跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/11 09:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳玲玲
研究生(外文):Ling-Ling Chen
論文名稱:長期低氧培養對人類牙周韌帶幹細胞特性之影響
論文名稱(外文):The effect of long-term hypoxic culture on human periodontal ligament stem cells
指導教授:陳恆理陳恆理引用關係
指導教授(外文):Hen-Li Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:口腔生物研究所
學門:醫藥衛生學門
學類:牙醫學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:75
中文關鍵詞:低氧人類牙周韌帶幹細胞
外文關鍵詞:Hypoxiahuman periodontal ligament stem cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:240
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
牙周病為常見的口腔疾病,也是成年人喪失牙齒的主因。牙周治療的終極目標是希望能再生因牙周病所破壞的組織,但如何確保達成牙周再生仍為現今的一大挑戰。牙周韌帶幹細胞參與牙周組織的癒合,在不同動物模型中已顯示使用牙周韌帶幹細胞有良好促進牙周再生的療效。因為由牙周韌帶組織可分離出的牙周韌帶幹細胞數量十分有限,常須藉長期細胞培養以獲取足夠細胞量,但幹細胞經過長期培養後會有漸漸老化的問題。近期研究顯示採用低氧及低密度方式培養骨髓幹細胞可有效擴增細胞並減緩細胞老化。本研究目的在評估是否同樣的策略可應用於擴增牙周韌帶幹細胞。研究使用分離自五位患者的牙齒並加以等量混合之牙周韌帶幹細胞,將細胞分別培養在常氧或低氧環境(1%氧濃度)以比較細胞表型的改變。常氧組及低氧組細胞在第一代時均高度表達間葉幹細胞標記(CD90及CD105),而其幹性標記(NANOG及Oct4)的表現也相近。此外,兩組細胞均可分化成骨母細胞及脂肪細胞。比較不同代數細胞的結果,發現相較於低氧培養組,長期培養在常氧環境會導致細胞增殖變慢,倍增所需時間增長,細胞變大變寬,老化標記(SMP-30、p21、Apo1及SA-β-gal)改變增加。進一步以茜素紅染色測試長期培養後的細胞,發現相較於常氧培養,在低氧培養下的細胞較可維持其骨形成潛能,然而以oil red O染色測試,顯示長期常氧及低氧培養均會降低細胞的脂肪形成能力。評估常氧組及低氧組晚繼代數細胞在體內組織再生能力的實驗顯示長期低氧培養下的細胞具有形成似牙周韌帶組織及似牙骨質的能力,及具有分化成夏培氏纖維及造牙骨質細胞的能力,而長期常氧培養的細胞較不易形成牙周相關組織。總括而言,低氧培養有助於減緩細胞老化並維持細胞的體外骨形成能力和體內牙周組織再生能力,有潛力可被應用於大量擴增牙周韌帶幹細胞。本研究的結果將有助於未來應用牙周韌帶幹細胞於牙周再生性治療。
Periodontitis is a common oral disease and a leading cause of tooth loss in adults. The ultimate goal of periodontal therapy is the regeneration of the tissues destroyed as a result of periodontal disease. Achieving predictable periodontal regeneration remains a challenge nowadays. Periodontal ligament stem cells (PDLSCs) are involved in the periodontal wound healing. PDLSC-based therapeutics demonstrates promising results in periodontal regeneration in various animal models. Since PDLSCs isolated from periodontal ligament tissue are quite limited, long-term cell expansion is often mandatory in order to obtain sufficient cell number. Unfortunately, stem cells undergo senescence after extended cell culture. Recent studies indicated that expansion of bone marrow stem cells in a hypoxic and low density manner can facilitate cell expansion and significantly delay the cell senescence. The purpose of this study was to evaluate whether the same strategy can be applied in the expansion of PDLSCs. Pooled periodontal ligament stem cells were isolated from extracted teeth from five subjects and studied. PDLSCs were cultured either under normoxic or hypoxic condition (1% O2) and compared for their changes in phenotypes. At passage one, both cells highly expressed mesenchymal stem cell markers (CD90 and CD105) with comparable expression level of stemness markers (NANOG and Oct4). In addition, both cells could differentiate into osteoblasts and adipoctyes. Results of normoxic and hypoxic PDLSCS at different passages indicated that the long-term normoxic culture, when compared to the hypoxic culture, was accompanied with slower proliferation, increased doubling time, increased cell size and broader morphology, more significant senescence marker changes (SMP-30, p21, Apo1 and SA-β-gal). Furthermore, compared to the normoxic culture, the hypoxic culture can effectively retain the osteogenic potential of cells after long term culture, as evidenced by the results of alizarin red S staining. However, oil red O staining indicated that both normoxic and hypoxic groups showed reduced adipogenic potential at late passage. The regeneration potential of late passage PDLSCs in vivo of hypoxic groups could form cementum-like tissue and PDL tissue, and differentiate into cementoblast-like cells and Sharpey’s fiber. In contrast, cells of normoxic groups had less periodontal regenerative potential. Taken together, the application of hypoxic culture may be beneficial for scale up expansion of PDLSCs through delay in senescence, preservation of osteogenic potential in vitro and periodontal regenerative potential in vivo. The results of this study may facilitate the future use of PDLSCs in periodontal regenerative therapies.
