跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/09/21 23:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭均哲
研究生(外文):Chun-Che Hsiao
論文名稱:體外重新摺疊的兩種枯草桿菌SigB蛋白之構型與功能探討
論文名稱(外文):Characterization of the conformational and functional properties of two in vitro refolded Bacillus subtilis SigB
指導教授:張邦彥張邦彥引用關係
指導教授(外文):Ban-Yang Chang
口試委員:陳曄詹迺立
口試日期:2016-07-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物化學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:中文
論文頁數:54
中文關鍵詞:枯草桿菌SigB蛋白電泳速率變化分析
外文關鍵詞:Bacillus subtilisSigB proteinElectrophoretic mobility shift assay
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在原核生物基因轉錄系統中,σ因子參與RNA聚合酶專一性辨識啟動子DNA、解開雙股啟動子DNA、早產轉錄及RNA聚合酶脫離啟動子DNA的過程。過去實驗室的研究發現,枯草桿菌N-端刪除100個胺基酸的σA蛋白 (SND100-σA)及負責環境壓力調控且缺少次區域1的σB蛋白,皆能在沒有RNA聚合酶核心酵素的協助下與啟動子DNA進行專一性的結合。進一步的研究更發現,藉由不同的蛋白重新摺疊 (refolding)方式,我們能夠得到具有不同功能特性的SND100-σA蛋白。其中,一種 (SND100-σA1)僅具有和啟動子DNA專一性結合的能力;另一種 (SND100-σA3)則還具有將啟動子雙股DNA解旋的能力。本研究想探討枯草桿菌σB蛋白是否也能夠藉由體外摺疊條件的不同,形成不同構型及功能的σB蛋白。本研究以含有sigB基因質體的E. coli BL21 (DE3)菌株,大量生產不可溶的σB蛋白,進一步利用6 M guanidine-HCl將σB蛋白聚結體變性,再以緩慢稀釋guanidine-HCl的方式,讓σB蛋白進行重新體外摺疊 (refolding)。最後,我利用以Superdex G-200以及Superdex G-75分子篩管柱層析將σB蛋白加以純化。在本實驗中,σB蛋白之重新摺疊及純化過程所用的buffer分成兩種,其中一種含有phenylmethylsulfonyl fluoride (PMSF)及Dithiothreitol (DTT);另外一種則不含PMSF及DTT。經此純化的σB蛋白分別命名為σB1及σB3蛋白。Circular Dichroism (CD)分析結果顯示,雖然σB1和σB3之蛋白二級構造成分含率並沒有明顯差異,但整體構型卻有所不同。接著,利用electrophoretic mobility shift assay (EMSA)分析,確認σB1及σB3均具有與啟動子DNA結合能力,但和σB1蛋白相比,σB3蛋白需要較大濃度才能與啟動子DNA結合。另外,為了更進一步瞭解σB1及σB3蛋白功能上的不同,我也分析heparin對σB1及σB3與啟動子DNA複合體形成的影響。結果顯示,要抑制σB1及σB3與啟動子DNA形成複合體,所需的heparin濃度是不同的。上述結果顯示,σB1及σB3不僅在構型上不同,在DNA結合特性上也有所差異。

Transcription initiation is the first step of gene expression and a major point for gene regulation.σ factor of RNA polymerase (RNAP;α2ββ''σ) confers the specificity of promoter recognition and initiates transcription. It is also involved in open complex, abortive transcription and regulation of gene expression.
Recent works in our lab demonstrated that the N-terminally truncated primary σA factor, SND100-σA, and σB of Bacillus subtilis, both of which lack region 1.1, are able to specifically interact with promoter DNA in the absence of core RNA polymerase in vitro. Moreover, SND100-σA factors with different functional properties were achieved through the use of slightly different refolding protocols. Among them, SND100-σA1 is capable of exhibiting specific and core RNAP-independent promoter-binding activity; whereas SND100-σA3 is able to melt DNA independent of core RNA polymerase in vitro.
