Phys. Chem. A 1998, 102, 5907.
16. Tarkka, R. M.; Zhang, X.; Jenekhe, S. A. J. Am. Chem. Soc. 1996, 118, 9438
17. Martinez, M. L.; Cooper, W. C.; Chou, P. T. Chem. Phys. Lett. 1992, 193, 151.
18. For example, see: (a) Kasha, M.; McMorrow, D. J. Phys. Chem. 1984, 88, 2235. (b) Grellman, K. H.; Mordzinski, A.; Heinrich, A. Chem. Phys. 1989, 136, 201. (c) Schwartz, B. J.; Peteanu, L. A.; Harris, C. B. J. Phys. Chem. 1992, 96, 3591. (d) Tobita, S.; Yamamoto, M.; Kurahayashi, N.; Tsukagoshi, R.; Nakamura, Y.; Shizuka, H. J. Phys. Chem. A. 1998, 102, 5206.
19. Chou, P. T.; Wei, C. Y. J. Phys. Chem. 1996, 100, 17059.
20. Chou, P. T.; Martinez, M. L. Radiat. Phys. Chem. 1993, 41, 373.
21. Roberts, E. L.; Chou, P. T.; Alexander, T. A.; Agbaria, R. A.; Warner, I. M. J. Phys. Chem. 1995, 99, 5431.
22. del Valle, J. C.; Catalán, J. Chem. Phys. 2001, 270, 1.
23. Chou, P. T.; Chen, Y. C.; Yu, W. S.; Chou, Y. H.; Wei, C. Y.; Cheng, Y. M. J. Phys. Chem. A 2001, 105, 1731.
24. McGlynn, S. P.; Azumi, T.; Kinoshita, M. Molecular Spectroscopy of the Triplet State, Prentice Hall Englewood Cliffs, N. J. 1969, p. 18.
25. Sieband, W. J. Chem. Phys. 1967, 47, 2411.
26. Klöpffer, W. Adv. Photochem. 1977, 10, 311.
27. Catalán, J.; Diaz, C. J. Phys. Chem. A 1998, 102, 323.
28. Battino, R.; Rettich, T. R.; Tominaga, T. J. Phys. Chem. Ref. Data. 1983, 12(2), 163.
29. Birks, J. B. Photophysics of Aromatic Molecules, Wiley, New York, 1970; p 313.
30. (a) Schmidt, R.; Bodesheim, M. Chem. Phys. Lett. 1993, 213, 111. (b) Schmidt, R.; Bodesheim, M. J. Phys. Chem. 1994, 98, 2874. (c) Schmidt, R.; Bodesheim, M. J. Phys. Chem. 1995, 99, 15919.
31. Schmidt, R.; Tanielian, C.; Dunsbach, R.; Wolff, C. J. Photochem. Photobiol. A 1994, 79, 11.
32. Lamola, A. A.; Sharp, L. J. J. Phys. Chem. 1966, 70, 2634.
33. Nagaoka, S.; Hirota, N.; Sumitani, M.; Yoshihara, K. J. Am. Chem. Soc. 1983, 105, 4220.
34. Morgan, M. A.; Orton, E.; Pimental, G. C. J. Phys. Chem. 1990, 94(20), 7927.
35. S. J. Formosinho and L. G. Amaut, J. Photo. Photobiol. A:
Chem.,1993,75,1-20
36 .K. Webber,Z. Phys. Chem.,1931,B15,18.
37. T. Föster,Naturiwiss.,1949,36,186
38. Watson, J. D.; Crick, F. H. C. Nature (London) 1953, 171, 964.
39.A. Weller, Naturiwiss., 1955,42,175
40.Taylor, C. A.; El-Bayoumi, M. A.; Kasha, M. Proc. Natl. Acad. Sci. USA. 1969, 63, 253.