目錄 I
中文摘要 III
英文摘要 V
壹、 緒論 1
一、 研究動機 1
二、 牙周組織 3
三、 牙周病 3
四、 人類牙周韌帶幹細胞 (human periodontal ligament stem cell, hPDLSC) 5
五、 以牙周韌帶幹細胞治療牙周炎之動物研究 6
六、 培養牙周韌帶幹細胞所面臨的問題 7
七、 低氧環境及低密度繼代培養對幹細胞的影響及重要性 7
貳、 實驗材料與方法 11
一、 實驗材料 11
壹、 細胞培養液 11
貳、 生化分生試劑、套組 12
參、 動物實驗 16
肆、 儀器 17
二、 實驗方法 18
1. 分離人類牙周韌帶幹細胞 18
2. 混合五位患者之牙周韌帶幹細胞及低密度細胞培養 18
3. 細胞培養 19
4. 流式細胞儀實驗步驟 20
5. 人類牙周韌帶幹細胞及人類骨髓間葉幹細胞分化實驗 20
6. 茜素紅(Alizarin red S)染色法 21
7. 油紅O (Oil red O)染色法 21
8. 測試老化實驗(Senescence-associated beta-galactosidase activity) 22
9. 西方點墨法 23
10. 動物實驗 25
11. 蘇木紫-伊紅染色法(hematoxylin-eosin stain, H&E stain) 26
12. 統計方法 28
參、 實驗結果 29
一、 分離人類牙周韌帶幹細胞 29
二、 確認牙周韌帶幹細胞的表徵 29
三、 測試分離出來的牙周韌帶幹細胞其分化潛能 30
四、 比較常氧組及低氧組細胞的增殖速率 31
五、 比較不同代數細胞的形態 32
六、 比較常氧組及低氧組細胞老化酵素senescence-associated β-galactosidase (SA-β-gal)的表現 32
七、 比較常氧組及低氧組細胞衰老標記蛋白senescence marker protein-30 (SMP-30)的表現 33
八、 比較常氧組及低氧組細胞衰老標記p21及Apo1的表現 33
九、 比較常氧組及低氧組不同代數細胞骨分化的能力 34
十、 比較常氧組及低氧組不同代數細胞脂肪分化的能力 35
十一、 體內測試常氧及低氧細胞再生的能力 36
肆、 討論 38
伍、 結論 44
陸、 附圖 45
圖一、人類牙周韌帶幹細胞的形態 45
圖二、利用流式細胞儀確認牙周韌帶幹細胞的表徵 46
圖三、利用QPCR測量牙周韌帶幹細胞的幹性表現 47
圖四、分離的牙周韌帶幹細胞具骨分化及脂肪分化能力 48
圖五、比較常氧組及低氧組細胞的增殖速率 49
圖六、比較不同代數細胞的形態 50
圖七、比較P5常氧組及低氧組細胞老化酵素SA-β-gal的表現 51
圖八、比較常氧組及低氧組細胞衰老標記蛋白Senescence marker protein-30 (SMP-30)的表現 52
圖九、比較常氧組及低氧組細胞衰老標記p21及Apo1的表現 53
圖十、比較常氧組及低氧組早期代數細胞骨分化的能力 54
圖十一、比較常氧組及低氧組早期代數細胞OCN的表現量 55
圖十二、比較常氧組及低氧組晚期代數細胞骨分化的能力 57
圖十三、比較常氧組及低氧組晚期代數細胞OCN的表現量 58
圖十四、比較常氧組及低氧組早期與晚期代數細胞骨分化的能力 59
圖十五、比較常氧組及低氧組早期代數細胞脂肪分化的能力 60
圖十六、比較常氧組及低氧組晚期代數細胞脂肪分化的能力 61
圖十七、比較常氧組及低氧組早期與晚期代數細胞脂肪分化的能力 62
圖十八、動物實驗流程圖 63
圖十九、比較常氧組及低氧組細胞體內形成類似牙周組織結構的能力 65
圖二十、植入體內八週後蘇木紫-伊紅染色觀察膠原蛋白纖維 66
柒、 參考文獻 67

1. Blanpain C, Lowry WE, Geoghegan A, Polak L, Fuchs E. Self-renewal, multipotency, and the existence of two cell populations within an epithelial stem cell niche. Cell. 2004;118:635-48.