Present study is aimed to investigate whether the B. subtilis σB can also adopt different functional properties through protein refolding. To fulfill this goal, the σB protein was overexpressed in E. coli BL21 (DE3) harboring a σB-expressing plasmid. The overexpressed σB in inclusion bodies were denatured with guanidine hydrochloride and refolded through mild serial dilution of the guanidine hydrochloride solution. The refolded σB were soluble and can be purified using Superdex G-200 and Superdex G-75 columns. Buffers with or without both PMSF and DTT were used for protein refolding and purification and the σB proteins thus obtained were named σB1 and σB3, respectively.
Results of circular dichroism reveal that σB1 and σB3 have similar contents of secondary structures albeit with different overall conformations. Moreover, both σB1 and σB3 are able to bind promoter DNA as analyzed by electrophoretic mobility shift assay (EMSA). However, the two σB-promoter DNA complexes are different in sensitivity to heparin challenge, suggesting that they possesss different DNA-binding properties.


前言 1
材料與方法 11
一、實驗材料 11
二、菌株、質體與DNA引子來源 11
三、實驗方法 11
(一)pOB2質體之構築 11
(二)pSIGBP質體之構築 11
(三)枯草桿菌σB蛋白之大量表現 12
(四)枯草桿菌σB蛋白重新摺疊成σB3之構型及純化 12
(五)蛋白質之定量 14
(六)枯草桿菌σB1及σB3蛋白二級構造成分含率及整體構型之分析 14
(七)枯草桿菌sigB操縱組啟動子DNA之製備、純化及標示 14
(八) 枯草桿菌σB1和σB3蛋白與sigB操縱組啟動子DNA結合能力之分析 15
(九)Heparin對σB1和σB3蛋白與sigB操縱組啟動子DNA複合體形成之影響分析 15
結果 17
一、枯草桿菌σB蛋白之大量表現 17
二、枯草桿菌σB蛋白重新摺疊成σB3之構型及純化 17
三、枯草桿菌σB1和σB3蛋白二級構造成分含率及整體構型之分析 18
四、枯草桿菌σB1和σB3蛋白與sigB操縱組啟動子DNA結合能力之分析 18
五、Heparin對σB1和σB3蛋白與sigB操縱組啟動子DNA複合體形成之影響分析 19
討論 21
附圖 23
圖一、pOB2質體之構築 23
圖二、pSIGBP質體之構築 24
圖三、枯草桿菌σB蛋白之大量表現 25
圖四、枯草桿菌σB3蛋白之純化 26
圖五、枯草桿菌σB1和σB3蛋白二級構造成分含率及整體構型之分析 27
圖六、枯草桿菌σB1和σB3蛋白二級構造成分含率及整體構型之分析 29
圖七、枯草桿菌σB1和σB3蛋白與sigB操縱組啟動子DNA結合能力之分析 31
圖八、Heparin對σB1和σB3蛋白與sigB操縱組啟動子DNA複合體形成之影響分析 33
附錄一、菌株 35
附錄二、質體 36
附錄三、Primers for PCR 37
附錄四、sigB操縱組啟動子DNA序列DNA 序列 38
參考文獻 39

Aiyar, S.E., Gourse, R.L., and Ross, W. (1998). Upstream A-tracts increase bacterial promoter activity through interactions with the RNA polymerase alpha subunit. Proc Natl Acad Sci U S A 95, 14652-14657.
Amaya, E., Khvorova, A., and Piggot, P.J. (2001). Analysis of promoter recognition in vivo directed by sigma(F) of Bacillus subtilis by using random-sequence oligonucleotides. J Bacteriol 183, 3623-3630.
Arthur, T.M., Anthony, L.C., and Burgess, R.R. (2000). Mutational analysis of beta'' 260-309, a sigma 70 binding site located on Escherichia coli core RNA polymerase. J Biol Chem 275, 23113-23119.
Artsimovitch, I. (2008). Post-initiation control by the initiation factor sigma. Mol Microbiol 68, 1-3.
Baldwin, N.E., and Dombroski, A.J. (2001). Isolation and characterization of mutations in region 1.2 of Escherichia coli sigma70. Mol Microbiol 42, 427-437.
Bandow, J.E., Brotz, H., and Hecker, M. (2002). Bacillus subtilis tolerance of moderate concentrations of rifampin involves the sigma(B)-dependent general and multiple stress response. J Bacteriol 184, 459-467.