41. Ingham, K. C.; Abu-Elgheit, M.; El-Bayoumi, M. A. J. Am.
42. Chem. Soc. 1971, 93, 5023
43. E. Wander Donck, Progr. Reaction Kinet.,1970,5,273
44. J. F. Ireland and P. A. H. Wyayy,Adv. Phys. Org. Chem.,1976,12,31
45. W. Klöpffer,Adv. Photochem.,1977,10,311
46. I. Y. Martynov,A. B. Demyashhkevich and M. G. Kuzmin, Russ.
Chem. Rev., 1977,46,1-20
47. A. Weller,Z. Electrochem.,1952,56,662
48. D. Hupper, M. Gutman and K. J. Kaufmann,Adv.
Chem.Phys.,part2,1981,47,643
49. E. M. Kosower and D. Hupper, Ann.Rev. Phys. Chem.,1986,37,127
50. Kasha, M. J. Chem. Soc.,Faraday. Trans. 2,1986,82,2379.
51. Kasha, M. J. Chem. Soc., Faraday Trans. 2 1986, 82, 2379.
52. Chou, P. T.; Wei, C. Y.; Chang, C. P.; Chiu, C. H. J. Am. Chem. Soc.
1995, 117, 7259.
1. J. P. Gordon, R. C. C. Leite,R. S. Moore,S. P. S.Porto,J. R. Whinnery, J. Apple. Phys. 36,3(1965)
2. H. Kleiman ,R. W. O’eil, Appl. Phys. Lett. 23,43(1973)
3. (a)K. Fuke, M.Ueda, M. Itoh.,J. Am. Chem. Soc, 105,1091(1983) (b)G. Rossbroich,N. A. Garia, S. E. Braslavsky,J. Photochem.,31,37,(1985)
4. M. Terazima., T. Azumi.,J. Am. Chem. Soc. ,111,3824(1989)
5. T. Suzuki,U. Okuyama,T. Ichimura,J. Phys.Chem.A ,101,7047,1997
6. (a)T. Suzuki,T. Omori, T.Ichimura,J. Phys. Chem. A. 104,11671(2000) (b)T. Suzuki, T. Ichimura. Analytical Science,17,Special Issue : Application of Stepwise Teo-color Excitation Time-Resolved Thermal Lensing Technique to the Study on Excited 2-Methylbenzophenone
7. R. I. Carman and P. I. Kelly, Appl Phys. Lett. 12,241(1968);F. W. Dabby, R. W. Boyko, C. V. Shan, J. R. Whinnery,IEEE J. Quantum Electron. QE-5,516(1969);D. C. Smith, ibid.,p. 600; J. N. Hayes, Appl. Opt.11,455(1972);P. Calmettes and C. Laj, J. Phys.(Paris)33,125(1972);H. Kleiman and R. W. O’Neil, Appl. Phys.Lett.23,43(1973);R. G. Buser and R. S. Rhode, Appl. Opt.14,50(1975)
8. K. Fuke, M. Ueda, M. Itoh ,J. Am. Chem. Soc. 105,1091,(1983)
9. (a)Twarowski, A. J.;Kliger, D. S.Chem. Phys.,20,253, 1977(b)Twarowski, A. J.;Kliger, D. S.Ibid.20,259,1977
10. Friedrich, ;D. M.;Klem,S. A.Chem. Phys.41,153,1979
11. T. Suzuki,U. Okuyama,T. Ichimura,J. Phys.Chem.A ,101,7047,1997
12. Braslavsky, S.E.;Heihoff, K. In Handbook of Organic Photochemistry; Scaiano, J. C., Ed.; CRC press: Boca Raton, FL,1989;Vol 1
13. P-T Chou, Y-C Chen,W-S Yu, Y-M Cheng,Chem. Phys. Lett.,340,89(2001)
14. R. Schmidt, C. Tanielian, R. Dunsbach, C. Wolff.,J. Photochem. Photobiol. A:Chem.,79,11-17(1994)
15. Murov,S.L.;Carmichael,I.;Hug, G. L. Handbook of photochemistry, 2nd ed.; Marcel Dekker: New York, 1993
16. T. Suzuki, Y. Kajji, K. Shibuya, K. Obi, Chem. Phys. ,161,447-452,1992

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top