2. Cowin SC. Tissue growth and remodeling. Annual review of biomedical engineering. 2004;6:77-107.
3. Ishikawa I, Iwata T, Washio K, Okano T, Nagasawa T, Iwasaki K, et al. Cell sheet engineering and other novel cell-based approaches to periodontal regeneration. Periodontology 2000. 2009;51:220-38.
4. Ding G, Liu Y, Wang W, Wei F, Liu D, Fan Z, et al. Allogeneic periodontal ligament stem cell therapy for periodontitis in swine. Stem Cells. 2010;28:1829-38.
5. Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM, et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells. 2008;26:1065-73.
6. Mrozik KM, Wada N, Marino V, Richter W, Shi S, Wheeler DL, et al. Regeneration of periodontal tissues using allogeneic periodontal ligament stem cells in an ovine model. Regenerative medicine. 2013;8:711-23.
7. Hidaka T, Nagasawa T, Shirai K, Kado T, Furuichi Y. FGF-2 induces proliferation of human periodontal ligament cells and maintains differentiation potentials of STRO-1(+)/CD146(+) periodontal ligament cells. Arch Oral Biol. 2012;57:830-40.
8. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, et al. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One. 2008;3:e2213.
9. Shibata KR, Aoyama T, Shima Y, Fukiage K, Otsuka S, Furu M, et al. Expression of the p16INK4A gene is associated closely with senescence of human mesenchymal stem cells and is potentially silenced by DNA methylation during in vitro expansion. Stem Cells. 2007;25:2371-82.
10. Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood. 2011;117:459-69.
11. Lennon DP, Edmison JM, Caplan AI. Cultivation of rat marrow-derived mesenchymal stem cells in reduced oxygen tension: effects on in vitro and in vivo osteochondrogenesis. J Cell Physiol. 2001;187:345-55.
12. Chen HL, Pistollato F, Hoeppner DJ, Ni HT, McKay RD, Panchision DM. Oxygen tension regulates survival and fate of mouse central nervous system precursors at multiple levels. Stem Cells. 2007;25:2291-301.
13. Ezashi T, Das P, Roberts RM. Low O2 tensions and the prevention of differentiation of hES cells. Proc Natl Acad Sci U S A. 2005;102:4783-8.
14. Miyashita H, Higa K, Kato N, Kawakita T, Yoshida S, Tsubota K, et al. Hypoxia enhances the expansion of human limbal epithelial progenitor cells in vitro. Investigative ophthalmology & visual science. 2007;48:3586-93.
15. Page RC, Offenbacher S, Schroeder HE, Seymour GJ, Kornman KS. Advances in the pathogenesis of periodontitis: summary of developments, clinical implications and future directions. Periodontology 2000. 1997;14:216-48.
16. Hassell TM. Tissues and cells of the periodontium. Periodontology 2000. 1993;3:9-38.
17. Bartold PM, McCulloch CA, Narayanan AS, Pitaru S. Tissue engineering: a new paradigm for periodontal regeneration based on molecular and cell biology. Periodontology 2000. 2000;24:253-69.
18. Shimono M, Ishikawa T, Ishikawa H, Matsuzaki H, Hashimoto S, Muramatsu T, et al. Regulatory mechanisms of periodontal regeneration. Microscopy research and technique. 2003;60:491-502.
19. Loos BG, Craandijk J, Hoek FJ, Wertheim-van Dillen PM, van der Velden U. Elevation of systemic markers related to cardiovascular diseases in the peripheral blood of periodontitis patients. J Periodontol. 2000;71:1528-34.
20. Haffajee AD, Socransky SS, Lindhe J, Kent RL, Okamoto H, Yoneyama T. Clinical risk indicators for periodontal attachment loss. Journal of clinical periodontology. 1991;18:117-25.