Bar-Nahum, G., and Nudler, E. (2001). Isolation and characterization of sigma(70)-retaining transcription elongation complexes from Escherichia coli. Cell 106, 443-451.
Benson, A.K., and Haldenwang, W.G. (1993). The sigma B-dependent promoter of the Bacillus subtilis sigB operon is induced by heat shock. J Bacteriol 175, 1929-1935.
Bowers, C.W., and Dombroski, A.J. (1999). A mutation in region 1.1 of sigma70 affects promoter DNA binding by Escherichia coli RNA polymerase holoenzyme. EMBO J 18, 709-716.
Boylan, S.A., Redfield, A.R., Brody, M.S., and Price, C.W. (1993). Stress-induced activation of the sigma B transcription factor of Bacillus subtilis. J Bacteriol 175, 7931-7937.
Bullock, N., and Thurston, A.V. (1987). Tetracycline sclerotherapy for hydroceles and epididymal cysts. Br J Urol 59, 340-342.
Burgess, R.R. (1969). Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem 244, 6168-6176.
Buttner, M.J., Chater, K.F., and Bibb, M.J. (1990). Cloning, disruption, and transcriptional analysis of three RNA polymerase sigma factor genes of Streptomyces coelicolor A3(2). J Bacteriol 172, 3367-3378.
Bashyam, M.D., and Hasnain, S.E. (2004). The extracytoplasmic function sigma factors: role in bacterial pathogenesis. Infection, Genetics and Evolution 4,301-308.
Bochkareva, A., Zenkin, N. (2013). The sigma70 region 1.2 regulates promoter escape by unwinding DNA downstream of the transcription start site. Nucleic Acids Res 41, 1-8.
Callaci, S., Heyduk, E., and Heyduk, T. (1998). Conformational changes of Escherichia coli RNA polymerase sigma70 factor induced by binding to the core enzyme. J Biol Chem 273, 32995-33001.
Callaci, S., Heyduk, E., and Heyduk, T. (1999). Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit. Mol Cell 3, 229-238.
Campbell, E.A., Muzzin, O., Chlenov, M., Sun, J.L., Olson, C.A., Weinman, O., Trester-Zedlitz, M.L., and Darst, S.A. (2002). Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol Cell 9, 527-539.
Carpousis, A.J., and Gralla, J.D. (1980). Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry 19, 3245-3253.
Carpousis, A.J., and Gralla, J.D. (1985). Interaction of RNA polymerase with lac UV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitivity changes accompanying transcription initiation. J Mol Biol 183, 165-177.
Cashel, M., Hsu, L.M., and Hernandez, V.J. (2003). Changes in conserved region 3 of Escherichia coli sigma 70 reduce abortive transcription and enhance promoter escape. J Biol Chem 278, 5539-5547.
Chang, B.Y., and Doi, R.H. (1993). Conformational properties of Bacillus subtilis RNA polymerase sigma A factor during transcription initiation. Biochem J 294 ( Pt 1), 43-47.
Chang, B.Y., Shyu, Y.T., and Doi, R.H. (1992). The interaction between Bacillus subtilis sigma-A (sigma A) factor and RNA polymerase with promoters. Biochimie 74, 601-612.
Chater, K.F., Bruton, C.J., Plaskitt, K.A., Buttner, M.J., Mendez, C., and Helmann, J.D. (1989). The developmental fate of S. coelicolor hyphae depends upon a gene product homologous with the motility sigma factor of B. subtilis. Cell 59, 133-143.
Chen, Y., Ebright, Y.W., and Ebright, R.H. (1994). Identification of the target of a transcription activator protein by protein-protein photocrosslinking. Science 265, 90-92.
Chen, Y.F., and Helmann, J.D. (1995). The Bacillus subtilis flagellar regulatory protein sigma D: overproduction, domain analysis and DNA-binding properties. J Mol Biol 249, 743-753.
Chou, P.Y., and Fasman, G.D. (1974). Prediction of protein conformation. Biochemistry 13, 222-245.
Daniels, D., Zuber, P., and Losick, R. (1990). Two amino acids in an RNA polymerase sigma factor involved in the recognition of adjacent base pairs in the -10 region of a cognate promoter. Proc Natl Acad Sci U S A 87, 8075-8079.
Das, A. (1993). Control of transcription termination by RNA-binding proteins. Annu Rev Biochem 62, 893-930.
Delumeau, O., Lewis, R.J., and Yudkin, M.D. (2002). Protein-protein interactions that regulate the energy stress activation of sigma(B) in Bacillus subtilis. J Bacteriol 184, 5583-5589.
Doi, R.H., and Wang, L.F. (1986). Multiple procaryotic ribonucleic acid polymerase sigma factors. Microbiol Rev 50, 227-243.
Dombroski, A.J., Walter, W.A., and Gross, C.A. (1993). Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev 7, 2446-2455.
Dombroski, A.J., Walter, W.A., Record, M.T., Jr., Siegele, D.A., and Gross, C.A. (1992). Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell 70, 501-512.
Dufour, A., and Haldenwang, W.G. (1994). Interactions between a Bacillus subtilis anti-sigma factor (RsbW) and its antagonist (RsbV). J Bacteriol 176, 1813-1820.
Eichenberger, P., Jensen, S.T., Conlon, E.M., van Ooij, C., Silvaggi, J., Gonzalez-Pastor, J.E., Fujita, M., Ben-Yehuda, S., Stragier, P., Liu, J.S., et al. (2003). The sigmaE regulon and the identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327, 945-972.
Sevim, E., Gaballa, A., Belduz, A.O., Helmann, J.D. (2011). DNA-Binding Properties of the Bacillus subtilis and Aeribacillus pallidus AC6 sigmaD Proteins. J Bacteriol 193, 575-579.
Feklistov, A., Barinova, N., Sevostyanova, A., Heyduk, E., Bass, I., Vvedenskaya, I., Kuznedelov, K., Merkiene, E., Stavrovskaya, E., Klimasauskas, S., et al. (2006). A basal promoter element recognized by free RNA polymerase sigma subunit determines promoter recognition by RNA polymerase holoenzyme. Mol Cell 23, 97-107.
Gaidenko, T.A., and Price, C.W. (1998). General stress transcription factor sigmaB and sporulation transcription factor sigmaH each contribute to survival of Bacillus subtilis under extreme growth conditions. J Bacteriol 180, 3730-3733.
Geiduschek, E.P. (1997). Paths to activation of transcription. Science 275, 1614-1616.
Gilman, M.Z., Wiggs, J.L., and Chamberlin, M.J. (1981). Nucleotide sequences of two Bacillus subtilis promoters used by Bacillus subtilis sigma-28 RNA polymerase. Nucleic Acids Res 9, 5991-6000.
Gitt, M.A., Wang, L.F., and Doi, R.H. (1985). A strong sequence homology exists between the major RNA polymerase sigma factors of Bacillus subtilis and Escherichia coli. J Biol Chem 260, 7178-7185.
Glass, R.E., Jones, S.T., Nene, V., Nomura, T., Fujita, N., and Ishihama, A. (1986). Genetic studies on the beta subunit of Escherichia coli RNA polymerase. VIII. Localisation of a region involved in promoter selectivity. Mol Gen Genet 203, 487-491.
Gopal, V., and Chatterji, D. (1997). Mutations in the 1.1 subdomain of Escherichia coli sigma factor sigma70 and disruption of its overall structure. Eur J Biochem 244, 613-618.
Gourse, R.L., Ross, W., and Gaal, T. (2000). UPs and downs in bacterial transcription initiation: the role of the alpha subunit of RNA polymerase in promoter recognition. Mol Microbiol 37, 687-695.
Grachev, M.A., Mustaev, A.A., Zaychikov, E.F., Lindner, A.J., and Hartmann, G.R. (1989). Localisation of the binding site for the initiating substrate on the RNA polymerase from Sulfolobus acidocaldarius. FEBS Lett 250, 317-322.
Gralla, J.D. (1989). Bacterial gene regulation from distant DNA sites. Cell 57, 193-195.
Gross, C.A., Chan, C., Dombroski, A., Gruber, T., Sharp, M., Tupy, J., and Young, B. (1998). The functional and regulatory roles of sigma factors in transcription. Cold Spring Harb Symp Quant Biol 63, 141-155.
Gruber, T.M., and Gross, C.A. (2003). Multiple sigma subunits and the partitioning of bacterial transcription space. Annu Rev Microbiol 57, 441-466.