21. Page RC, Beck JD. Risk assessment for periodontal diseases. International dental journal. 1997;47:61-87.
22. Salvi GE, Lawrence HP, Offenbacher S, Beck JD. Influence of risk factors on the pathogenesis of periodontitis. Periodontology 2000. 1997;14:173-201.
23. Williams RC, Offenbacher S. Periodontal medicine: the emergence of a new branch of periodontology. Periodontology 2000. 2000;23:9-12.
24. Brunsvold MA, Mellonig JT. Bone grafts and periodontal regeneration. Periodontology 2000. 1993;1:80-91.
25. Lowenguth RA, Blieden TM. Periodontal regeneration: root surface demineralization. Periodontology 2000. 1993;1:54-68.
26. Karring T, Nyman S, Gottlow J, Laurell L. Development of the biological concept of guided tissue regeneration--animal and human studies. Periodontology 2000. 1993;1:26-35.
27. Lynch SE, de Castilla GR, Williams RC, Kiritsy CP, Howell TH, Reddy MS, et al. The effects of short-term application of a combination of platelet-derived and insulin-like growth factors on periodontal wound healing. J Periodontol. 1991;62:458-67.
28. Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. Journal of clinical periodontology. 1982;9:290-6.
29. Gottlow J, Nyman S, Lindhe J, Karring T, Wennstrom J. New attachment formation in the human periodontium by guided tissue regeneration. Case reports. Journal of clinical periodontology. 1986;13:604-16.
30. Gazdag AR, Lane JM, Glaser D, Forster RA. Alternatives to autogenous bone graft: Efficacy and indications. The Journal of the American Academy of Orthopaedic Surgeons. 1995;3:1-8.
31. Ehrler DM, Vaccaro AR. The use of allograft bone in lumbar spine surgery. Clinical orthopaedics and related research. 2000:38-45.
32. Li XQ, Stevenson S, Klein L, Davy DT, Shaffer JW, Goldberg VM. Differential patterns of incorporation and remodeling among various types of bone grafts. Acta anatomica. 1991;140:236-44.
33. Brown KL, Cruess RL. Bone and cartilage transplantation in orthopaedic surgery. A review. The Journal of bone and joint surgery American volume. 1982;64:270-9.
34. Goncalves PF, Gurgel BC, Pimentel SP, Sallum EA, Sallum AW, Casati MZ, et al. Effect of two different approaches for root decontamination on new cementum formation following guided tissue regeneration: a histomorphometric study in dogs. J Periodontal Res. 2006;41:535-40.
35. Hoffmann T, Richter S, Meyle J, Gonzales JR, Heinz B, Arjomand M, et al. A randomized clinical multicentre trial comparing enamel matrix derivative and membrane treatment of buccal class II furcation involvement in mandibular molars. Part III: patient factors and treatment outcome. Journal of clinical periodontology. 2006;33:575-83.
36. Needleman IG, Worthington HV, Giedrys-Leeper E, Tucker RJ. Guided tissue regeneration for periodontal infra-bony defects. The Cochrane database of systematic reviews. 2006:CD001724.
37. Venezia E, Goldstein M, Boyan BD, Schwartz Z. The use of enamel matrix derivative in the treatment of periodontal defects: a literature review and meta-analysis. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists. 2004;15:382-402.
38. Kaigler D, Cirelli JA, Giannobile WV. Growth factor delivery for oral and periodontal tissue engineering. Expert opinion on drug delivery. 2006;3:647-62.
39. Bartold PM, Shi S, Gronthos S. Stem cells and periodontal regeneration. Periodontology 2000. 2006;40:164-72.
40. Marchesan JT, Scanlon CS, Soehren S, Matsuo M, Kapila YL. Implications of cultured periodontal ligament cells for the clinical and experimental setting: a review. Arch Oral Biol. 2011;56:933-43.
41. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364:149-55.
42. Wang S, Liu Y, Fang D, Shi S. The miniature pig: a useful large animal model for dental and orofacial research. Oral diseases. 2007;13:530-7.
43. Yang ZH, Zhang XJ, Dang NN, Ma ZF, Xu L, Wu JJ, et al. Apical tooth germ cell-conditioned medium enhances the differentiation of periodontal ligament stem cells into cementum/periodontal ligament-like tissues. J Periodontal Res. 2009;44:199-210.