Hanahan, D. (1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166, 557-580.
Haugen, S.P., Berkmen, M.B., Ross, W., Gaal, T., Ward, C., and Gourse, R.L. (2006). rRNA promoter regulation by nonoptimal binding of sigma region 1.2: an additional recognition element for RNA polymerase. Cell 125, 1069-1082.
Hawley, D.K., and McClure, W.R. (1980). In vitro comparison of initiation properties of bacteriophage lambda wild-type PR and x3 mutant promoters. Proc Natl Acad Sci U S A 77, 6381-6385.
Hecker, M., Pane-Farre, J., and Volker, U. (2007). SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu Rev Microbiol 61, 215-236.
Heinrich, J., and Wiegert, T. (2009). Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Res Microbiol 160, 696-703.
Helmann, J.D., and Chamberlin, M.J. (1988). Structure and function of bacterial sigma factors. Annu Rev Biochem 57, 839-872.
Helmann, J.D., and deHaseth, P.L. (1999). Protein-nucleic acid interactions during open complex formation investigated by systematic alteration of the protein and DNA binding partners. Biochemistry 38, 5959-5967.
Hernandez, V.J., Hsu, L.M., and Cashel, M. (1996). Conserved region 3 of Escherichia coli final sigma70 is implicated in the process of abortive transcription. J Biol Chem 271, 18775-18779.
Hook-Barnard, I.G., and Hinton, D.M. (2007). Transcription initiation by mix and match elements: flexibility for polymerase binding to bacterial promoters. Gene Regul Syst Bio 1, 275-293.
Igarashi, K., Hanamura, A., Makino, K., Aiba, H., Mizuno, T., Nakata, A., and Ishihama, A. (1991). Functional map of the alpha subunit of Escherichia coli RNA polymerase: two modes of transcription activation by positive factors. Proc Natl Acad Sci U S A 88, 8958-8962.
Inouye, S., Yamada, M., Nakazawa, A., and Nakazawa, T. (1989). Cloning and sequence analysis of the ntrA (rpoN) gene of Pseudomonas putida. Gene 85, 145-152.
Ishihama, A. (1981). Subunit of assembly of Escherichia coli RNA polymerase. Adv Biophys 14, 1-35.
Ishihama, A. (1993). Protein-protein communication within the transcription apparatus. J Bacteriol 175, 2483-2489.
Jeon, Y.H., Negishi, T., Shirakawa, M., Yamazaki, T., Fujita, N., Ishihama, A., and Kyogoku, Y. (1995). Solution structure of the activator contact domain of the RNA polymerase alpha subunit. Science 270, 1495-1497.
Jin, D.J., Burgess, R.R., Richardson, J.P., and Gross, C.A. (1992). Termination efficiency at rho-dependent terminators depends on kinetic coupling between RNA polymerase and rho. Proc Natl Acad Sci U S A 89, 1453-1457.
Juang, Y.L., and Helmann, J.D. (1994). A promoter melting region in the primary sigma factor of Bacillus subtilis. Identification of functionally important aromatic amino acids. J Mol Biol 235, 1470-1488.
Juang, Y.L., and Helmann, J.D. (1995). Pathway of promoter melting by Bacillus subtilis RNA polymerase at a stable RNA promoter: effects of temperature, delta protein, and sigma factor mutations. Biochemistry 34, 8465-8473.
Kalman, S., Duncan, M.L., Thomas, S.M., and Price, C.W. (1990). Similar organization of the sigB and spoIIA operons encoding alternate sigma factors of Bacillus subtilis RNA polymerase. J Bacteriol 172, 5575-5585.
Kenney, T.J., and Moran, C.P., Jr. (1991). Genetic evidence for interaction of sigma A with two promoters in Bacillus subtilis. J Bacteriol 173, 3282-3290.
Kenney, T.J., York, K., Youngman, P., and Moran, C.P., Jr. (1989). Genetic evidence that RNA polymerase associated with sigma A factor uses a sporulation-specific promoter in Bacillus subtilis. Proc Natl Acad Sci U S A 86, 9109-9113.
Koo, B.M., Rhodius, V.A., Campbell, E.A., and Gross, C.A. (2009a). Dissection of recognition determinants of Escherichia coli sigma32 suggests a composite -10 region with an ''extended -10'' motif and a core -10 element. Mol Microbiol 72, 815-829.
Koo, B.M., Rhodius, V.A., Nonaka, G., deHaseth, P.L., and Gross, C.A. (2009b). Reduced capacity of alternative sigmas to melt promoters ensures stringent promoter recognition. Genes Dev 23, 2426-2436.
Kulbachinskiy, A., and Mustaev, A. (2006). Region 3.2 of the sigma subunit contributes to the binding of the 3''-initiating nucleotide in the RNA polymerase active center and facilitates promoter clearance during initiation. J Biol Chem 281, 18273-18276.
Kuznedelov, K., Minakhin, L., Niedziela-Majka, A., Dove, S.L., Rogulja, D., Nickels, B.E., Hochschild, A., Heyduk, T., and Severinov, K. (2002). A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. Science 295, 855-857.
Leibman, M., and Hochschild, A. (2007). A sigma-core interaction of the RNA polymerase holoenzyme that enhances promoter escape. EMBO J 26, 1579-1590.
Lesley, S.A., Brow, M.A., and Burgess, R.R. (1991). Use of in vitro protein synthesis from polymerase chain reaction-generated templates to study interaction of Escherichia coli transcription factors with core RNA polymerase and for epitope mapping of monoclonal antibodies. J Biol Chem 266, 2632-2638.
Lesley, S.A., and Burgess, R.R. (1989). Characterization of the Escherichia coli transcription factor sigma 70: localization of a region involved in the interaction with core RNA polymerase. Biochemistry 28, 7728-7734.
Liao, C.T., Wang, W.H., Yang, H.S., Chen, J.P., and Chang, B.Y. (1999a). Differential and additive effects of the three conserved isoleucine residues in the promoter -10 binding region on Bacillus subtilis sigma(A) structure and function. J Biochem 126, 461-469.
Liao, C.T., Wen, Y.D., Wang, W.H., and Chang, B.Y. (1999b). Identification and characterization of a stress-responsive promoter in the macromolecular synthesis operon of Bacillus subtilis. Mol Microbiol 33, 377-388.
Li, M., Moyle, H., and Susskind, M.M. (1994). Target of the transcriptional activation function of phage lambda cI protein. Science 263, 75-77.
Lonetto, M., Gribskov, M., and Gross, C.A. (1992). The sigma 70 family: sequence conservation and evolutionary relationships. J Bacteriol 174, 3843-3849.
Losick, R., Youngman, P., and Piggot, P.J. (1986). Genetics of endospore formation in Bacillus subtilis. Annu Rev Genet 20, 625-669.
Mendez, M.B., Orsaria, L.M., Philippe, V., Pedrido, M.E., and Grau, R.R. (2004). Novel roles of the master transcription factors Spo0A and sigmaB for survival and sporulation of Bacillus subtilis at low growth temperature. J Bacteriol 186, 989-1000.
Merrick, M.J. (1993). In a class of its own--the RNA polymerase sigma factor sigma 54 (sigma N). Mol Microbiol 10, 903-909.
Moran, C.P., Jr., Lang, N., and Losick, R. (1981). Nucleotide sequence of a Bacillus subtilis promoter recognized by Bacillus subtilis RNA polymerase containing sigma 37. Nucleic Acids Res 9, 5979-5990.
Murakami, K.S., Masuda, S., Campbell, E.A., Muzzin, O., and Darst, S.A. (2002). Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296, 1285-1290.
Nonaka, G., Blankschien, M., Herman, C., Gross, C.A., and Rhodius, V.A. (2006). Regulon and promoter analysis of the E. coli heat-shock factor, sigma32, reveals a multifaceted cellular response to heat stress. Genes Dev 20, 1776-1789.
Nudler, E., Goldfarb, A., and Kashlev, M. (1994). Discontinuous mechanism of transcription elongation. Science 265, 793-796.
Paget, M.S., and Helmann, J.D. (2003). The sigma70 family of sigma factors. Genome Biol 4, 203.
Panaghie, G., Aiyar, S.E., Bobb, K.L., Hayward, R.S., and de Haseth, P.L. (2000). Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex. J Mol Biol 299, 1217-1230.