44. Kofoed H, Sjontoft E, Siemssen SO, Olesen HP. Bone marrow circulation after osteotomy. Blood flow, pO2, pCO2, and pressure studied in dogs. Acta Orthop Scand. 1985;56:400-3.
45. D'Ippolito G, Diabira S, Howard GA, Roos BA, Schiller PC. Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells. Bone. 2006;39:513-22.
46. Ma HL, Chen TH, Low-Tone Ho L, Hung SC. Neocartilage from human mesenchymal stem cells in alginate: implied timing of transplantation. J Biomed Mater Res A. 2005;74:439-46.
47. Yoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 2009;5:237-41.
48. Nohutcu RM, McCauley LK, Koh AJ, Somerman MJ. Expression of extracellular matrix proteins in human periodontal ligament cells during mineralization in vitro. J Periodontol. 1997;68:320-7.
49. Ganss B, Kim RH, Sodek J. Bone sialoprotein. Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists. 1999;10:79-98.
50. Amemiya H, Matsuzaka K, Kokubu E, Ohta S, Inoue T. Cellular responses of rat periodontal ligament cells under hypoxia and re-oxygenation conditions in vitro. J Periodontal Res. 2008;43:322-7.
51. McCulloch CA, Bordin S. Role of fibroblast subpopulations in periodontal physiology and pathology. J Periodontal Res. 1991;26:144-54.
52. Coura GS, Garcez RC, de Aguiar CB, Alvarez-Silva M, Magini RS, Trentin AG. Human periodontal ligament: a niche of neural crest stem cells. J Periodontal Res. 2008;43:531-6.
53. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1:e79.
54. Somerman MJ, Archer SY, Imm GR, Foster RA. A comparative study of human periodontal ligament cells and gingival fibroblasts in vitro. Journal of dental research. 1988;67:66-70.
55. Park JC, Kim JM, Jung IH, Kim JC, Choi SH, Cho KS, et al. Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: in vitro and in vivo evaluations. Journal of clinical periodontology. 2011;38:721-31.
56. Song JS, Kim SO, Kim SH, Choi HJ, Son HK, Jung HS, et al. In vitro and in vivo characteristics of stem cells derived from the periodontal ligament of human deciduous and permanent teeth. Tissue engineering Part A. 2012;18:2040-51.
57. Hsu SH, Chen CT, Wei YH. Inhibitory effects of hypoxia on metabolic switch and osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 2013;31:2779-88.
58. Chen CT, Hsu SH, Wei YH. Upregulation of mitochondrial function and antioxidant defense in the differentiation of stem cells. Biochimica et biophysica acta. 2010;1800:257-63.
59. Jung KJ, Ishigami A, Maruyama N, Takahashi R, Goto S, Yu BP, et al. Modulation of gene expression of SMP-30 by LPS and calorie restriction during aging process. Experimental gerontology. 2004;39:1169-77.
60. Arun P, Aleti V, Parikh K, Manne V, Chilukuri N. Senescence marker protein 30 (SMP30) expression in eukaryotic cells: existence of multiple species and membrane localization. PLoS One. 2011;6:e16545.
61. Wajant H. The Fas signaling pathway: more than a paradigm. Science. 2002;296:1635-6.
62. Gartel AL, Radhakrishnan SK. Lost in transcription: p21 repression, mechanisms, and consequences. Cancer Res. 2005;65:3980-5.
63. Digirolamo CM, Stokes D, Colter D, Phinney DG, Class R, Prockop DJ. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. British journal of haematology. 1999;107:275-81.
64. Cheng H, Qiu L, Ma J, Zhang H, Cheng M, Li W, et al. Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Molecular biology reports. 2011;38:5161-8.
65. Hung SP, Ho JH, Shih YR, Lo T, Lee OK. Hypoxia promotes proliferation and osteogenic differentiation potentials of human mesenchymal stem cells. J Orthop Res. 2012;30:260-6.
66. Grayson WL, Zhao F, Bunnell B, Ma T. Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun. 2007;358:948-53.
67. Huang WH, Chen HL, Huang PH, Yew TL, Lin MW, Lin SJ, et al. Hypoxic mesenchymal stem cells engraft and ameliorate limb ischaemia in allogeneic recipients. Cardiovascular research. 2014;101:266-76.
68. Kim HS, Kim KH, Kim SH, Kim YS, Koo KT, Kim TI, et al. Immunomodulatory effect of canine periodontal ligament stem cells on allogenic and xenogenic peripheral blood mononuclear cells. Journal of periodontal & implant science. 2010;40:265-70.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top