Petersohn, A., Bernhardt, J., Gerth, U., Hoper, D., Koburger, T., Volker, U., and Hecker, M. (1999). Identification of sigma(B)-dependent genes in Bacillus subtilis using a promoter consensus-directed search and oligonucleotide hybridization. J Bacteriol 181, 5718-5724.
Piggot, P.J. (1973). Mapping of asporogenous mutations of Bacillus subtilis: a minimum estimate of the number of sporeulation operons. J Bacteriol 114, 1241-1253.
Price, C.W., Fawcett, P., Ceremonie, H., Su, N., Murphy, C.K., and Youngman, P. (2001). Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 41, 757-774.
Ptashne, M., and Gann, A. (1997). Transcriptional activation by recruitment. Nature 386, 569-577.
Ray, C., Hay, R.E., Carter, H.L., and Moran, C.P., Jr. (1985). Mutations that affect utilization of a promoter in stationary-phase Bacillus subtilis. J Bacteriol 163, 610-614.
Ray, C., Tatti, K.M., Jones, C.H., and Moran, C.P., Jr. (1987). Genetic analysis of RNA polymerase-promoter interaction during sporulation in Bacillus subtilis. J Bacteriol 169, 1807-1811.
Reddy, B.V., Gopal, V., and Chatterji, D. (1997). Recognition of promoter DNA by subdomain 4.2 of Escherichia coli sigma 70: a knowledge based model of -35 hexamer interaction with 4.2 helix-turn-helix motif. J Biomol Struct Dyn 14, 407-419.
Reznikoff, W.S., Siegele, D.A., Cowing, D.W., and Gross, C.A. (1985). The regulation of transcription initiation in bacteria. Annu Rev Genet 19, 355-387.
Ring, B.Z., Yarnell, W.S., and Roberts, J.W. (1996). Function of E. coli RNA polymerase sigma factor sigma 70 in promoter-proximal pausing. Cell 86, 485-493.
Rong, J.C., and Helmann, J.D. (1994). Genetic and physiological studies of Bacillus subtilis sigma A mutants defective in promoter melting. J Bacteriol 176, 5218-5224.
Sanderson, A., Mitchell, J.E., Minchin, S.D., and Busby, S.J. (2003). Substitutions in the Escherichia coli RNA polymerase sigma70 factor that affect recognition of extended -10 elements at promoters. FEBS Lett 544, 199-205.
Sen, R., Nagai, H., Hernandez, V.J., and Shimamoto, N. (1998). Reduction in abortive transcription from the lambdaPR promoter by mutations in region 3 of the sigma70 subunit of Escherichia coli RNA polymerase. J Biol Chem 273, 9872-9877.
Severinov, K., Fenyo, D., Severinova, E., Mustaev, A., Chait, B.T., Goldfarb, A., and Darst, S.A. (1994). The sigma subunit conserved region 3 is part of "5''-face" of active center of Escherichia coli RNA polymerase. J Biol Chem 269, 20826-20828.
Shuler, M.F., Tatti, K.M., Wade, K.H., and Moran, C.P., Jr. (1995). A single amino acid substitution in sigma E affects its ability to bind core RNA polymerase. J Bacteriol 177, 3687-3694.
Siebenlist, U. (1979). RNA polymerase unwinds an 11-base pair segment of a phage T7 promoter. Nature 279, 651-652.
Siegele, D.A., Hu, J.C., Walter, W.A., and Gross, C.A. (1989). Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J Mol Biol 206, 591-603.
Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990). Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185, 60-89.
Tabor, S. (1990). Expression using the T7 RNA polymerase/promoter system. Current Protocols in Molecular Biology. New York: Greene Publishing and Wiley Interscience, pp. 16.2.1±16.2.11.
Tatti, K.M., and Moran, C.P., Jr. (1984). Promoter recognition by sigma-37 RNA polymerase from Bacillus subtilis. J Mol Biol 175, 285-297.
Tatti, K.M., Jones, C.H., and Moran, C.P., Jr. (1991). Genetic evidence for interaction of sigma E with the spoIIID promoter in Bacillus subtilis. J Bacteriol 173, 7828-7833.
Tomsic, M., Tsujikawa, L., Panaghie, G., Wang, Y., Azok, J., and deHaseth, P.L. (2001). Different roles for basic and aromatic amino acids in conserved region 2 of Escherichia coli sigma(70) in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes. J Biol Chem 276, 31891-31896.
Van Schaik, W., and Abee, T. (2005). The role of sigmaB in the stress response of Gram-positive bacteria -- targets for food preservation and safety. Curr Opin Biotechnol 16, 218-224.
Van Schaik, W., van der Voort, M., Molenaar, D., Moezelaar, R., de Vos, W.M., and Abee, T. (2007). Identification of the sigmaB regulon of Bacillus cereus and conservation of sigmaB-regulated genes in low-GC-content gram-positive bacteria. J Bacteriol 189, 4384-4390.
Vassylyev, D.G., Sekine, S., Laptenko, O., Lee, J., Vassylyeva, M.N., Borukhov, S., and Yokoyama, S. (2002). Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 A resolution. Nature 417, 712-719.
Volker, U., Maul, B., and Hecker, M. (1999). Expression of the sigmaB-dependent general stress regulon confers multiple stress resistance in Bacillus subtilis. J Bacteriol 181, 3942-3948.
Von Hippel, P.H., Bear, D.G., Morgan, W.D., and McSwiggen, J.A. (1984). Protein-nucleic acid interactions in transcription: a molecular analysis. Annu Rev Biochem 53, 389-446.
Vuthoori, S., Bowers, C.W., McCracken, A., Dombroski, A.J., and Hinton, D.M. (2001). Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. J Mol Biol 309, 561-572.
Waldburger, C., Gardella, T., Wong, R., and Susskind, M.M. (1990). Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J Mol Biol 215, 267-276.
Walter, G., Zillig, W., Palm, P., and Fuchs, E. (1967). Initiation of DNA-dependent RNA synthesis and the effect of heparin on RNA polymerase. Eur J Biochem 3, 194-201.
Wang, D., Meier, T.I., Chan, C.L., Feng, G., Lee, D.N., and Landick, R. (1995). Discontinuous movements of DNA and RNA in RNA polymerase accompany formation of a paused transcription complex. Cell 81, 341-350.
Wellman, A., and Meares, C.F. (1991). Footprint of the sigma protein: a re-examination. Biochem Biophys Res Commun 177, 140-144.
Wigneshweraraj, S.R., Burrows, P.C., Severinov, K., and Buck, M. (2005). Stable DNA opening within open promoter complexes is mediated by the RNA polymerase beta''-jaw domain. J Biol Chem 280, 36176-36184.
Wilson, C., and Dombroski, A.J. (1997). Region 1 of sigma70 is required for efficient isomerization and initiation of transcription by Escherichia coli RNA polymerase. J Mol Biol 267, 60-74.
Young, B.A., Anthony, L.C., Gruber, T.M., Arthur, T.M., Heyduk, E., Lu, C.Z., Sharp, M.M., Heyduk, T., Burgess, R.R., and Gross, C.A. (2001). A coiled-coil from the RNA polymerase beta'' subunit allosterically induces selective nontemplate strand binding by sigma(70). Cell 105, 935-944.
Young, B.A., Gruber, T.M., and Gross, C.A. (2002). Views of transcription initiation. Cell 109, 417-420.
Young, B.A., Gruber, T.M., and Gross, C.A. (2004). Minimal machinery of RNA polymerase holoenzyme sufficient for promoter melting. Science 303, 1382-1384.
Yeh, H.Y., Chen, T.C., Liou, K.M., Hsu, H.T., Chung, K.M., Hsu, L.L and Chang, B.Y. (2010). The core-independent promoter-specific interaction of primary sigma factor. Nucleic Acids Res 39, 913-925.
Zhou, Y.N., Walter, W.A., and Gross, C.A. (1992). A mutant sigma 32 with a small deletion in conserved region 3 of sigma has reduced affinity for core RNA polymerase. J Bacteriol 174, 5005-5012.
Zuber, P., Healy, J., Carter, H.L., 3rd, Cutting, S., Moran, C.P., Jr., and Losick, R. (1989). Mutation changing the specificity of an RNA polymerase sigma factor. J Mol Biol 206, 605-614.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top